
Lerna: Transparent and Effective
Speculative Loop Parallelization

Mohamed M. Saad Roberto Palmieri Binoy Ravindran
Virginia Tech

{msaad, robertop, binoy}@vt.edu

Abstract
In this paper, we present Lerna, a system that automatically and
transparently detects and extracts parallelism from sequential code
using speculation combined with a set of techniques including
code profiling, dependency analysis, instrumentation, and adap-
tive execution. Lerna is cross-platform and independent of the
programming language. The parallel execution exploits memory
transactions to manage concurrent and out-of-order memory ac-
cesses. This scheme allows Lerna to parallelize sequential appli-
cations with data dependencies. Our experimental study involves
the parallelization of 13 applications. Results show an average
of 2.7x speedup for micro-benchmarks and 2.5x for the macro-
benchmarks.

1. Introduction
Sequential code parallelization is a widely studied research field
(e.g., [1, 24, 28, 56]) that aims at extracting parallelism from se-
quential (often legacy) applications, and it gained particular trac-
tion in the last decade given the diffusion of multicore architec-
tures as commodity hardware (offering affordable parallelism). At
the very high-level, techniques for parallelizing sequential code are
classified as manual, semi-automatic, and automatic. Those tech-
niques indicate the amount of effort needed to rewrite/annotate the
original application, along with the level of knowledge required on
the codebase.

In this paper we focus on the automatic class, where the pro-
grammer is kept entirely out of the parallelization effort because
we believe there is a large number of legacy applications that are
sequential and whose source code is not actively maintained any-
more, thus they could benefit most from an effective solution. In
this class, effective solutions have been proposed in the past, but
most of them assume that (or are well-behaved when) the applica-
tion itself has no data dependencies, or dependencies can be iden-
tified [23, 25, 34] and taken into account prior to the parallel exe-
cution [26, 56]. In practice, this entails that there is the possibility
of identifying regions of the code (e.g., loops) that do not have data
dependencies [32, 50], through the static analysis of the code, or
that can be activated in parallel after having partitioned the dataset
properly [36, 53, 56].

Unfortunately, the analysis of the code is not effective if the ap-
plication contains sections that could be activated in parallel but
enclose computation that may affect the execution flow, as well as
the input values (e.g., accesses to a shared data structure without
specific patterns). This uncertainty leads the parallelization process
to take the conservative decision of executing those sections seri-
ally, nullifying any possible gain.

In this paper, we take a different direction by speculating over
those sections to capture the actual data dependencies at run time,
thus if the current execution pattern does not produce data depen-

dencies, parallelism can be still exploited. We encapsulate this idea
into Lerna, the first integrated software tool that parallelizes se-
quential applications with non-trivial data dependencies (i.e., if
data cannot be partitioned according to the threads’ access pat-
tern, and therefore the application execution flow cannot be dis-
joint) automatically, consequently the programmer is not required
to annotate the code or to have a-priori knowledge on the applica-
tion business logic. Lerna lets hard-to-parallelize sequential appli-
cations benefit from the real parallelism of multicore architectures.

Lerna deploys a building block fundamental to support the tar-
geted type of parallel execution, i.e., optimistic synchronization (or
speculation). With this technique, sequential sections of the code
run in parallel optimistically (or speculatively), guarded by a com-
pensating mechanism for handling operations violating the appli-
cation consistency. This mechanism is carried out by Transactional
Memory (TM) [28], a programming abstraction that permits devel-
opers to define critical sections as simple atomic blocks, which are
internally managed by the TM itself. TM’s adoption grew in re-
cent years, especially after the integration with the popular GCC
compiler (starting with version 4.7). A similar mechanism is also
provided by Thread-Level Speculation (TLS) [27]. However, it is
intrusive and more difficult to decouple from Lerna’s design than
TM. In fact, Lerna uses a TM implementation as an internal sup-
port to manage the data dependencies (which becomes contention
when the code executes in parallel).

In a nutshell, Lerna is a system that does not require analysis
of the application’s source code; it works with its intermediate
representation, compiled using LLVM [35], and produces ready-to-
run parallel code as output. Its parallelization process targets those
blocks of code that are prone to be parallelized (i.e., loops) and
uses the TM abstraction to mark them. Such TM-style transactions
are then automatically instrumented by us to make the parallel
execution correct (i.e., equivalent to the execution of the original
serial application) even in the presence of data conflicts (e.g., the
case of two iterations of one loop activated in parallel and that
modify the same part of a shared data structure).

Despite the high-level goal, without fine-grain optimizations
and innovations, deploying the above idea leads the application
performance to be slower (often much slower [39, 52]) than the
sequential, non-instrumented execution. As an example of that, a
blind parallelization of a loop would mean wrapping the whole
body of the loop within a transaction. By doing so, we either gen-
erate an excessive amount of conflicts on those variables that de-
pend on the actual iteration count, or the level of instrumentation
produced to guarantee a correct parallel execution becomes (fruit-
lessly) high.

In addition: variables that have never been modified within the
loop may be uselessly transactionally accessed; the transaction
commit order should be the same as the completion order of the
iterations if they would have executed sequentially[47]; and aborts

could be costly as it involves retrying the whole transaction includ-
ing local processing work. The combination of these factors nul-
lifies any possible gain due to parallelization, thus letting the ap-
plication just pay the overhead of the transactional instrumentation
and, as a consequence, providing performance slower than the se-
quential execution. Lerna does not suffer from the above issues. It
instruments a small subset of code instructions, which is enough
to preserve correctness, and optimizes the processing by a mix of
static optimizations and dynamic (at runtime) tuning.

We evaluated Lerna’s performance using a set of 13 applica-
tions including micro-benchmarks from the RSTM [2] framework,
STAMP [10], a suite of applications designed for evaluating in-
memory concurrency controls, and a subset of the PARSEC [9]
benchmark. The reason we selected them is because they provide
(except for PARSEC) a performance upper-bound for Lerna. In
fact, they are released with a version that provides synchroniza-
tion by using manually defined transactions. This way, besides the
speedup over the sequential implementation, we can show the per-
formance of Lerna against the same application with an efficient,
hand-crafted solution. Lerna is on average 2.7⇥ faster than the se-
quential version using micro-benchmarks (with a peak of 3.9⇥),
and 2.5⇥ faster considering macro-benchmarks (with a top speedup
of one order of magnitude reached with STAMP).

Lerna has been designed to be a framework with pluggable com-
ponents. We provide an interface for integrating different TM al-
gorithms. That way, TM designers can focus on developing spe-
cific algorithms and can rely on Lerna for integrating their solu-
tion, transparently. Lerna’s main contribution is on the design and
development of a unique tool that integrates novel (e.g., the ordered
TM algorithms) and existing (e.g., the static analysis) techniques in
order to serve the goal of parallelizing sequential applications with
non-trivial data dependencies, and with performance from 2⇥ to
21⇥ faster than the sequential code, and only 1.6⇥ slower than the
manual hand-crafted unordered parallel version.

2. Related Work
Automatic parallelization has been studied in the past. Papers
in [15, 21] overview some of the most important contributions.

