
Transactional Forwarding Algorithm
[Technical Report]

Mohamed M. Saad
ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA

msaad@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA

binoy@vt.edu

Abstract
Distributed software transactional memory (or D-STM) is an
emerging promising model for distributed concurrency control,
as it avoids the problems with locks (e.g., distributed deadlocks),
while retaining the programming simplicity of coarse-grained lock-
ing. We consider D-STM in Herlihy and Sun’s data flow distributed
execution model, where transactions are immobile and objects dy-
namically migrate. To support D-STM in this model and ensure
transactional properties including atomicity, consistency, and iso-
lation, we develop an algorithm called Transactional Forwarding
Algorithm (or TFA). TFA guarantees a consistent view of shared
objects between distributed transactions, provides atomicity for
object operations, and transparently handles object relocation and
versioning using an asynchronous version clock-based validation
algorithm. We show that TFA is opaque (its correctness property)
and permits strong progressiveness (its progress property). We im-
plement TFA in a Java D-STM framework and conduct experi-
mental studies. Our results reveal that TFA outperforms competing
distributed concurrency control models including other D-STM im-
plementations, Java RMI with spinlocks, distributed shared mem-
ory, and directory-based D-STM, by as much as 13× (for read-
dominant transations) on a range of workloads over a 120-node
system, with more than 1000 active concurrent transactions.

1. Introduction
Concurrency control is difficult in distributed systems—e.g., dis-
tributed race conditions are complex to reason about. The problems
of locks, which are also the classical concurrency control solution
for distributed systems, only exacerbate in distributed systems. Dis-
tributed deadlocks, livelocks, lock convoying, and composability
are significant challenges. In addition, locks provide naive seri-
alization of concurrent code with partial dependency, which is a
severe problem for long critical sections. There is a trade off be-
tween decreasing lock overhead (lock maintenance requires extra
resources) and decreasing lock contention when choosing the num-
ber of locks for synchronization.

Transactional memory (TM) is an alternative model for access-
ing shared memory objects, without exposing locks in the program-
ming interface, to avoid the drawbacks of locks. TM originated
as a hardware solution, called HTM [29], was later extended in
software, called STM [56], and in hardware/software combination,
called Hybrid TM [42]. With TM, programmers organize code that
read/write shared objects as transactions, which appear to execute
atomically. Two transactions conflict if they access the same object
and one access is a write. When that happens, a contention man-
ager resolves the conflict by aborting one and allowing the other
to proceed to commit, yielding (the illusion of) atomicity. Aborted
transactions are re-started. Thus, a transaction ends by either com-
mitting (i.e., its operations take effect), or by aborting (i.e., its oper-

ations have no effect). In addition to a simple programming model,
TM provides performance comparable to highly concurrent, fine-
grained locking implementations [11, 17].

Though TM has been extensively studied for multiproces-
sors [27], relatively little effort has focused on supporting it in
distributed systems. Distributed applications introduce additional
challenges over multiprocessor ones. For example, scalability ne-
cessitates decentralization of the application and the underlying
infrastructure, which precludes a single point for monitoring or
management.

Distributed STM (or D-STM) can be supported in any of the
classical distributed execution models, which can be broadly clas-
sified based on the mobility of transactions or objects. In the con-
trol flow model [4, 38], objects are immobile and transactions ac-
cess objects through remote procedure calls (RPCs), and often use
locks over objects for ensuring object consistency. In contrast, in
the data flow model [30], transactions are immobile, and objects
move through the network to requesting transactions, while guar-
anteeing object consistency using cache coherence protocols. The
dataflow model1 has been primarily used in past D-STM efforts—
e.g., [30, 51, 58, 59]. Hybrid models have also been studied [10],
where transactions or objects are migrated, based on access pro-
files, object size, or locality.

We consider Herlihy and Sun’s dataflow D-STM model [30].
Two strategies currently exist for handling concurrent updates on
distributed objects (in D-STM): a) broadcasting read/write sets to
all nodes (e.g., [35]), and b) stamping objects with a version num-
ber to distinguish between each update (e.g., [40]). Broadcasting
(transactional read/write sets, or memory differences) in distributed
systems is inherently non-scalable, as messages transmitted grow
quadratically with the number of nodes. On the other hand, object
versioning is a significant challenge in D-STM, because distributed
systems are inherently asynchronous, and using a global clock of-
ten incurs significant message overhead [47].

We develop an algorithm called Transactional Forwarding Al-
gorithm (or TFA) that ensures (distributed) transactional properties
including atomicity, consistency, and isolation in the dataflow D-
STM model. In TFA, each node maintains its own local clock,
which is asynchronously advanced (e.g., whenever any local trans-
action commits), and the “happens-before” relationship [36] is
efficiently established (message-wise) between relevant events
(e.g., write-after-write, read-after-write) for distributed transac-
tional conflict detection. Additionally, the algorithm employs an
early validation mechanism to accommodate asynchronous clocks.
TFA permits multiple non-conflicting updates to proceed concur-
rently, and allows multiple concurrent threads to execute transac-

1 In this paper, we use “dataflow” to refer to the Herlihy and Sun immobile
transaction/mobile object TM model [30]. In other contexts (e.g., [19]),
dataflow may refer to data-driven computations.

tions at each node. Unlike other D-STM implementations [35, 40],
TFA doesn’t rely on message broadcasting or a global clock [40].
This approach enables the algorithm to perform well for write-
dominated workloads, while yielding comparable or superior per-
formance for read-dominated workloads, with respect to other dis-
tributed concurrency control models (e.g., Java remote method in-
vocation (RMI), distributed shared memory (DSM) [46]) as we
show later.

We show that TFA is opaque [25] (i.e., its correctness property)
and permits strong progressiveness [25] (i.e., its progress property).
Informally, opacity ensures transactional linearizability and consis-
tent memory view for committed and aborted transactions. Strong
progressiveness ensures that non-conflicting transactions are guar-
anteed to commit, and at least one transaction among conflicting
transactions is guaranteed to commit. We also establish a message
upper bound for TFA. In TFA, objects are acquired at commit time,
while other pessimistic approaches [2, 20, 31, 42] acquire objects at
encounter time. TFA’s optimistic approach provides better concur-
rency with ten times less number of conflicts. We implement TFA
in a Java D-STM framework called HyFlow [53, 54], and conduct
experimental evaluations. Our results reveal that TFA outperforms
Java RMI with spinlocks and DSM by as much as 13× for read-
dominant transations) and as low as 1× (for write-dominant transa-
tions) on workloads including a distributed version of a benchmark
from the STAMP benchmark suite [12], other distributed applica-
tions, and distributed datastructures, over a 120-node system.

The rest of the paper is organized as follows. We overview
past and related efforts in Section 2. In Section 3, we detail our
system model. Section 4 describes TFA and Section 5 establishes
its properties. In Section 6, we experimentally evaluate TFA. We
conclude in Section 7.