Optimistic concurrency techniques, such as Thread-Level Spec-
ulation and Transactional Memory, have been proposed as a means
for extracting parallelism from legacy code. Both techniques split
an application into sections, and run them speculatively on parallel
threads. A thread may buffer its state or expose it. Eventually, the
executed code becomes safe and it can proceed as if it was executed
sequentially. Otherwise, the code’s changes are reverted, and the
execution is restarted. Some efforts combined TLS and TM through
a unified model [8, 44, 45] to get the best of the two techniques.

Parallelization using thread-level speculation (TLS) has been
extensively studied using both hardware [14, 27, 33, 54] and soft-
ware [13, 18, 37, 38, 46]. It was originally proposed by Rauchw-
erger et. al. [46] for identifying and parallelizing loops with inde-
pendent data access – primarily arrays. The common characteristics
of TLS implementations are: they largely focus on loops as a unit
of parallelization; they mostly rely on hardware support or changes
to the cache coherence protocols; and the size of parallel sections
is usually small (e.g., the inner-most loop).

Regarding code parallelization and TM, Edler von Koch et.
al. [22] proposed an epoch-based speculative execution of parallel
traces using hardware transactional memory (HTM). Parallel sec-
tions are identified at runtime based on binary code. The conserva-
tive nature of the design does not allow the fully exploitation of all
cores. Besides, relying only on runtime supports for parallelization
introduces a non-negligible overhead to the framework. Similarly,
DeVuyst et. al. [19] uses HTM to optimistically run parallel sec-
tions, which are detected using special hardware.

STMLite [38], shares the same sweet-spot we aim for, applica-
tions with non-partitionable accesses and data dependencies. STM-
Lite provides a low-overhead access by eliminating the need for
locks and constructing a read-set, instead it uses signatures to rep-
resent accessed addresses. A central transactional manager orches-
trates the in-order commit process with the ability of having con-
current commits. In contrast with Lerna, it requires user interven-
tions to support the parallelization.

Sambamba [55] showed that static optimization at compile-time
does not exploit all possible parallelism. It relies on user input for
defining parallel sections. Gonzalez et. al. [24] proposed a user API
for defining parallel sections and the ordering semantics. Based on
user input, STM is used to handle concurrent sections. In contrast,
Lerna does not require special hardware, it is fully automated, with
an optional user interaction, and improves the parallel processing
itself with specific pattern-dependent (e.g., loop) optimization.

The study at [57] classified applications into: sequential, opti-
mistically parallel, or truly parallel, and classify tasks into: ordered
(speculative iterations of loop), and unordered (critical sections). It
introduces a TM model that captures data and inter-dependencies.
The study showed important per-application [7, 10, 12, 42] features
as the size of read and write sets, dependency density, and the size
of parallel sections.

Most of the methodologies, tools and languages for paralleliz-
ing programs target scientific and data parallel computation appli-
cations, where the actual data sharing is very limited and the data-
set is precisely analyzed by the compiler and partitioned so that the
parallel computation is possible. Examples of that those approaches
include [30, 37, 41, 48]. Lerna does not require the programmer
and offers innovations effective when the application exposes data
dependencies with non-partitionable access patterns.

HydraVM has been presented in [51]. It is an initial concept of a
virtual machine that exploits transactions to parallelize loops. Un-
like Lerna: HydraVM reconstructs code at runtime through recom-
pilation and reloading class definition, and it is obligated to run the
application through the virtual machine. The profiling phase relies
on establishing a relation between basic blocks and their accessed
memory addresses, which limits its usage to small size applica-
tions. Lerna is a complete system, which overcome all the above
limitations and embeds innovations to provide high performance.

3. Lerna
3.1 General Architecture and Workflow
Lerna splits the code of loops into parallel jobs. This operation is
made aiming to maximize the independence between jobs, which
makes it one of the most important steps to enable high perfor-
mance (clearly the presence of more conflicts leads to less paral-
lelism and thus poor performance). For each job, we create a syn-
thetic method that: i) contains the code of the job; ii) receives vari-
ables accessed by the job as input parameters; iii) and returns the
exit point of the job (i.e., the point where the loop break). Synthetic
methods are executed in separate threads as memory transactions,
and a TM library is used for managing their contention. While exe-
cuting, each transaction operates on a private copy of the accessed
memory. Upon a successful completion of the transaction, all mod-
ified variables are exposed to the main memory.

We define a successful execution of an invoked job as an exe-
cution that satisfies the following two conditions: 1) it is reachable
by future executions of the program (e.g., the case of three iter-
ations of the same loop activated in parallel and while the third
executes speculatively, it becomes not reachable anymore because
the second performs a brake instruction); and 2) it does not cause a
memory conflict with any other job having an older chronological
order. As we will detail in Section 3.4, any execution of a parallel

Input
Program

(bytecode)

metadata
+

bytecode

@
Optional User
Annotations

Job(...)

Dispatch
& Sync

Ex
ec

ut
or

Knowledge
Base

Jobs Queue
Workers
Manager

Workers
Pool

Reconstructed
Program

(multi-thread)

Input Data
__ _ ___ _ _
_ __ _ _ _ _
_ _ _ _ _ __
_ _ __ _ __

Lerna Runtime

Dictionary
Pass

Builder
Pass

Transacti er
 PassStatic Analysis

Abort
Rate

Commit
Rate

Dequeue

EnqueueAcquire TxRelease Tx

Synch

DispatchSTM
Tx Pool

Garbage
Collector

Contention
Manager

Pro led
Code

Input
Training Data

Pro ling
Pass

Code Pro ling

Pro ling
Info

Ordering
API

TM
 A

lg
or

it
hm

Local
Queue

Pending Tx
Descriptors

Order
State
Flag

WORKER

Figure 1: Lerna’s Architecture and Workflow

program produced after our transformations is made of a sequence
of jobs committed after a successful execution.

Summarizing, Lerna is a container of:
- an automated software tool that performs a set of transformations
and analysis steps (called passes) that run on the LLVM interme-
diate representation of the application code, and produces a refac-
tored multi-threaded version of the program;
- a runtime library that is linked dynamically to the generated pro-
gram, and is responsible for: 1) organizing the transactional exe-
cution of dispatched jobs so that the original program order (i.e.,
the chronological order) is preserved; 2) selecting the most ef-
fective number of worker threads according to the actual deploy-
ment, and to the feedbacks collected from the online execution; 3)
scheduling jobs to threads based on threads’ characteristics (e.g.,
stack size, priority); and 4) performing memory and computational
housekeeping.

Figure 1 shows the architecture and the workflow of Lerna.
Lerna relies on LLVM, thus it does not require the application
to be written in any specific programming language. In this paper
we focus on the fully automated process without considering any
programmer intervention, however, although automated, Lerna’s
design does not preclude the programmer from providing hints that
can be leveraged to make the refactoring process more effective,
which will be discussed separately in Section 4.

Lerna’s workflow includes the following three steps in this
order: Code Profiling, Static Analysis, and Runtime.

In the first step, our software tool executes the original (sequen-
tial) application by activating our own profiler that collects some
important parameters (e.g., execution frequencies) used later by the
Static Analysis.

The goal of the Static Analysis is to produce a multi-threaded
(also called reconstructed) version of the input program. This pro-
cess evolves by following the below passes:

Dictionary Pass. It scans the input program to provide a list of
the accessible (i.e., which is not either a system-call or a native-
library call) functions of the byte-code (or the bitcode as named
by LLVM) that we can analyze to determine how to transform.
By default, any call to an external function is flagged as unsafe.
This information is important because transactions cannot contain

unsafe calls as they may include irrevocable (i.e., which cannot be
further aborted) operations, such as I/O system calls.

Builder Pass. It detects the code eligible for parallelization; it
transforms this code into a callable synthetic method; and it defines
the transaction’s boundaries (i.e., transaction’s begins and ends).

Transactifier Pass. It applies the alias analysis [16] (i.e., it de-
tects if multiple references point to the same memory location) and
some memory dependency techniques (e.g., given a memory oper-
ation, extracts the preceding memory operations that depend on it)
to reduce the number of transactional reads and writes. It also pro-
vides the instrumentation of memory operations invoked within the
body of a transaction by wrapping them into transactional calls for
read, write or allocate.

Once the Static Analysis is complete, the reconstructed version
of the program is linked to the application through our runtime
library, which is mainly composed of the following components:
- Executor. It dispatches the parallel jobs and provides the exit of

the last job to the program. To exploit parallelism, the executor
dispatches multiple jobs at-a-time by grouping them as a batch.
Once a batch is complete, the executor simply waits for the result
of this batch. Not all the jobs are enclosed in a single batch,
thus the executor could need to dispatch more jobs after the
completion of the previous batch. If no more job to dispatch, the
executor finalizes the execution of the parallel section.

- Workers Manager. It extracts jobs from a batch and it delivers
ready-to-run transactions at available worker threads.

- TM. It provides the handlers for transactional accesses (read and
write) performed by executing jobs. In case a conflict is detected,
it also behaves as a contention manager by aborting the conflict-
ing transactions with the higher chronological order (this way
the original program’s order is respected). Also, it handles the
garbage collection of the memory allocated by a transaction, af-
ter it completes.

The runtime library makes use of two additional components:
the jobs queue, which stores the (batch of) dispatched jobs until
they are executed; and the knowledge base, which maintains the
feedbacks collected from the execution in order to enable the adap-
tive behavior.

3.2 Code Profiling
Lerna uses the code profiling technique for identifying hotspot sec-
tions of the original code, namely those most visited during the
execution. This information is fundamental for letting the refactor-
ing process focus on the real parts of the code that are fruitful to
parallelize (e.g., it would not be effective to parallelize a for-loop
with only two iterations).

To do that, we consider the program as a set of basic blocks,
where each basic block is a sequence of non-branching instructions
that ends either with a branch instruction (conditional or non-
conditional) or a return. Given that, any program can be represented
as a graph in which nodes are basic blocks and edges reproduce the
program control.

In this phase, our goal is to identify the context, frequency and
reachability of each basic block. To determine that information,
we profile the input program by instrumenting its byte-code at the
boundaries of any basic blocks to detect whenever a basic block
is reached. This code modification does not affect the behavior of
the original program. We call this version of the modified program
profiled byte-code.

3.3 Program Reconstruction
In the following, we illustrate in detail the transformation from
sequential code to parallel made during the static analysis phase.
The LLVM intermediate representation (i.e., the byte-code) is in
the static single assignment (SSA) form. With SSA, each variable is

defined before it is used, and it is assigned exactly once. Therefore,
any use of such a variable has one definition, which simplifies the
program analysis [43].

3.3.1 Dictionary Pass
In the dictionary pass, a full byte-code scan is performed to deter-
mine the list of accessible code (i.e., the dictionary) and, as a con-
sequence, the external calls. Any call to an external function that
is not included in the input program prevents the enclosing basic
block from being included in the parallel code. However, the user
can override this rule by providing a list of safe external calls. An
external call is defined as safe if: i) it is revocable (e.g., it does not
perform input/output operations); ii) it does not affect the state of
the program; and iii) it is thread safe. A common example of safe
calls are stateless random generators, or mathematical basic func-
tions such as trigonometric functions.

3.3.2 Builder Pass
This pass is one of the core steps made by the refactoring process
because it takes the code to transform, along with the output of
the profiling phase, and makes it parallel by matching the outcome
of the dictionary pass. In fact, if the profiler highlights an often
invoked basic block that contains calls not in the dictionary, then
the parallelization cannot be performed on that basic block.

In this work we focus on loops as the most appropriate blocks
of code for being parallelized. However, our design is applicable
(unless stated otherwise) for any independent sets of basic blocks.
The actual operation of building the parallel code takes place after
the following two transformations.

Loop Simplification analysis. A natural loop has one entry
block header and one or more back edges (latches) leading to
the header. The predecessor blocks for the loop header are called
pre-header blocks. We say that a basic block ↵ dominates another
basic block � if every path in the code � go through ↵. The body of
the loop is the set of basic blocks that are dominated by its header,
and reachable from its latches. The exits are basic blocks that jump
to a basic block that is not included in the loop body. A simple loop
is a natural loop, with a single pre-header and single latch; and its
index (if exists) starts from zero and increments by one. We apply
the loop simplification to put the loop into its simplest form.

Induction Variable analysis. An induction variable is a variable
within a loop whose value changes by a fixed amount every itera-
tion (i.e., the loop index) or is a linear function of another induc-
tion variable. Affine (linear) memory accesses are commonly used
in loops (e.g., array accesses, recurrences). The index of the loop,
if any, is often an induction variable, and the loop can contain more
than one induction variable. The induction variable substitution is
a transformation to rewrite any induction variable in the loop as a
closed form (function) of its index. It starts by detecting the candi-
date induction variables, then it sorts them topologically and creates
a closed symbolic form for each of them. Finally, it substitutes their
occurrences with the corresponding symbolic form.

As a part of our transformation, a loop is simplified, and its in-
duction variable (i.e., the index) is transformed into its canonical
form where it starts from zero and is incremented by one. A sim-
ple loop with multiple induction variables is a very good candidate
for parallelization. However, any induction variables introduce de-
pendencies between iterations, which are not desirable to maximize
parallelism. To solve this problem, the value of such induction vari-
ables is calculated as a function of the index loop prior to executing
the loop body, and it is sent to the synthetic method as a runtime
parameter. This approach avoids unnecessary conflicts on the in-
duction variables.

Next, we extract the body of the loop as a synthetic method. The
return value of the method is a numeric value representing the exit

that should be used. The addresses of all variables accessed within
the loop body are passed as parameters.

The loop body is replaced by two basic blocks: Dispatcher and
Sync. In the Dispatcher, we prepare the arguments for the synthetic
method, calculate the value of the loop index and invoke an API of
our library (lerna dispatch), providing it with the address of the
synthetic method and the list of the just-computed arguments. Each
call to lerna dispatch adds a job to our internal jobs queue, but it
does not start the actual execution of the job. The Dispatcher keeps
dispatching jobs until our API decides to stop. When it happens,
the control passes to the Sync block. Sync immediately blocks the
main thread and waits for the completion of the current jobs.

Regarding the exit of a job, we define two types of exits: normal
exit and breaks. A normal exit occurs when a job reaches the loop
latch at the end of its execution. In this case, the execution should
go to the header and the next job should be dispatched. If there
are no more dispatched jobs to execute and the last one returned
a normal exit, then the Dispatcher will invoke more jobs. On the
other hand, when the job exit is a break, then the execution needs
to leave the loop body, and hence ignore all later jobs. For example,
assume a loop with N iterations. If the Dispatcher invokes B jobs
before moving to the Sync, then dN/Be is the maximum number
of transitions that can happen between Dispatcher and Sync.