2. Related Work
Transactional Memory. The classical solution for handling shared
memory during concurrent access is lock-based techniques [3, 33],
where locks are used to protect shared objects. Locks have many
drawbacks including deadlocks, livelocks, lock-convoying, priority
inversion, non-composability, and the overhead of lock manage-
ment. TM, proposed by Herlihy and Moss [29], is an alternative
approach for shared memory access, with a simpler programming
model. Memory transactions are similar to database transactions:
a transaction is a self-maintained entity that guarantees atomicity
(all or none), isolation (local changes are hidden till commit), and
consistency (linearizable execution). TM has gained significant re-
search interest including that on STM [28, 41, 56], HTM [2, 26, 29],
and HyTM [5, 14, 42]. STM has relatively larger overhead due
to transaction management and architecture-independence. HTM
has the lowest overhead, but assumes architecture specializations.
HyTM seeks to combine the best of HTM and STM.

STM can be broadly classified into static or dynamic. In static
STM [56], all accessed objects are defined in advance, while dy-
namic STM [28, 41] relaxes that restriction. The dominant trend
among STM designs is to implement the single-writer/multiple-
reader pattern, either using locks [17, 18] or obstruction-free tech-
niques [28, 48], while few implementations allow multiple writers
to proceed under certain conditions [49]. In fact, it is shown in [20]
that obstruction-freedom is not an important property and results in
less efficient STM implementations than lock-based ones. Another
orthogonal TM property is object acquisition time: pessimistic ap-
proaches acquire objects at encounter time [11, 20], while opti-
mistic approaches do so at commit time [17, 18]. Optimistic object
acquisitions generally provide better concurrency with acceptable
number of conflicts [17]. STM implementations also rely on write-
buffer [28, 41] or undo-log [42] for ensuring a consistent view of
memory. In write-buffer, object modifications are written to a lo-

cal buffer and take effect at commit time. In the undo-log method,
writes directly change the memory, and the old values are kept in a
separate log to be retrieved at abort.

Distributed Shared Memory. Supporting shared memory ac-
cess in distributed systems has been extensively studied through the
DSM model. Earlier DSM proposals were page-based [1, 37] that
provide sequential consistency using single-writer/multiple-reader
protocol at the level of memory pages. Though they still have a
large user base, they suffer from several drawbacks including false
sharing. This problem occurs when two different locations, located
in the same page, are used concurrently by different nodes, causing
the page to “bounce” between nodes, even though there is no shared
data [22]. In addition, DSM protocols that provide sequential con-
sistency have poor performance due to the large number of mes-
sages that are needed for ensuring consistency [1]. Furthermore,
single-writer/multiple-reader protocols often have “hotspots,” de-
grading their performance. Also, most DSM implementations are
platform-dependent and does not allow node heterogeneity.

Variable-based DSM [7] provides language support for DSM
based on shared variables, which overcomes the false-sharing prob-
lem and allows the use of multiple-writer/multiple-reader proto-
cols. With the emergence of object-oriented programming, object-
based DSM implementations were introduced [4, 38, 57] to facili-
tate object-oriented parallel applications.

Distributed STM. Similar to multiprocessor STM, D-STM was
proposed as an alternative to lock-based distributed concurrency
control. D-STM has attracted research attention due to its potential
applications on distributed systems. Romano et. al. [50] present
a D-STM architecture for Web services, where the application’s
state is replicated across distributed system nodes. D-STM ensures
atomicity and isolation of application state updates, and consis-
tency of the replicated state. In [51], they show how D-STM can
increase the programming ease and scalability of large-scale paral-
lel applications on Cloud platforms. Romano et. al. extend cluster
D-STM for Web services [50] and Cloud platforms [51].

D-STM models can be classified based on the mobility of trans-
actions and objects. Mobile transactions [4, 38] use an underlying
mechanism (e.g., RMI) for invoking operations on remote objects.
The mobile object model [30, 51, 57, 58] allows objects to move
to requesting transactions, and guarantees object consistency us-
ing cache coherence protocols [30, 58]. D-STM models can also
be classified based on the number of objects. Some proposals al-
low multiple copies or replicas of objects. Object changes can then
be a) applied locally, invalidating other replicas [46], b) applied to
one object (e.g., latest version of the object [21]), which is discov-
ered using directory protocols [16, 31], or c) applied to all repli-
cated objects [39]. D-STM can also be classified based on sys-
tem architecture: cache-coherent D-STM (cc D-STM) [30], where a
small number of nodes (e.g., 10) are interconnected using message-
passing links [16, 30, 58], and a cluster model (cluster D-STM),
where a group of linked computers works closely together to form
a single computer [10, 13, 35, 40, 50]. The most important differ-
ence between the two is communication cost. cc D-STM assumes a
metric-space network between nodes, while cluster D-STM differ-
entiates between access to local cluster memory and remote mem-
ory at other clusters.

Herlihy and Sun proposed cc D-STM [30]. They present a
dataflow model, where transactions are immobile and objects are
mobile, and object consistency is ensured by cache coherence pro-
tocols. In [30], they present a cache-coherence protocol, called
Ballistic. Ballistic models the cache-coherence problem as a dis-
tributed queuing problem, due to the fundamental similarities be-
tween the two, and uses the Arrow queuing protocol [16] for man-
aging transactional contention. Ballistic’s hierarchical structure de-
grades its scalability—e.g., whenever a node joins or departs the

network, the whole structure has to be rebuilt. This drawback is
overcome in Zhang and Ravindran’s Relay protocol [58, 59], which
improves scalability by using a peer-to-peer structure. Relay as-
sumes encounter time object access, which is applicable only for
pessimistic STM implementations, which, relative to optimistic ap-
proaches, suffer from large number of conflicts [17].

While these efforts focused on D-STM’s theoretical properties,
several other efforts developed implementations. In [10], Bocchino
et. al. proposed a word-level cluster D-STM. They decompose
a set of existing cache-coherent STM designs into a set of de-
sign choices, and select a combination of such choices to sup-
port their design. They show how remote communication can be
aggregated with data communication to improve scalability. How-
ever, in this work, each processor is limited to one active transac-
tion at a time, which limits concurrency. Also, in their implemen-
tation, no progress guarantees are provided, except for deadlock-
freedom. In [40], Manassiev et. al. present a page-level distributed
concurrency control algorithm for cluster D-STM, which detects
and resolves conflicts caused by data races for distributed transac-
tions. Their implementation yields near-linear scaling for common
e-commerce workloads. In their algorithm, page differences are
broadcast to all other replicas, and a transaction commits success-
fully upon receiving acknowledgments from all nodes. A central
timestamp is employed, which allows only a single update transac-
tion to commit at a time. Broadcasting differences and using a cen-
tral timestamp technique yield acceptable performance for small
number of nodes (8 nodes are used in [40]). However, both tech-
niques suffer from scalability with increasing number of nodes.

Kotselidis et. al. present the DiSTM [35] object-level, cluster
D-STM framework, as an extension of DSTM2 [28], for easy pro-
totyping of TM cache-coherence protocols. They compare three
cache-coherence protocols on benchmarks for clusters. They show
that, under the TCC protocol [26], DiSTM induces large traffic
overhead at commit time, as a transaction broadcasts its read-
/write sets to all other transactions, which compare their read/write
sets with those of the committing transaction. Using lease proto-
cols [23], this overheard is eliminated. However, an extra valida-
tion step is added to the sole master node, as well as bottlenecks
are created upon acquiring and releasing the leases, besides serial-
izing all update transactions at the single master node. These im-
plementations assume that every memory location is assigned to a
home processor that maintains its access requests. Also, a central,
system-wide ticket is needed at each commit event for any update
transaction (except [10]).

Inspired by the recent database replication approaches [45],
Couceiro et. al. present D2STM [13]. Here, STM is replicated
on distributed system nodes, and strong transactional consistency
is enforced at commit time by a non-blocking distributed certifica-
tion scheme. D2STM shows a good performance for up to eight
replicas. However, the Atomic Broadcast (ABcast) primitive [15]
that they use limits extending the replication technique for larger
number of nodes.

In [34], Kim and Ravindran develop a D-STM transactional
scheduler, called Bi-interval, that optimizes the execution order of
transactional operations to minimize conflicts, yielding throughput
improvement of up to 200%.

Our work focuses on cc D-STM. The TFA algorithm that we
propose is an object-level lock-based algorithm with lazy acquisi-
tion. TFA is fully distributed without the need for central compo-
nents, or central clocking (ticketing) mechanisms. Network traffic
is reduced by eliminating message broadcasting. Transactions are
immobile, objects are replicated and detached from their originat-
ing “home” nodes, and we provide a single writable copy of each
object in the network.

3. System Model and Preliminaries
We consider an asynchronous distributed system model, simi-
lar to Herlihy and Sun [30], consisting of a set of N nodes,
N1, N2,, Nn, which are fully connected using message-passing
FIFO links or through an overlay network. Each shared object has
an unique identifier, and is initially assigned to a “home” node.
However, an object may be replicated or may migrate to any node.
TFA is responsible for caching local copies of remote objects and
changing object ownership. It is also responsible for ensuring that
only one writable version of an object exists at any given time in the
network. Without loss of generality, objects export only read and
write methods (or operations). Thus, we consider them as shared
registers.

Transactions are immobile, and each transaction is associated
with a certain node. Thus, a node Nx executes a transaction T ,
which is a sequence of operations on objects o1, o2, ..., os, where
s ≥ 1. We assume that the majority of transactions are concurrent.
A transaction can have one of three status: live, committed, or
aborted. An aborted transaction is restarted as a new transaction.
When a transaction attempts to access an object, a cache-coherence
protocol (e.g., Arrow [16], Ballistic [30]) locates the current cached
copy of the object in the network, and moves it to the requesting
node’s cache. Changes to the ownership of an object occurs at
the successful commit of the object-modifying transaction. At that
time, the new owner broadcasts a publish message with the owned
object identifier.

Each node has a local clock, lc, which is advanced whenever
any local transaction commits successfully. Since a transaction runs
on a single node, it uses lc to generate a timestamp, wv, during
its commit step. The current clock value is piggybacked on all
messages, and Lamport’s synchronization mechanism [36] is used
to keep the clocks synchronized.

We use a grammar similar to the one in [25], but extend it
for distributed systems. Let O = {o1, o2, ...} denote the set of
objects shared by transactions. Let T = {T1, T2,} denote the
set of transactions. Each transaction has an unique identifier, and is
invoked by a node (or process) in a distributed system of N nodes.
We denote the sets of shared objects accessed by transaction Tk for
read and write as read-set(Tk) and write-set(Tk), respectively.

A history H is defined as a sequence of operations, read, write,
commit, and abort, on a given set of transactions. Transactions gen-
erate events when they perform these operations. Let the relation≺
represent a partial order between two transactions. Transactions Ti

and Tj are said to be conflicting in H on an object Ox, if 1) Ti and
Tj are live (i.e., non-committed or non-aborted yet) in H , and 2)
Ox is accessed by both Ti and Tj , and is present in at least one of
the write-sets of Ti or Tj .

We denote the set of conflicting objects between Tk and any
other transaction in history H as conf(Tk). Let Q be any subset
of the set of transactions in a history H . We denote the union of
sets conf(Tk)∀Tk ∈ Q as conf(Q). Any operation on conf(Q)
represents a relevant transactional event to our algorithm. Using a
clock synchronization mechanism, we build a partial order between
relevant transactions; otherwise any arbitrary order of transactions
can be used to construct H .

4. The TFA Algorithm
4.1 Rationale
The problem of locating objects is outside the scope of our work
— we can use any directory or cache coherence protocol for this
(e.g., Arrow [16], Ballistic [30]). We assume a Directory Manager
module that will locate objects. The Directory Manager’s interface
includes two methods: 1) publish(x, Nc) that registers the current
node, Nc, as the owner of a newly created object Ox with identifier

x or modifies Ox’s old owner to the called node, and 2) locate(x),
which finds the owner node of object Ox.

Each transactional memory location (e.g., word, page, or object,
according to the desired granularity) is associated with a versioned-
write-lock. A versioned-write-lock uses a single bit to indicate that,
the lock is taken, while the rest of the bits hold a version number.
This number is changed by every successful transactional commit.
Each node maintains its own local clock. When a transaction starts,
it reads the current node clock, and can subsequently commit only
when all its read objects have a lower version than the one it ob-
tained at the start time (i.e., the objects weren’t updated by other
concurrent transactions). Upon successful commit, a transaction
stamps its modified objects with the current clock value, and ad-
vances the node clock.

Clocks are asynchronously advanced, which invalidates the
commit procedure that compares transaction starting times (relative
to node local clocks) and object versions (relative to different node
clocks). To solve this problem, we develop a transaction “forward-
ing” mechanism which, at certain situations, shifts a transaction to
appear as if it started at a later time (unless it is already doomed
due to conflicts in the future). This technique helps in detecting
doomed transactions and terminates them earlier, and handles the
problem of asynchronous clocks.

4.2 Algorithm Overview
Figures 1–4 describe TFA’s main procedures. When a transaction
begins, it reads the current clock value of the node on which it
is executing (Figure 1). Let us call this clock value wv. During
execution, a transaction will maintain the read-set and the write-
set as mentioned before. However, read and write operations may
involve access to remote objects. Whenever a remote object is
accessed, a local object copy is created and cached at the current
node till the transaction terminates. A transaction makes object
modifications to a local copy of the object. At a read operation,
the Bloom Filter [9] is used to check if the read-object appears in
the write-set. If so, the last value written by the current transaction
is retrieved.

An object may be accessed locally or remotely. Accessing of lo-
cal objects is preceded by a post-read validation step to check if the
object version < wv; otherwise the transaction is aborted. In con-
trast, as remote objects use different clocks (clocks of their owner
nodes), such a straightforward validation cannot be done. Providing
clock versioning for validation of remote objects, without affecting
performance through additional synchronization messages, is the
main challenge in the design of TFA.

Recall that each node has a local clock that works asyn-
chronously according to its local events and can be advanced only
when needed. We present a novel mechanism, called Transaction
Forwarding, which efficiently provides early validation of remote
objects and guarantees a consistent view of memory, in the pres-
ence of asynchronous clocks.