Summarizing, the Builder Pass turns the execution model into
the job-driven model, which can exploit parallelism. This strategy
abstracts the processing from the source code.

3.3.3 Transactifier Pass
After turning the byte-code into executable jobs, we employ addi-
tional passes to encapsulate jobs into transactions. Each synthetic
method is demarcated by tx begin and tx end, and any mem-
ory operation (i.e., load, stores or allocation) within the synthetic
method is replaced by the corresponding transactional handler.

It is common that memory reads outnumbers writes, thus it
would be highly beneficial to minimize those performed transac-
tionally. That is because, the read-set maintenance and the valida-
tion performed at commit time for preserving the correctness of the
transaction, which iterates over the read-set, is the primary source
of TM’s overhead. Our transactifier pass eliminates unnecessary
transactional reads, thus significantly improving the performance
of the transaction execution due to the following reasons:
- direct memory read is even three times faster than transactional

read [11, 52]. In fact, reading an address transactionally requires:
1) checking if the address has been already written before (e.g.,
check the write-set); 2) adding the address to the read-set; and 3)
returning the value to the caller.

- the size of the read-set is limited, thus extending it requires
copying entries into a larger read-set, which is costly. Keeping
the read-set small reduces the resizing overhead.

- read-set validation is mandatory during the commit. The smaller
the read-set, the faster the commit operation.

In our model, concurrent transactions can be described as “sym-
metric”, which means that the code executed in all active transac-
tions is the same. That is because each transaction executes one or
more iterations of the same loop. We take advantage of this charac-
teristic by: 1) relaxing the need to support TM strong atomicity [4],
and 2) reducing the number of transactional calls as follows.

Clearly, local addresses defined within the scope of the loop
are not required to be accessed transactionally. On the other hand,
global addresses allow iterations to share information, and thus they
need to be accessed transactionally. We perform the global alias
analysis as a part of our transactifier pass to exclude some of the
loads to shared addresses from the instrumentation process. To re-
duce the number of transactional reads, we apply the global alias
analysis between all loads and stores in the transaction body. A load

operation that will never alias with any store operation does not
need to be read transactionally. For example, when a memory ad-
dress is always loaded and never written in any path of the symmet-
ric transaction code, then the load does not need to be performed
transactionally. Note that this technique is specific for parallelizing
loops and cannot be applied to the normal transaction processing
where concurrent transactions do not necessarily execute the same
code as for the symmetric transactions.

In some situations, the induction variable substitution cannot
produce a closed form (function) of the loop index (if it exists).
For example, if a variable is incremented (or decremented) based
on any arbitrary condition. If the address value is used only after
the loop completes the whole execution, then it is eligible for the
Read-Modify-Write (RMW) [49] optimization. Using RMW, the
increments (or decrements) are delayed till the transaction commit
time. The modified locations are not part of the read-set, therefore,
transactions do not conflict on these updates.

Transactions may contain calls to other functions. As these
functions may manipulate memory locations, they must be handled.
When possible, we inline the called functions; otherwise we create
a transactional version of the function called within a transaction.
In that case, instead of calling the original function, we call its
transactional version. Inlined functions are preferable because they
permit the detection of dependencies between variables, which
can be leveraged to reduce transactional calls, or the detection of
dependent loop iterations, which is useful to exclude them from the
parallelization.

Finally, to avoid unnecessary overhead in the presence of single-
threaded computation or a single job executed at a time, we create
another non-transactional version of the synthetic method. This
way we provide a fast version of the code without unnecessary
transactional accesses.

3.4 Transactional Execution
The atomicity of transactions is mandatory as it guarantees the con-
sistency of the code, even after its refactoring to run in parallel.
However, if no additional care is taken, transactions run and com-
mit independently of each other, and that could revert the chrono-
logical order of the program, which must be preserved to avoid
incorrect executions.

A transaction in general (and not in Lerna) is allowed to commit
whenever it finishes. This property is desirable to increase thread
utilization and avoid fruitless stalls, but it can lead to transactions
corresponding to unreachable iterations (e.g., a break condition that
changes the execution flow), and transactions executing iterations
with lower indexes may read future values from committed transac-
tions. Although these scenarios are admissible under generic con-
currency controls (where the order of transactions is not enforced),
it clearly violates the logic of the program.

Motivated by that, we propose an ordered transactional execu-
tion model based on the original program’s chronological order.
Lerna’s engine for executing transactions works as follows. Trans-
actions have five states: idle, active, completed, committed, and
aborted. Initially a transaction is idle because it is still in the trans-
actional pool waiting to be attached to a job to dispatch. Each trans-
action has an age identifier that defines its chronological order in
the program. A transaction becomes active when it is attached to a
thread and starts its execution. When a transaction finishes the ex-
ecution, it becomes completed. That means that the transaction is
ready to commit, and it completed its execution without conflict-
ing with any other transaction. A transaction in this state still holds
its lock(s). Finally, the transaction is committed when it becomes
reachable from its predecessor transaction. Decoupling completed
and committed states, permits threads to process next transactions.

3.4.1 Preserving Commit Order
Lerna is decoupled from the actual TM implementation deployed,
but it requires to enhance the TM design itself for enforcing a spe-
cific commit order (i.e., earlier transactions must not observe the
changes made by later transactions). To allow such a decoupling,
we identified the following requirements needed by a TM imple-
mentation to support ordering:

Supervised Commit. Threads are not allowed to commit once
they complete their execution. Instead, there must be a single stake-
holder at-a-time that permits transactions to commit, namely the
Commit Manager (CM). It is not necessary having a dedicated CM
because worker threads can take over this role according to their
age. For example, the thread executing the transaction with the low-
est age could be the CM and thus it is allowed to commit. While a
thread is committing, other threads can proceed by executing next
transactions speculatively, or wait until the commit completes. Al-
lowing threads to proceed with their execution is risky because it
can increase the contention probability given that the life of an
uncommitted transaction enlarges (e.g., the holding time of their
locks increases, or the timestamp validity decreases), therefore this
speculation must be limited by a certain (tunable) threshold. Upon
a successful commit, the CM role is delegated to the subsequent
thread with lowest age. This strategy allows only one thread to com-
mit its transaction(s) at a time.

An alternative approach is to use a single CM [38] to monitor
the completed transactions, and to permit non-conflicting threads to
commit in parallel by inspecting their read- and write-set. Although
this strategy allows for concurrent commits, the performance is
bounded by the CM execution time.

Age-based Contention Management (CM). Algorithms with ea-
ger conflict detection (i.e., at encounter time) should favor lower
age transactions, while algorithms that use lazy conflict detection
(i.e., at commit time) should employ an aggressive CM that favors
the transaction that is committing using the single committer.

Lerna currently integrates four TM implementations with dif-
ferent designs: NOrec [17], which executed commit phases serially
without requiring any ownership record; TL2 [20], which allows
parallel commit phases but at the cost of maintaining an external
data structure for storing meta-data associated with the transac-
tional objects; UndoLog [3] with visible readers, which uses en-
counter time versioning and locking for accessed objects and main-
tains a list of accessors transactions; and STMLite [38], which
replaces the need for locking objects and maintaining a read-set
with the use of signatures. STMLite is the only TM designed for
enabling code parallelization. Among TM algorithms, NOrec has
some interesting characteristics which nominate it as the best match
for our framework. This is because, NOrec offers low memory ac-
cess overhead with a constant amount of global meta-data. Unlike
most STM algorithms, NOrec does not associate ownership records
(e.g., locks or version number) with accessed addresses; instead,
it employs a value-based validation technique during commit. The
characteristic of this algorithm is that it permits a single committing
writer at a time, which matches the need of Lerna’s concurrency
control: having a single committer. Our modified version of NOrec
decides the next transaction to commit according to the chronolog-
ical order (i.e., age).