Transaction forwarding. By this, we imply that a transaction,
which started at time wv needs to advance its starting time to wv’,
where wv’ > wv. To apply such a step to a transaction, none of the
objects of the transaction’s read-set must have changed their ver-
sion to a higher value than wv; otherwise, the transaction is aborted
as one of its read-set objects has been changed by another trans-
action, producing a higher version number than the original wv.
To ensure this, an early commit-validation procedure is performed.
If the validation succeeds, then we are sure that no intermediate
changes have happened to read-set objects, and the transaction can
change its starting time to wv’ safely.

Figures 2–3 illustrate Transaction Forwarding, which works as
follows:

• The sender node (transaction node) sends a remote read request
to the object owner node. The current node clock value, called
lc, is piggybacked on this message.

• Upon receiving the message at receiver node (object owner
node), a copy of the object is sent back, and the current clock
value rc is included in the reply. In addition, the incoming clock
value lc is extracted and compared against the current clock
value rc. If rc < lc, then rc is advanced to the value of lc;
otherwise nothing is changed.

• When the sender node receives the reply, validation is done
as follows: if rc ≤ wv, then the object can be read safely;
otherwise, the current clock value, lc, is advanced to the value
rc, and the transaction is forwarded to rc.
When a transaction completes, we need to ensure that it reads a

consistent view of data (Figure 4). This is done as follows:
1. Acquire the lock for each object in write-set in any appropriate

order to avoid deadlocks. As some (or all) of these objects may
be remote, a lock request is sent to the owner node. The owner
node will try to acquire the lock. If the lock cannot be acquired,
the owner will spin till it is released or the owner will lose object
ownership. If the lock cannot be acquired for any of the objects,
the transaction is aborted and restarted.

2. Revalidate the read-set. This ensures that a transaction sees a
consistent view of objects. Upon successful completion of this
step, a transaction can proceed to commit safely.

3. Increment and get local clock value lc, and write the retrieved
clock value in the version field of the acquired locks. For local
objects, changes to the object can be safely committed to the
main copy, while for remote objects, we simply publish the
current node as the new owner of the object using the Locator
publish service.

4. For local objects in the write-set, release the acquired locks by
clearing the write-version lock bit. The remote locks need not
be released, as changing the ownership handles this implicitly.
An aborted transaction releases all acquired locks (if any), clears

its read and write sets, and restarts again by reading new wv.

4.3 Example
Figure 5 illustrates an example of how TFA operates in a network
of three asynchronous nodes, N1, N2, and N3. Initial values of the
respective node clocks are 10, 20, and 5. Lines between the nodes
represent requests and replies, and stars represent object access.
Any changes in the clock values are due to successfully committed
transactions. Such clock changes are omitted from the figure for
simplicity.

Transaction T1 is invoked by node N1 with a local clock value,
lc, of 10. Thus, T1wv equals 10. Afterwards, T1 reads the value of
local object X, finds its version number 7 < T1wv , and adds it to its
read-set. The remote object Y is then accessed for read. N1 sends
an access request to N2 (Y’s owner node) with its current clock
value lc. Upon receiving the request at N2 at time 27 (according to
N2’s clock), N2 replies with the object value and its local clock. N1

processes the reply and finds that it has to advance its local clock to
time 27. In addition, transaction forwarding needs to be done. T1wv

is therefore set to 27. Furthermore, early commit-validation is done
on the read-set to ensure that this change will not hide changes
happened to any object in the read-set since the transaction started
(at any time tA).

Subsequently, T1 accesses object Z located at node N3, and
includes its local clock value to the request. After N3 replies with
a copy of the object and its local time, N3 detects that its time lags
behind N1’s time. Thus, N3 will advance its time to 30 (the last
detected clock value from N1). Note that in this case, N1 will not
advance its clock, nor will do transaction forwarding, as it has a
leading clock value.

Require: Transaction trans, Node node
Ensure: Initialize transaction.

1: trans.node = node
2: trans.wv = node.clock

Figure 1: Transaction::Init

Require: Transaction trans, ObjectID id
Ensure: Open shared object for current transaction.

1: Node owner = findObjectOwner(id)
2: Object obj = node.RetrieveObject(trans.node, id)
3: if obj.remote then
4: if trans.node.clock < obj.owner.clock then
5: trans.node.clock = obj.owner.clock
6: end if
7: if trans.wv < obj.owner.clock then
8: for all obj in transaction.readSet do
9: if obj.version > obj.owner.clock then

10: return rollback()
11: end if
12: end for
13: trans.wv = obj.owner.clock
14: end if
15: else
16: if obj.version > trans.wv then
17: return rollback()
18: end if
19: end if
20: return obj

Figure 2: Locator::OpenTransactional

Require: Node requester, ObjectId id
Ensure: Send a copy of object identified by given id and owned by current

node to the requester node.

1: if this.clock < requester.clock then
2: this.clock = requester.clock
3: end if
4: return LocalObjects.get(id)

Figure 3: Node::RetrieveObject

Require: Transaction trans
Ensure: Commit transaction if valid and rollback otherwise.

1: for all obj in transaction.writeSet do
2: obj.acquireLock()
3: end for
4: for all obj in transaction.readSet do
5: if obj.version > trans.wv then
6: return rollback()
7: end if
8: end for
9: trans.node.clock ++

10: for all obj in transaction.writeSet do
11: obj.commitValue()
12: obj.setVersion(trans.clock)
13: obj.releaseLock()
14: if obj.remote then
15: Locator.setOwner(obj, trans)
16: end if
17: end for

Figure 4: Transaction::Commit

N1

N2

N3

lc=10

rc=20

rc=5

T1 start

wv=10
Rx Ry

lc=14

Yv=24

wv <~ 27

lc <~ 27

Xv=7

Rz

lc=30

rc <~ 30

Zv=12

rc=27

rc=15

T1 end

tA

tD

lc <~ 35

Uv <~ 34lc=34
Wu

lc=31

rc <~ 31

Uv=20

rc=27

tC

T1 commit

lock U

Ok

tB

Figure 5: An execution of a distributed transaction under TFA.

Now, T1 requests object U at node N2. Assume that N2’s clock
value is still 27 since the last request, while N1 advances its clock
due to other transactions’ commit. Now, N2 will advance its clock
to 31 upon receiving object U’s access request.

Eventually, T1 completes its execution and does the commit-
validation step by acquiring locks on objects in its write-set (i.e.,
U), and validating versions of objects in its read-set (i.e., X, Y, and
Z). Upon successful validation, N1’s local clock is incremented
atomically and its old value is written to U’s versioned-lock. N1

is published as the new owner of the write-set objects.
Several points are worth noting in this example:

• Clocks need not be changed, unless there is a significant event
like transaction commit. By using those events to stamp object
versions, we can determine the last object modification time
relative to its owner node.

• The process of advancing clock at nodes N1, N3, and finally
at N2 builds a chronological relationship between significant
events at participating nodes, and those that occur only when
needed and just for the nodes of concern. For example, if any
of T1’s read-set objects has been changed at any arbitrary time
tB , as shown in Figure 5, it does not cause a conflict to T1.
However, if this change occurs after Ry’s request, it will be
easily detected by T1 as a conflict. As T1 advances its time
at N2, any further object changes at N2, say, at time tC , will
write a version number higher than the recorded communication
event time. Similarly, advancing the clock at N3 upon Rz’s
request enables T1 to detect further changes to Z at any later
time tD .

• Validating all read-set objects at transaction-forwarding is re-
quired to detect the validity of increasing wv to the new clock
value. To illustrate this, consider any other transaction that starts
and finishes successfully at time tA. This transaction can mod-
ify object X by increasing its version to 8 instead. If wv is simply
changed, such a conflict will not be detected.

• Early validation is the most costly step in TFA, especially when
it involves remote read-set objects. However, early validation
can detect conflicts at an earlier time and save further process-
ing or communication. Further, as we show in the next section,
the worst case analysis of early validation reveals that it is pro-
portional to the number of concurrent committed transactions.

5. Properties
Correctness. A correctness criterion for TM, called Opacity [24],
has been proposed as a safety property for TM implementations
that suits the special nature of memory transactions. Similar to strict
serializability [44], opacity requires that: 1) committed transactions
appear to execute sequentially, in real-time order, and 2) no trans-
action observes the modifications to shared state done by aborted
or live transactions. In addition, all transactions, including aborted
and live ones, must always observe a consistent state of the sys-
tem. In [24], it is shown that other correctness properties such as

Linearizability [32] and Serializability [44] are not sufficient to de-
scribe TM correctness, while Opacity is.

Theorem 1. TFA ensures opacity.

Proof. To prove the theorem, we have to show that TFA satisfies
opacity’s three conditions. We start with the real-time order con-
dition. We say that transaction Tj reads from transaction Ti, if
Ti writes a value to any arbitrary object Ox, and then commits
successfully, and later Tj reads that value. Let us assume that M
transactions commit successfully and violate the real-time order by
mutually reading from each other in a circular way: T1 ≺ T2 ≺
T3....... ≺ TM ≺ T1. For this to happen, T2 must read from T1,
T3 must read from T2, and so on. This means that T1 must read
from TM , and commit before TM , which yields a contradiction, as
a transaction’s local changes are not visible till the commit phase.

The second opacity condition is guaranteed by the write-buffer
mechanism of the algorithm: a transaction makes its changes lo-
cally through transaction-local copy, and exposes changes only at
commit time, after locking all write-set objects.

Opacity’s last condition ensures consistent state for both live
and aborted transactions. By consistent state, we mean that, for
a given set of objects O modified by some transaction Tk, if Tk

was committed successfully, then any other transaction should see
either the old values of all objects or the new values of all objects.
If Tk was aborted, then any other transaction should see the old
values of all objects O. As the abortion case is already covered
by the second opacity condition, we will now prove the successful
commit case.

Let us define the operator⇐old (or⇐new) between two trans-
actions to indicate that the first transaction reads old (or new) values
of objects changed by the second transaction. We can easily con-
struct such a relation if the event of reading an arbitrary object Ox

can be defined relative to the commit event of the other transaction.
Consider the simplest case of two conflicting transactions,

shown in Figure 6(a). Here, Tj reads the old value of Ox, be-
fore Ti modifies both Ox and Oy , and commits successfully. Thus,
Tj ⇐old Ti. Later, if Tj retrieved the new value of Oy , then it vio-
lates consistency, as Tj ⇐new Ti. At this point, the clock value of
N1 is larger than Tjwv , due to the synchronization point at t1. This
causes an early-validation, and the conflict on Ox will be detected
and Tj must be aborted before entering the inconsistent state.

Now, we will generalize this for any number of transactions
(see Figure 6(b)). Assume that we have n transactions, Ti, Tj , ...
, Tn, running on n different nodes N1, N2, ... Nn, respectively.
At time t1, Ti accesses Ox located at N2, and then Tj modifies
Ox and commits at time t2. Tk reads the new value of Ox at time
t3, and then modifies any other object Oy and commits at time
t3. Similarly, the rest of the transactions follow the same access
pattern, implicitly constructing the happens-before relationship. At
time t5, Tn reads the new value of OL. Therefore, we can say that
Ti ⇐old Tj , Tn ⇐new Ti, and Tn−1 ⇐new Tn. Since the last
two relations imply that Ti ⇐new Tj indirectly through Tk, ,
Tn, it contradicts the first relation, violating data consistency. This
situation is not permitted by TFA, and it is clear that Tiwv ≺ t1.
Since we will have clock synchronization at t1 between N1 and
N2, we can say that t1 ≺ t2, and similarly, t2 ≺ t3, etc. The point
of interest is t5, for which the clock value of Nn > Tiwv . Now,
transaction forwarding will occur and early validation will detect
the conflict on OL. Thus, Ti will not proceed to an inconsistent
state and will be aborted immediately. The theorem follows.

Progress Property. Strong Progressiveness was recently pro-
posed [25] as a progress property for TM. A TM system is said
to be strongly progressive if 1) a transaction that encounters no

N1

N2 Rx

Wx Wy

Ry
Inconsistent
State

Ti

Tj

t1

(a) Simple inconsistent state.

N3
Rx Wy

t1

t2

t3

t5

t4

j

Ti

Tk

Tj

Tk

Tn

tiwv

Nn WL

......

N1

N2

Rx

Wx

RL
Inconsistent
State

Wx

Ry

(b) Inconsistent state with more than two transactions.

Figure 6: Possible opacity violation scenarios

conflict is guaranteed to commit, and 2) if a set of transactions con-
flicts on a single transactional variable, then at least one of them is
guaranteed to commit.

Theorem 2. TFA is strongly progressive.

Proof. Assume, by way of contradiction, that TFA is not strongly
progressive. Then, there exists a maximal set Q, and all transactions
in Q are aborted. (By maximal, we mean that no transaction in Q
has a conflict with a transaction outside of Q.)

Assume that conf(Q) = Φ, which means that no transaction
conflicts with another on a shared object. Recall that none of the
transactions had successfully committed, which implies a failure
in the validation step. This validation failure can imply either 1)
a failure in acquiring the locks because some other transaction
already acquired those locks, or 2) a read-set validation failure. In
both cases, there must exist a conflicting object that either caused a
lock-failure or a validation-failure. Therefore, conf(Q) 6= Φ, which
yields a contradiction.

Now, let us assume that |conf(Q)| ≥ 1. Suppose that no
transaction manages to acquire the lock on Ox ∈ conf(Q), or that
all transactions failed in their read-set validation due to a change
in Ox’s version. This implies that a foreign transaction not in Q,
managed to acquire the lock on Ox, or managed to change its value,
which contradicts our first assumption that Q is a maximal set. If
the value of Ox has been changed by some transaction in Q, then,
that indicates that the modifying transaction has committed, which
contradicts the assumption that none of the transactions were able
to commit. The other possibility is that a transaction, Tk, failed
to acquire Ox’s lock, which only occurs when another transaction
Tj ∈ Q already has the lock and deadlocks with Tk. Clearly, that
cannot happen due to the incremental way of acquiring the object
locks, as described earlier, which yields a contradiction.

Strong progressiveness is not the strongest possible progress
property. However, it is the de facto progress property for most
lock-based STM implementations such as TL2 [17], RSTM [41],
and McRT-STM [11]. The strongest progress property mandates
that no transaction is ever forcefully aborted, which is impractical
to implement due to its significant complexity and overhead.