3.4.2 Irrevocable Transactions
A transaction performs a read-set validation at commit time to en-
sure that its read-set has not been overwritten by any other commit-
ted transaction. Let Txn be a transaction that has just started its ex-
ecution, and let Txn�1 be its immediate predecessor (i.e., Txn�1

and Txn process consecutive iterations of a loop). If Txn�1 has
been committed before that Txn performs its first transactional
read, then we can avoid the read-set validation of Txn when it

commits because Txn is now the highest priority transaction at
this time, thus no other transaction can commit its changes to the
memory. We do that by flagging Txn as an irrevocable transac-
tion. Also, a transaction is irrevocable if: i) it is the first, thus it
does not have a predecessor; ii) it is a retried transaction of the sin-
gle committer thread; iii) there is a sequence of transactions with
consecutive age running on the same thread.

4. Adaptive Runtime
The Adaptive Optimization System (AOS) [6] is a general vir-
tual machine architecture that allows online feedback-directed op-
timizations. In Lerna, we apply the AOS to optimize the runtime
environment by tuning some important parameters (e.g., the batch
size, the number of workers) and by dynamically refining sections
of code already parallelized statically according to the characteris-
tics of the actual application execution.

The Workers Manager (Figure 1) is the component responsible
for executing jobs. Jobs are evenly distributed over workers. Each
worker keeps a local queue of its slice of dispatched jobs and
a circular buffer of completed transactions’ descriptors. It is in
charge of executing transactions and keeping them in the completed
state once they finish. As stated before, after the completion of a
transaction, the worker can speculatively begin the next transaction.
However, to avoid unmanaged behaviors, the number of speculative
jobs is limited by the size of its circular buffer. The buffer size is
crucial as it controls the lifetime of transactions. A larger buffer
allows the worker to execute more transactions, but it increases also
the transaction life time, and consequently the conflict probability.

For the non-dedicated CM, the ordering is managed by a
worker-local flag called state flag. This flag is read by the cur-
rent worker, but is modified by its predecessor worker. Initially,
only the first worker (executing the first job) has its state flag set,
while others have their flag cleared. After completing the execution
of each job, the worker checks its local state flag to determine if it
is permitted to commit or proceed to the next transaction. If there
are no more jobs to execute, or the transactions buffer is full, the
worker spins on its state flag. Upon successful commit, the worker
resets its flag and notifies its successor to commit its completed
transactions. Finally, if one of the jobs has a break condition (i.e.,
not the normal exit) the workers manager stops other workers by
setting their flags to a special value. This approach maximizes the
use of cache locality as threads operate on their own transactions
and access thread-local data structures, which also reduces bus
contention. Regarding the dedicated CM, we rely on the ordering
design of STMLite [38].

4.1 Batch Size
The static analysis does not always provide information about the
number of iterations, hence, we cannot accurately determine the
best size for batching jobs. A large batch size may cause many
aborts due to unreachable jobs, while having small batches in-
creases the number of iterations between dispatcher and the ex-
ecutor, and, as a consequence, the number of pauses to perform
due to Sync. The current implementation uses an exponentially in-
creasing batch size. Initially, we dispatch a single job, which covers
the common set of loops with zero iterations; if loops are longer,
then we increase the number of dispatched jobs exponentially until
reaching a threshold. Once a loop is entirely executed, we record
the last batch size used so that, if the execution goes back and calls
the same loop, we do not need to perform again the initial tuning.

4.2 Jobs Tiling and Partitioning
As explained in Section 3.3.2, the transformed program dispatches
iterations as jobs, and our runtime runs jobs as transactions. Here

we discuss an optimization, named jobs tiling, that allows the asso-
ciation of multiple jobs to a single transaction. Increasing jobs per
transaction reduces the total number of commit operations. Also, it
allows assigning enough computation power to the threads, which
outweigh the cost of transactional setup. Nevertheless, tiling is a
double-edged sword. Increasing tiles increases the size of read and
write sets which can degrade performance. Tiling is a runtime tech-
nique; we tune it by taking into account the number of instructions
per job, and the commit rate of past executions using the knowledge
base. A similar known technique is loop unrolling [5], a loop is re-
written at compile time as a repeated sequence of its iteration code.
Lerna employs the static unrolling and the runtime tiling according
to the loop size.

In contrast to tiling, a job may perform a considerable amount of
non-transactional work. In this case, enclosing the whole job within
the transaction boundaries makes the abort operation very costly.
Instead, the transactifier pass checks the basic blocks with trans-
actional operations and finds the nearest common dominator basic
block for all of them. Given that, the transaction start (tx begin)
is moved to the common dominator block, and tx end is placed at
each exit basic block that is dominated by the common dominator.
That way, the job is partitioned into non-transactional work, which
is now moved out of the transaction scope, and the transaction it-
self, so that aborts become less costly.

4.3 Workers Selection
Figure 1 shows how the workers manager module handles the con-
current executions. The number of worker threads in the pool is not
fixed during the execution, and it can be changed by the executor
module. The number of workers affects directly the transactional
conflict probability. The smaller the number of concurrent workers,
the lower the conflict probability. However, optimistically, increas-
ing the number of workers can increase the overall parallelism (thus
performance), and the underlying hardware utilization.

In practice, at the end of the execution of a batch of jobs,
we calculate the throughput and we record it into the knowledge
base, along with the commit rate, tiles and the number of workers
involved. We apply a greedy strategy to find an effective number
of workers by matching with the obtained throughput. In some
situations (e.g., high contention or very small transactions) it is
better to use a single worker. For that reason, if our heuristic decides
that, then we use the non-transactional version (as a fast path) of the
synthetic method to avoid the unnecessary transaction overhead.

5. Evaluation
In this section we evaluate Lerna and measure the effect of the
key performance parameters (e.g., job size, worker count, tiling)
on the overall performance. Our evaluation involves a total of 13
applications grouped into micro- and macro-benchmarks.

We compare the speedup of Lerna over the (original) sequential
and the manual, optimized transactional version of the code (if
available). Note that the latter is not coded by us; it is released
along with the application itself, and is made by knowing the
details of the application logic, thus it can leverage optimizations,
such as the out-of-order commit, that cannot be caught by Lerna
automatically. The results with the manual transactional version
represent a practical upper bound for Lerna, which provides a sense
of how good is the automatic transformation of the code without
any programmer’s hint. As a result, Lerna’s performance goal is
twofold: providing a substantial speedup over the sequential code,
and being as close as possible to the manual transactional version.

The testbed consists of an AMD multicore machine equipped
with 2 Opteron 6168 processors, each with 12-cores running at
1.9GHz of clock speed. The total memory available is 12GB and
the cache sizes are 512KB for the L2 and 12MB for the L3. On

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

1 2 4 8 16 24
 0

 20

 40

 60

 80

 100

Threads

(a) ReadNWrite1 - Long

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

1 2 4 8 16 24
 0

 20

 40

 60

 80

 100

Threads

(b) ReadNWrite1 - Short

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1 2 4 8 16 24
 0

 20

 40

 60

 80

 100

Threads

(c) ReadWriteN - Long

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

1 2 4 8 16 24
 0
 5
 10
 15
 20
 25
 30

Threads

(d) ReadWriteN - Short

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6

1 2 4 8 16 24
 0

 20

 40

 60

 80

 100

Threads

(e) MCAS - Long

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

1 2 4 8 16 24
 0

 2

 4

 6

 8

 10

Threads

(f) MCAS - Short

 10 20 30 40 50 60
 0

 5

 10

 15

 20

 25

#
 W

or
ke

rs
 T

hr
ea

ds

Batches

ReadNWrite1
ReadWriteN

MCAS

(g) Adaptive workers selection

Sequential
Manual Tx

Lerna
Adaptive Lerna

Manual Tx Aborts
Lerna Aborts

Adaptive Lerna Aborts

(h)

Figure 2: Performance with micro-benchmarks. The left y-axis shows the speedup, while the right y-axis is the % of abort.

this machine, the overall refactoring process, from profiling to the
generation of the binary, takes ⇠10s for simple applications and
⇠40s for the more complex ones.

5.1 Micro-benchmarks
Here we consider the RSTM micro-benchmarks [2] to evaluate
the effect of different workload characteristics Figure 2 reports the
speedup over the sequential code by varying the number of threads
used. We show the performance of two versions of Lerna: one
adaptive, where the most effective number of workers is selected
at runtime (thus its performance do not depend on the number of
threads reported in the x-axis), and one with a fixed number of
workers. We also reported the percentage of aborted transactions
(right y-axis). To improve the clarity of the presentation, in the plots
we report the best results achieved with the different TM algorithms
integrated in Lerna (often NOrec).

As a general comment, Lerna is very close to the manual trans-
actional version. Unlike shown, the adaptive version of Lerna
would never be slower than the single-threaded execution because,
as fallback path, it would set the number of workers as one. The
slow-down for the single thread is related to the fact that the thread
adaptation is disabled when we report the performance by fixing
the number of threads. Our adaptive version gains on average 2.7⇥
over the original code and it is effective because it finds (or is close
to) the configuration where the top performance is reached.

In ReadNWrite1Bench (Figures 2a and 2b), transactions read 1k
locations and write 1 location. Given that, the transaction write-
set is very small, hence it implies a fast commit of a lazy TM as
ours. The abort rate is low, and the transaction length is propor-
tional to the read-set size. With long transactions, Lerna performs
closer to the manual Tx version; however, when transactions be-
come smaller, the ordering overhead slightly outweighs the benefit
of more parallel threads. In ReadWriteN (Figures 2c and 2d), each
transaction reads N locations, and then writes to another N loca-
tions. The large transaction write-set introduces a delay at commit
time and increases aborts. Both Lerna and manual Tx incur per-
formance degradation at high numbers of threads due to the high
abort rate (up to 50%). In addition, for Lerna the commit phase of
long transactions forces some (ready to commit) workers to wait
for their predecessor, thus degrading the overall performance. In

such scenarios, the adaptive worker selection helps Lerna avoid
this degradation. MCASBench performs a multi-word compare and
swap, by reading and then writing N consecutive locations. Simi-
larly to ReadWriteN, the write-set is large, but the abort probability
is lower than before because each pair of read and write acts on the
same location. Figures 2e and 2f illustrate the impact of increas-
ing workers with long and short transactions. Interestingly, unlike
the manual Tx, Lerna performs better at single thread because it
uses the fast path version of the jobs (non-transactional) to avoid
needless overhead.

Figure 2g shows the adaptive selection of the number of workers
while varying the size of the batch. The procedure starts by trying
different worker counts within a fixed window (7), then it picks the
best according to the actual throughput. Changing the worker count
shifts the window so that the most effective setting can be found.

5.2 The STAMP Benchmark
STAMP [10] is a benchmark covering different domains (Yada and
Bayes have been excluded because they expose non-deterministic
behaviors). Figure 3 shows the speedup of Lerna’s transformed
code over the sequential code, and against the manual transactional
version of the applications, which exploits unordered commits.

Kmeans, a clustering algorithm, iterates over a set of points
and associate them to clusters. The main computation is in find-
ing the nearest point, while shared data updates occur at the end
of each iteration. Using job partitioning, Lerna achieves 21⇥ (Low
contention) and 7⇥ (High contention) speedup over the sequential
code, using NOrec. Under high contention, NOrec is 3⇥ slower
compared to the manual unordered transactional version (more data
conflicts and stalling overhead); however they are very close in
the low contention scenario. TL2 and STMLite suffer from false
conflicts (given the limited lock table or signatures) which lim-
its their scalability. Genome, a gene sequencing program, recon-
structs the gene sequence from segments of a larger gene. It uses
a shared hash-table to organize the segments and eliminates dupli-
cates, which requires synchronization. Lerna has 16-19⇥ speedup
over sequential. Genome conducts a many read-only transactions
(Hashtable exists operations); a friendly behavior for all imple-
mented algorithms. TL2 is just 10% slower than the manual com-
petitor. Vacation is a travel reservation system using an in-memory

 0.5

 1

 2

 4

 8

 16

Kmeans High

Kmeans Low

Genome
Vacation High

Vacation Low

SSCA2
Labyrinth

Intruder
Blackscholes

Swaptions

Fluidanimate

Ferret

Sp
ee

du
p

Sequential
Manual Unordered

Lerna NOrec
Lerna TL2

Lerna UndoLog
Lerna STMLite

Figure 3: STAMP & PARSEC Benchmarks Speedup. (The y-axis is log-scale)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 10 100 1000 10000
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Sp
ee

du
p

Ab
or

t %

Tiles

Aborts
Speedup

Figure 4: Effect of Tiling on abort and
speedup using 8 workers and Genome.

database. The workload consists of clients reservation. This appli-
cation emulated an OLTP workload. Lerna improves the perfor-
mance by 2.8⇥ faster than the sequential system, and it is very
close to the manual. SSCA2 is a multi-graph kernel that is com-
monly used in domains such as biology and security. The core of
the kernel uses a shared graph structure that is updated at each iter-
ation. The transformed kernel outperforms the original by 2.1⇥ us-
ing NOrec, while dropping the in-order commit allows up to 4.4⇥.
It worth noting that NOrec is the only algorithm that manage to
achieve speedup because it tolerates high contention and isn’t af-
fected by false sharing as it deploys a value-based validation.

Lerna exhibits no speedup using Labyrinth and Intruder be-
cause, from the analysis of the application code, they use an in-
ternal shared queue for storing the processed elements and they
access it at the beginning of each iteration to dispatch (i.e., a single
contention point). While our jobs execute as a single transaction,
the manual transactional version creates multiple transactions per
iteration. The first iteration handles just the queue synchronization,
while others do the processing. Adverse behaviors like this are dis-
cussed in later.

As explained in Section 4.2, selecting the number of jobs per
each transaction (jobs tiling) is crucial for performance. Figure 4
shows the speedup and abort rate with changing the number of jobs
per transaction from 1 to 10000 using the Genome benchmark.
Although the abort rate decreases when reducing the number of
jobs per transaction, it does not achieve the best speedup. The
reason is that the overhead for setting up transactions nullifies the
gain of executing small jobs. For this reason, we dynamically set
the job tiling according to the job size and the gathered throughput.