Cost Measures. As we mentioned before, the most costly oper-
ation in TFA is the early validation which occurs whenever trans-
action forwarding is needed. Although early validation forces vali-

dation of the read-set, which can be expensive due to the presence
of remote objects, we prove that this operation is not frequent. This
is essentially because, transaction-forwarding will not occur unless
a clock difference has been detected. However, the clock cannot be
changed unless some other transactions commit successfully. Thus,
the likelihood of safely committing transactions outweigh the num-
ber of early validation operations. We now establish an upper bound
for these costs.

Theorem 3. For a given set of concurrent transactions Q executing
on N nodes, the upper bound on the number of possible early
validation steps is O(committed(Q)2), where committed(Q) is
the subset of successfully committed transactions.

Proof. Assume we have a set of Q concurrent transactions. From
the definition of early validation, we can’t have early validation
till one of the transaction commits successfully. At worst case, a
transaction T ∈ Q, and assume all other transactions in Q will
issue object read/write request to the node of T , so we will at
most have |Q| − 1 early validation. Repeating that for all other
concurrent transactions, then we will have at most

∑
i=1..|Q|(|Q|−

i) early validation, which can be approximated to |Q|2, given that
all transactions trigger early validation to each others, and all of
them commit successfully.

Lemma 4. For any transaction accessing Os objects, the number
of possible early validation steps is O(|Os|).

Proof. Early validation by definition occurs whenever some object
is accessed for the first time within a transaction. It is clear that
the maximum number of early validations is the number of objects
accessed by transaction |Os|.

Lemma 5. The worst case number of messages in an early valida-
tion step is N .

Proof. During early validation, it is required to validate all objects
in transaction read-set. Read-set objects can be distributed over
network. Hence, at worst case, these objects can’t be distributed
on nodes > N . As we aggregate the validated objects ids, so we
will require at most to N different message for all nodes to validate
all read-set objects.

Lemma 6. The upper bound on the number of messages in an
early validation step for a single transaction accessing Os objects
is O(min(committed(Q), |Os|) ∗ |N |).

Proof. From Lemma 5 and Lemma 4, we conclude that early val-
idation can happen due to committed concurrent transaction and
based on accessed objects within current transaction, so the mini-
mum of those factors will determine the number of possible early
validation events per this transaction. From Lemma 6, we can cal-
culate the total number of messages for all early validations during
transaction lifetime.

6. Experimental Evaluation
We implemented TFA in the HyFlow D-STM framework [55] for
experimentally evaluating its performance. We developed a set of
distributed applications as benchmarks to evaluate TFA against
competing models. Our benchmark suite includes a distributed
version of the Vacation benchmark from the STAMP benchmark
suite [12], two monetary applications (Bank and Loan), and three
distributed data structures (Queue, Linked list and Binary Search
Tree) as microbenchmarks. Three versions of the benchmarks were
implemented. The first version uses Java RMI, and locks to guard
critical sections. We used read-write locks, which permit greater

concurrency. A random timeout mechanism was used to handle
deadlocks and livelocks. In the microbenchmark implementations,
we used a fine-grained, handcrafted lock-coupling implementa-
tion [6], which acquires locks in a “hand-over-hand” manner. The
second version uses atomic transactions using the TFA implemen-
tation. The third version was based on a DSM implementation us-
ing the Home directory protocol, like Jackal [46], which uses the
single-writer/multiple-readers pattern.

6.1 Competitor D-STM implementations
We first evaluate the performance of TFA and compare it with
two competitor D-STM implementations: GenRSTM [43] and De-
centSTM [8]. GenRSTM is an example D-STM, which relies on
broadcasting using group communication. GenRSTM replicates
data access nodes, and its replication manager is notified of events
reflecting the internal state of the local STMs. On the other hand,
DecentSTM implements a sophisticated, fully decentralized snap-
shot algorithm, which minimizes aborts. Unlike TFA, DecentSTM
is a multiversion algorithm. Thus, it keeps a history of object states
to allow conflicting transactions to proceed as long as it can see a
consistent snapshot of memory.

Figure 7 shows the throughput of TFA and GenRSTM for
the Bank benchmark under different number of threads (4 and 8
threads) per node, and read/write transaction percentages. The y-
axis shows the number of nodes (or replicas), while x-axis shows
the throughput (committed transactions/second). In this experi-
ment, GenRSTM was found to crash after 25 nodes, so we termi-
nate the comparison at this number of nodes.

As Figure 7 shows, GenRSTM outperforms TFA at small num-
ber of nodes (2-7), while TFA outperforms it at higher number of
nodes. For write-dominant transactions, TFA performs much better,
because of the overhead introduced by GenRSTM for broadcasting
changes to all other replicas.

Figure 8, 9 and 10 compares the performance of TFA with De-
centSTM using Shared Counter, Bank and Loan benchmarks re-
spectively. The three benchmarks covers a range of number of ob-
jects, and transaction length. In Shared Counter, only one object
is shared between all nodes, and transaction is short (1 call per
transaction), while Loan represents long transaction, that access 6
objects doing 40 operations over them. In DecentSTM, each appli-
cation thread works as a distributed entity, so no inter-thread opti-
mization is introduced in its implementation. In contrast, TFA al-
lows multiple threads per node, which reduces the validation and
clocking overheads. For the sake of fairness, we limited this ex-
periment to a single thread per node. As mentioned earlier in Sec-
tion 2, DecentSTM introduces the concept of runtimes that work as
distributed shared memory containers to reduce the network con-
tention. Figure 9 shows the throughput of TFA and DecentSTM
using different number of runtimes, and for a range of read/write
transaction percentages.

We observe from Figure 8, 9 and 10 that TFA consistently
outperforms DecentSTM (except in single case). This is precisely
due to the higher overhead of DecentSTM’s snapshot isolation
algorithm relative to TFA.

It is worth noting that, the variance of the nodal throughput
under GenRSTM is around 29-836, while that under both TFA and
DecentSTM is within the range 0.06-13.6. This means that, TFA
and DecentSTM are more fair than GenRSTM, which guarantees a
uniform execution of transactions over the whole system.

6.2 Classical distributed programming models
We conducted the experiments on a network comprising of 120
nodes, each of which is an Intel Xeon 1.9GHz processor, running
Ubuntu Linux, and interconnected by a network with 1ms end-to-
end link delay. Each node runs eight concurrent threads, with each

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

GenRSTM
TFA

(a) 10% reads, 90% writes

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

GenRSTM
TFA

(b) 50% reads, 50% writes

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

GenRSTM
TFA

(c) 10% reads, 90% writes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

GenRSTM
TFA

(d) 50% reads, 50% writes

Figure 7: Throughput of Bank benchmark under GenRSTM and TFA: (a-b)
4 threads per node, (c-d) 8 threads per node.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 15 20 25 30 35 40 45 50 55 60

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

TFA
DecentSTM

(a) 10% reads, 90% writes

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 15 20 25 30 35 40 45 50 55 60

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

TFA
DecentSTM

(b) 90% reads, 10% writes

Figure 8: Throughput of Counter benchmark under DecentSTM and TFA.

thread invoking 50-200 sequential transactions (in total, around one
thousand concurrent transactions). In a single experiment, we thus
executed 200,000 transactions, and measured the throughput for
each concurrency model, for each benchmark.