5.3 The PARSEC Benchmark
PARSEC [9] is a benchmark suite for shared memory chip-
multiprocessors architectures.

The Black-Scholes equation [31] is a differential equation that
describes how, under certain assumptions, the value of an option
changes as the price of the underlying asset changes. This bench-
mark calculates Black-Scholes equation for input values. The it-
erations are relatively short, which causes producing a lot of jobs
in Lerna’s transformed code. However, jobs can be tiled (see Sec-
tion 4.2). The top speedup achieved here is 5.6⇥. Figure 5 shows
the speedup with different configurations of the loop unrolling.
Swaptions benchmark contains routines to compute various se-
curity prices using Heath-Jarrow-Morton (HJM) [29] framework.
Swaptions employs Monte Carlo (MC) simulation to compute
prices. The workload produced by this application provide simi-
lar speedup with all TM algorithms integrated.

The following two applications have some workload charac-
teristic that disallow Lerna to produce an effective parallel code.
Fluidanimate [40] is an application performing physics simulations

 0
 1
 2
 3
 4
 5
 6
 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Sp
ee

du
p

Threads

No Unrolling
2 Unrollings
4 Unrollings
6 Unrollings
8 Unrollings

Figure 5: Effect of Unrolling on speedup using Black-Scholes.

(about incompressible fluids) to animate arbitrary fluid motion by
using a particle-based approach. The main computation is spent on
computing particle densities and forces, which involves six levels
of loops nesting updating a shared array structure. However, itera-
tions updates a global shared matrix of particles; which makes ev-
ery concurrent transaction conflicts with its preceding transactions.

Ferret is a toolkit which is used for content-based similarity
search. The benchmark workload is a set of queries for image
similarity search. Similar to Labyrinth and Intruder, Ferret uses
a shared queue to process its queries; which represents a single
contention point and prevents any speedup with Lerna.

5.4 Discussion
As confirmed by our evaluation study, there are scenarios where,
without the programmer handing the application’s logic on the
refactoring process, Lerna encounters some hindrance (e.g., single
point of contention) that cannot be automatically broken due to the
lack of “semantics” knowledge. Relevant examples of that include
complex data structure operations, and centric global shared vari-
ables updates (i.e., shared variables updated by all loop iterations).

In addition, Lerna becomes less effective when: there are loops
with few iterations because the actual application parallelization
degree is limited; there is an irreducible global access at the begin-
ning of each loop iteration, thus increasing the chance of invalidat-
ing most transactions from the very beginning; and the workload
is heavily unbalanced across iterations. Anyway, in all the above
cases, at worst, Lerna’s code performs as the original.

6. Conclusion
In this paper we presented Lerna, a completely automated system
that combines a software tool and a runtime library to extract par-
allelism from sequential applications with data dependencies, ef-
ficiently and without programmer interventions. Lerna overcomes
the pessimism of the static analysis of the code by exploiting spec-
ulation. Lerna also represents a framework and testbed for the re-
search community to develop and evaluate TM algorithms for code
parallelization.

7. Acknowledgments
This work is partially supported by Air Force Office of Scientific
Research (AFOSR) under grant FA9550-14-1-0187.

References
[1] Intel Parallel Studio. https://software.intel.com/

en-us/intel-parallel-studio-xe.
[2] RSTM: The University of Rochester STM. http://www.cs.

rochester.edu/research/synchronization/rstm/.
[3] TinySTM: A time-based STM. http://tinystm.org/

tinystm.
[4] Martı́n Abadi, Tim Harris, and Mojtaba Mehrara. Transactional mem-

ory with strong atomicity using off-the-shelf memory protection hard-
ware. In ACM Sigplan Notices, volume 44, pages 185–196. ACM,
2009.

[5] Alfred V Aho, Jeffrey D Ullman, et al. Principles of compiler design.
Addision-Wesley Pub. Co., 1977.

[6] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Pe-
ter F. Sweeney. Adaptive optimization in the jalapeno jvm. In Pro-
ceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’00,
pages 47–65, New York, NY, USA, 2000. ACM.

[7] David A Bader and Kamesh Madduri. Design and implementation of
the hpcs graph analysis benchmark on symmetric multiprocessors. In
High Performance Computing–HiPC 2005, pages 465–476. Springer,
2005.

[8] Joao Barreto, Aleksandar Dragojevic, Paulo Ferreira, Ricardo Filipe,
and Rachid Guerraoui. Unifying thread-level speculation and transac-
tional memory. In Proceedings of the 13th International Middleware
Conference, pages 187–207. Springer-Verlag New York, Inc., 2012.

[9] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
The parsec benchmark suite: Characterization and architectural im-
plications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, PACT ’08, pages
72–81, New York, NY, USA, 2008. ACM.

[10] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle
Olukotun. STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08: Proceedings of The IEEE International
Symposium on Workload Characterization, September 2008.

[11] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDon-
ald, Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle
Olukotun. An effective hybrid transactional memory system with
strong isolation guarantees. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture, Jun 2007.

[12] B Chan. The umt benchmark code. Lawrence Livermore National
Laboratory, Livermore, CA, 2002.

[13] Michael Chen and Kunle Olukotun. Test: a tracer for extracting
speculative threads. In Code Generation and Optimization, 2003.
CGO 2003. International Symposium on, pages 301–312. IEEE, 2003.

[14] Michael K Chen and Kunle Olukotun. The jrpm system for dynam-
ically parallelizing java programs. In Computer Architecture, 2003.
Proceedings. 30th Annual International Symposium on, pages 434–
445. IEEE, 2003.

[15] Doreen Y Cheng. A survey of parallel programming languages and
tools. Computer Sciences Corporation, NASA Ames Research Center,
Report RND-93-005 March, 1993.

[16] Rezaul A Chowdhury, Peter Djeu, Brendon Cahoon, James H Burrill,
and Kathryn S McKinley. The limits of alias analysis for scalar
optimizations. In Compiler Construction, pages 24–38. Springer,
2004.

[17] Luke Dalessandro, Michael F Spear, and Michael L Scott. Norec:
streamlining stm by abolishing ownership records. In ACM Sigplan
Notices, volume 45, pages 67–78. ACM, 2010.

[18] Francis Dang, Hao Yu, and Lawrence Rauchwerger. The r-lrpd test:
Speculative parallelization of partially parallel loops. In Parallel

and Distributed Processing Symposium., Proceedings International,
IPDPS 2002, pages 10–pp. IEEE, 2001.

[19] Matthew DeVuyst, Dean M Tullsen, and Seon Wook Kim. Runtime
parallelization of legacy code on a transactional memory system. In
Proceedings of the 6th International Conference on High Performance
and Embedded Architectures and Compilers, pages 127–136. ACM,
2011.

[20] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In
In Proc. of the 20th Intl. Symp. on Distributed Computing, 2006.

[21] Nicholas DiPasquale, T Way, and V Gehlot. Comparative survey of
approaches to automatic parallelization. MASPLAS05, 2005.

[22] Tobias JK Edler von Koch and Björn Franke. Limits of region-
based dynamic binary parallelization. In ACM SIGPLAN Notices,
volume 48, pages 13–22. ACM, 2013.