Figure 11 shows the relative throughput speedup achieved by
TFA over other concurrency models on the benchmarks. The confi-
dence intervals of the data-points of the figure are in the 5% range.
We observe that TFA outperforms all other models: the speedup
ratio ranges between 1× and 13×. For the Linked List and Bi-
nary Search Tree microbenchmarks at different read percentages
(10%, 50% and 90%), DSM shows higher throughput than RMI
with the lock-coupling implementation. In contrast to RMI with
locks, DSM’s multiple-reader pattern permits concurrent opera-
tions to proceed, while fine-grained locks serialize node traversals.
In Queue, the contention is distributed over both ends, and we used
read locks with RMI to permit concurrent contains calls, which im-
proves RMI/locks throughput. TFA outperforms both approaches
by 1× to 13.6× speedup in most of workloads. TFA yields a higher
speedup for read-dominant transactions (e.g., Queue, Linked List
and Binary Search Tree) due to the low number of conflicts/retries,
especially on the Binary Search Tree where transactions operate on
different branches. For other benchmarks such as Bank, Loan and
Vacation, RMI outperforms DSM by 40-250%, while TFA achieves
1.6× to 7× speedup over both of them. In [52], we report exten-
sively on performance under different conditions and with chang-
ing number of nodes and threads per node. Our experiments show
that TFA performs better at high contention situations and with
large number of nodes (e.g., when object concurrent access proba-
bility is higher than 12%).

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

TFA
DecentSTM 1 runtime

DecentSTM 2 runtimes
DecentSTM 4 runtimes
DecentSTM 8 runtimes

(a) 10% reads, 90% writes

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

TFA
DecentSTM 1 runtime

DecentSTM 2 runtimes
DecentSTM 4 runtimes
DecentSTM 8 runtimes

(b) 50% reads, 50% writes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

TFA
DecentSTM 1 runtime

DecentSTM 2 runtimes
DecentSTM 4 runtimes
DecentSTM 8 runtimes

(c) 90% reads, 10% writes

Figure 9: Throughput of Bank benchmark under DecentSTM and TFA.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

TFA
DecentSTM 2 runtimes
DecentSTM 8 runtimes

(a) 10% reads, 90% writes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

TFA
DecentSTM 2 runtimes
DecentSTM 8 runtimes

(b) 50% reads, 50% writes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

TFA
DecentSTM 2 runtimes
DecentSTM 8 runtimes

(c) 90% reads, 10% writes

Figure 10: Throughput of Loan benchmark under DecentSTM and TFA.

 0

 2

 4

 6

 8

 10

 12

 14

Queue-10% Queue-50% Queue-90% LL-10% LL-50% LL-90% BST-10% BST-50% BST-90% Bank Loan Vacation-high Vacation-low

S
pe

ed
up

TFA Speedup over RMI-RW
TFA Speedup over DSM

Figure 11: TFA algorithm speedup for a distributed benchmark suit over
120-node system.

7. Conclusions
We presented TFA, a scalable cc D-STM that ensures both opacity
and strong progressiveness. It outperforms other distributed con-
currency control models, with acceptable number of messages and
low network traffic. Locality of reference enables TFA to scale well
with increasing number of calls per object. In addition, TFA permits
remote objects to move toward group of nodes that access them fre-
quently, reducing communication costs. Our implementation shows
that D-STM, in general, provides comparable performance to clas-
sical distributed concurrency control models, and exports a simpler
programming interface, while avoiding dataraces, deadlocks, and
livelocks.

References
[1] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,

W. Yu, and W. Zwaenepoel. TreadMarks: Shared memory computing
on networks of workstations. IEEE Computer, (29), 1996.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie. Unbounded transactional memory. In HPCA ’05: Proceedings
of the 11th International Symposium on High-Performance Computer
Architecture, pages 316–327, Washington, DC, USA, 2005. IEEE
Computer Society.

[3] T. Anderson. The performance of spin lock alternatives for shared-
money multiprocessors. Parallel and Distributed Systems, IEEE
Transactions on, 1(1):6 –16, Jan. 1990.

[4] K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, and A. Wollrath. Jini
Specification. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[5] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware memory
protection to build a high-performance, strongly atomic hybrid trans-
actional memory. In In Proceedings of the 35th 8 International Sym-
posium on Computer Architecture, 2008.

[6] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees.
Acta Informatica, 9:1–21, 1977. 10.1007/BF00263762.

[7] B. N. Bershad and M. J. Zekauskas. Midway: Shared memory parallel
programming with entry consistency for distributed memory multipro-
cessors. Technical report, Carnegie-Mellon University, 1991.

[8] A. Bieniusa and T. Fuhrmann. Consistency in hindsight: A fully
decentralized stm algorithm. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1 –12, april
2010.

[9] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13:422–426, July 1970.

[10] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software trans-
actional memory for large scale clusters. In PPoPP ’08: Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, pages 247–258, New York, NY, USA, 2008.
ACM.

[11] R. L. H. C. C. M. Bratin Saha, Ali-Reza Adl-Tabatabai and
B. Hertzberg. McRT-STM: a high performance software transactional
memorysystem for a multi-core runtime. In PPOPP, pages 187–197,
2006.

[12] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC
’08: Proceedings of The IEEE International Symposium on Workload
Characterization, September 2008.

[13] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM:
Dependable distributed software transactional memory. In PRDC ’09:
Proc. 15th Pacific Rim International Symposium on Dependable Com-
puting, nov 2009.

[14] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. In ASPLOS-XII: Proceedings of
the 12th international conference on Architectural support for pro-
gramming languages and operating systems, pages 336–346, New
York, NY, USA, 2006. ACM.

[15] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and
multicast algorithms: Taxonomy and survey. ACM Comput. Surv.,
36:372–421, December 2004.

[16] M. J. Demmer and M. Herlihy. The Arrow distributed directory proto-
col. In DISC ’98: Proceedings of the 12th International Symposium on
Distributed Computing, pages 119–133, London, UK, 1998. Springer-
Verlag.

[17] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In In
Proc. of the 20th Intl. Symp. on Distributed Computing, 2006.

[18] Dice, D. and Shavit, N. What Really Makes Transactions Faster? In
Proc. of the 1st TRANSACT 2006 workshop, 2006.

[19] E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven computa-
tion of interprocedural data flow. In Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL ’95, pages 37–48, New York, NY, USA, 1995. ACM.

[20] R. Ennals. Software transactional memory should not be obstruction-
free. Technical Report IRC-TR-06-052, Intel Research Cambridge
Tech Report, Jan 2006.

[21] M. Factor, A. Schuster, and K. Shagin. A platform-independent dis-
tributed runtime for standard multithreaded Java. Int. J. Parallel Pro-
gram., 34(2):113–142, 2006.

[22] V. W. Freeh. Dynamically controlling false sharing in distributed
shared memory. In Proceedings of the 5th IEEE International Sympo-
sium on High Performance Distributed Computing, HPDC ’96, pages
403–, Washington, DC, USA, 1996. IEEE Computer Society.

[23] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism
for distributed file cache consistency. In Proceedings of the twelfth
ACM symposium on Operating systems principles, SOSP ’89, pages
202–210, New York, NY, USA, 1989. ACM.

[24] R. Guerraoui and M. Kapalka. Opacity: A Correctness Condition for
Transactional Memory. Technical report, EPFL, 2007.

[25] R. Guerraoui and M. Kapalka. The semantics of progress in lock-
based transactional memory. SIGPLAN Not., 44:404–415, January
2009.

[26] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-
tun. Transactional memory coherence and consistency. In in Proc. of
ISCA, page 102, 2004.

[27] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1–263, 2010.

[28] M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for
implementing software transactional memory. volume 41, pages 253–
262, New York, NY, USA, October 2006. ACM.

[29] M. Herlihy, J. E. B. Moss, J. Eliot, and B. Moss. Transactional mem-
ory: Architectural support for lock-free data structures. In in Pro-
ceedings of the 20th Annual International Symposium on Computer
Architecture, pages 289–300, 1993.

[30] M. Herlihy and Y. Sun. Distributed transactional memory for metric-
space networks. In In Proc. International Symposium on Distributed
Computing (DISC 2005), pages 324–338. Springer, 2005.

[31] M. Herlihy and M. P. Warres. A tale of two directories: implementing
distributed shared objects in Java. In JAVA ’99: Proceedings of the
ACM 1999 conference on Java Grande, pages 99–108, New York, NY,
USA, 1999. ACM.

[32] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condi-
tion for concurrent objects. ACM Transactions on Programming Lan-
guages and Systems, 12:463–492, 1990.

[33] T. Johnson. Characterizing the performance of algorithms for lock-
free objects. Computers, IEEE Transactions on, 44(10):1194 –1207,
Oct. 1995.

[34] J. Kim and B. Ravindran. On transactional scheduling in distributed
transactional memory systems. In S. Dolev, J. Cobb, M. Fischer, and
M. Yung, editors, Stabilization, Safety, and Security of Distributed
Systems, volume 6366 of Lecture Notes in Computer Science, pages
347–361. Springer Berlin / Heidelberg, 2010.

[35] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. Kirkham, and I. Wat-
son. DiSTM: A software transactional memory framework for clus-
ters. In ICPP ’08: Proceedings of the 2008 37th International Con-
ference on Parallel Processing, pages 51–58, Washington, DC, USA,
2008. IEEE Computer Society.

[36] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21:558–565, July 1978.

[37] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. ACM, (7), 1989.

[38] B. Liskov, M. Day, M. Herlihy, P. Johnson, and G. Leavens. Argus ref-
erence manual. Technical report, Cambridge University, Cambridge,
MA, USA, 1987.

[39] J. Maassen, T. Kielmann, and H. E. Bal. Efficient replicated method
invocation in Java. In JAVA ’00: Proceedings of the ACM 2000
conference on Java Grande, pages 88–96, New York, NY, USA, 2000.
ACM.

[40] K. Manassiev, M. Mihailescu, and C. Amza. Exploiting distributed
version concurrency in a transactional memory cluster. In PPoPP ’06,
pages 198–208. ACM Press, Mar 2006.

[41] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. N. S. III, and M. L. Scott. Lowering the overhead of nonblocking
software transactional memory. Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing (TRANSACT),
June 2006.

[42] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based transactional memory. In In Proc. 12th Annual In-
ternational Symposium on High Performance Computer Architecture,
2006.

[43] P. R. N. Carvalho and L. Rodrigues. A generic framework for repli-
cated software transactional memories. In 10th IEEE International
Symposium on Network Computing and Applications (IEEE NCA11),
August 2011.

[44] C. H. Papadimitriou. The serializability of concurrent database up-
dates. J. ACM, 26:631–653, October 1979.

[45] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine
approach. Distrib. Parallel Databases, 14:71–98, July 2003.

[46] R. V. R A F Bhoedjang and H. E. Bal. Distributed shared memory
management for java. In In ASCII2000, page 256, 2000.

[47] M. Raynal. About logical clocks for distributed systems. SIGOPS
Oper. Syst. Rev., 26:41–48, January 1992.

[48] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with
eager validation. In S. Dolev, editor, Distributed Computing, Lecture
Notes in Computer Science, pages 284–298. Springer Berlin / Heidel-
berg, 2006.

[49] T. Riegel, C. Fetzer, H. Sturzrehm, and P. Felber. From causal to
z-linearizable transactional memory. In Proceedings of the twenty-
sixth annual ACM symposium on Principles of distributed computing,
PODC ’07, pages 340–341, New York, NY, USA, 2007. ACM.

[50] P. Romano, N. Carvalho, M. Couceiro, L. Rodrigues, and J. Cachopo.
Towards the integration of distributed transactional memories in ap-
plication servers clusters. In Quality of Service in Heterogeneous Net-
works, volume 22 of Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, pages
755–769. Springer Berlin Heidelberg, 2009. (Invited paper).

[51] P. Romano, L. Rodrigues, N. Carvalho, and J. Cachopo. Cloud-TM:
harnessing the cloud with distributed transactional memories. SIGOPS
Oper. Syst. Rev., 44:1–6, April 2010.

[52] M. M. Saad. HyFlow: A High Performance Distributed
Software Transactional Memory Framework. Master’s the-
sis, Virginia Tech, ECE Dept., Blacksburg, VA, USA, 2011.
Available at http://scholar.lib.vt.edu/theses/available/
etd-05182011-095228/.

[53] M. M. Saad and B. Ravindran. Distributed Hybrid-Flow STM : Tech-
nical Report. Technical report, ECE Dept., Virginia Tech, December
2010.

[54] M. M. Saad and B. Ravindran. Hyflow: A high performance dis-
tributed software transactional memory framework. In In Proceedings
of the 20th IEEE International Symposium on High Performance Dis-
tributed Computing, HPDC ’11, HPDC ’11, 2011.

[55] M. M. Saad and B. Ravindran. Supporting STM in Distributed Sys-
tems: Mechanisms and a Java Framework. In TRANSACT ’11: Pro-
ceedings of the 6th ACM SIGPLAN Workshop on Transactional Com-
puting, San Jose, California, USA, 2011. ACM.

[56] N. Shavit and D. Touitou. Software transactional memory. In Pro-
ceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, PODC ’95, pages 204–213, New York, NY,
USA, 1995. ACM.

[57] E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic Java appli-
cation partitioning. In In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP, 2002.

[58] B. Zhang and B. Ravindran. Brief announcement: Relay: A cache-
coherence protocol for distributed transactional memory. In OPODIS
’09: Proceedings of the 13th International Conference on Principles of
Distributed Systems, pages 48–53, Berlin, Heidelberg, 2009. Springer-
Verlag.

[59] B. Zhang and B. Ravindran. Dynamic analysis of the Relay cache-
coherence protocol for distributed transactional memory. In IPDPS
’10: Proceedings of the 2010 24th IEEE International Parallel and
Distributed Processing Symposium, Washington, DC, USA, 2010.
IEEE Computer Society.