[23] Paul Feautrier. Some efficient solutions to the affine scheduling prob-
lem. i. one-dimensional time. International journal of parallel pro-
gramming, 21(5):313–347, 1992.

[24] MA Gonzalez-Mesa, Eladio Gutierrez, Emilio L Zapata, and Oscar
Plata. Effective transactional memory execution management for
improved concurrency. ACM Transactions on Architecture and Code
Optimization (TACO), 11(3):24, 2014.

[25] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger,
Armin Größlinger, and Louis-Noël Pouchet. Polly-polyhedral opti-
mization in llvm. In Proceedings of the First International Work-
shop on Polyhedral Compilation Techniques (IMPACT), volume 2011,
2011.

[26] Manish Gupta, Sayak Mukhopadhyay, and Navin Sinha. Automatic
parallelization of recursive procedures. International Journal of Par-
allel Programming, 28(6):537–562, 2000.

[27] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation
support for a chip multiprocessor. SIGOPS Oper. Syst. Rev., 32(5):58–
69, October 1998.

[28] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory,
2nd edition. Synthesis Lectures on Computer Architecture, 5(1):1–
263, 2010.

[29] David Heath, Robert Jarrow, and Andrew Morton. Bond pricing and
the term structure of interest rates: A new methodology for contingent
claims valuation. Econometrica: Journal of the Econometric Society,
pages 77–105, 1992.

[30] Shan Shan Huang, Amir Hormati, David F. Bacon, and Rodric M.
Rabbah. Liquid metal: Object-oriented programming across the hard-
ware/software boundary. In Jan Vitek, editor, ECOOP 2008 - Object-
Oriented Programming, 22nd European Conference, Paphos, Cyprus,
July 7-11, 2008, Proceedings, volume 5142 of Lecture Notes in Com-
puter Science, pages 76–103. Springer, 2008.

[31] Natanael Karjanto, Binur Yermukanova, and Laila Zhexembay. Black-
scholes equation. arXiv preprint arXiv:1504.03074, 2015.

[32] Hironori Kasahara, Motoki Obata, and Kazuhisa Ishizaka. Auto-
matic coarse grain task parallel processing on smp using openmp. In
Languages and Compilers for Parallel Computing, pages 189–207.
Springer, 2001.

[33] Venkata Krishnan and Josep Torrellas. A chip-multiprocessor archi-
tecture with speculative multithreading. Computers, IEEE Transac-
tions on, 48(9):866–880, 1999.

[34] Leslie Lamport. The parallel execution of do loops. Communications
of the ACM, 17(2):83–93, 1974.

[35] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In Code Generation and
Optimization, 2004. CGO 2004. International Symposium on, pages
75–86. IEEE, 2004.

[36] Amy W Lim and Monica S Lam. Maximizing parallelism and mini-
mizing synchronization with affine transforms. In Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 201–214. ACM, 1997.

[37] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose
Renau, and Josep Torrellas. Posh: a tls compiler that exploits program

structure. In Proceedings of the eleventh ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 158–167.
ACM, 2006.

[38] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Paral-
lelizing sequential applications on commodity hardware using a low-
cost software transactional memory. In Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and imple-
mentation, PLDI ’09, pages 166–176, New York, NY, USA, 2009.
ACM.

[39] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDon-
ald, Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle
Olukotun. An effective hybrid transactional memory system with
strong isolation guarantees. In ACM SIGARCH Computer Architec-
ture News, volume 35, pages 69–80. ACM, 2007.

[40] Matthias Müller, David Charypar, and Markus Gross. Particle-based
fluid simulation for interactive applications. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, SCA ’03, pages 154–159, Aire-la-Ville, Switzerland, Switzer-
land, 2003. Eurographics Association.

[41] Stefan C. Müller, Gustavo Alonso, Adam Amara, and André Csil-
laghy. Pydron: Semi-automatic parallelization for multi-core and the
cloud. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 645–659, Broomfield, CO, October
2014. USENIX Association.

[42] AB MySQL. MySQL: the world’s most popular open source database.
MySQL AB, 1995.

[43] Nomair A Naeem and Ondrej Lhoták. Efficient alias set analysis using
ssa form. In Proceedings of the 2009 international symposium on
Memory management, pages 79–88. ACM, 2009.

[44] Arun Raman, Hanjun Kim, Thomas R Mason, Thomas B Jablin, and
David I August. Speculative parallelization using software multi-
threaded transactions. In ACM SIGARCH Computer Architecture
News, volume 38, pages 65–76. ACM, 2010.

[45] Ravi Ramaseshan and Frank Mueller. Toward thread-level speculation
for coarse-grained parallelism of regular access patterns. In Workshop
on Programmability Issues for Multi-Core Computers, page 12, 2008.

[46] Lawrence Rauchwerger and David A Padua. The lrpd test: Specula-
tive run-time parallelization of loops with privatization and reduction
parallelization. Parallel and Distributed Systems, IEEE Transactions
on, 10(2):160–180, 1999.

[47] Yoav Raz. The principle of commitment ordering, or guaranteeing
serializability in a heterogeneous environment of multiple autonomous
resource managers using atomic commitment. In VLDB, volume 92,
pages 292–312, 1992.

[48] Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin,
and Dennis Fetterly. Dandelion: a compiler and runtime for heteroge-
neous systems. In Michael Kaminsky and Mike Dahlin, editors, ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, pages 49–68. ACM, 2013.

[49] Wenjia Ruan, Yujie Liu, and Michael Spear. Transactional read-
modify-write without aborts. ACM Transactions on Architecture and
Code Optimization (TACO), 11(4):63, 2015.

[50] Radu Rugina and Martin Rinard. Automatic parallelization of divide
and conquer algorithms. In ACM SIGPLAN Notices, volume 34, pages
72–83. ACM, 1999.

[51] Mohamed M. Saad, Mohamed Mohamedin, and Binoy Ravindran.
Hydravm: Extracting parallelism from legacy sequential code using
STM. In Hans-Juergen Boehm and Luis Ceze, editors, 4th USENIX
Workshop on Hot Topics in Parallelism, HotPar’12, Berkeley, CA,
USA, June 7-8, 2012. USENIX Association, 2012.

[52] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Archi-
tectural support for software transactional memory. In MICRO 39:
Proceedings of the 39th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 185–196, Washington, DC, USA, 2006.
IEEE Computer Society.

[53] Joel H Saltz, Ravi Mirchandaney, and K Crowley. The preprocessed
doacross loop. In ICPP (2), pages 174–179, 1991.

[54] J Greggory Steffan, Christopher B Colohan, Antonia Zhai, and Todd C
Mowry. A scalable approach to thread-level speculation, volume 28.
ACM, 2000.

[55] Kevin Streit, Clemens Hammacher, Andreas Zeller, and Sebastian
Hack. Sambamba: runtime adaptive parallel execution. In Proceedings
of the 3rd International Workshop on Adaptive Self-Tuning Computing
Systems, page 7. ACM, 2013.

[56] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. The paralax
infrastructure: automatic parallelization with a helping hand. In Pro-
ceedings of the 19th international conference on Parallel architectures
and compilation techniques, pages 389–400. ACM, 2010.

[57] Christoph von Praun, Rajesh Bordawekar, and Calin Cascaval. Mod-
eling optimistic concurrency using quantitative dependence analysis.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pages 185–196. ACM, 2008.

