
IEEE TRANSACTIONS ON COMPUTERS 1

Remote Transaction Commit: Centralizing
Software Transactional Memory Commits

Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran

Abstract—
Software Transactional Memory (STM) has recently emerged as a promising synchronization abstraction for multicore architectures.
State-of-the-art STM algorithms, however, suffer from performance challenges due to contention and spinning on locks during the
transaction commit phase. In this paper, we introduce Remote Transaction Commit (or RTC), a mechanism for executing commit
phases of STM transactions. RTC dedicates server cores to execute transactional commit phases on behalf of application threads. This
approach has two major benefits. First, it decreases the overheads of spinning on locks during commit, such as the number of cache
misses, blocking of lock holders, and CAS operations. Second, it enables exploiting the benefits of coarse-grained locking algorithms
(simple and fast lock acquisition, reduced false conflicts) and bloom filter-based algorithms (concurrent execution of independent
transactions). Our experimental study on a 64-core machine with four sockets shows that RTC solves the problem of performance
degradation due to spin locking on both micro-benchmarks (red-black trees), and macro-benchmarks (STAMP), especially when the
commit phase is relatively long and when thread contention increases.

Index Terms—Software Transactional Memory, Remote Commit, Transactions dependency

F

1 INTRODUCTION

Software transactional memory [1] (STM) is an appealing
concurrent programming abstraction that shifts the bur-
den of synchronization from the programmer to an un-
derlying software framework. With STM, programmers
organize reads and writes to shared memory in “atomic
blocks”, which are guaranteed to satisfy atomicity, con-
sistency, and isolation properties.

Inspired by database transactions, STM manages an
atomic block by storing its memory accesses into private
structures called read-sets and write-sets. To achieve
consistency, a validation mechanism is used (either at
encounter time or at commit time) to detect conflicting
transactions (i.e., read-write or write-write conflicts). If
two transactions conflict, one of them is aborted, and all
its prior changes are undone. When a transaction com-
mits, it permanently publishes its writes to the shared
memory. That way, other transactions (or at least the
successful ones) cannot see its intermediate states, which
guarantees atomicity and isolation.

Transactional memory is increasingly gaining traction:
Intel has released a C++ compiler with STM support [2];
IBM [3] and Intel [4] have released commodity hardware
processors integrating transactional memory features;
and GCC has released programming language exten-
sions to support STM [5].

Despite those promising advancements, STM has per-
formance and scalability limitations. They are mainly
caused by the overheads of managing meta-data, such as
validating read-set entries, locking write-set entries, and

• Authors are with the Department of Electrical and Computer Engineering,
Virginia Tech, Blacksburg, VA, 24060

rolling-back aborted transactions. Among those over-
heads, the ones involved in the execution of the transac-
tion commit part have a significant influence on the ap-
plication performance. In Table 1 of Section 3 we quan-
tify those overheads using the STAMP benchmark [6],
and we show that speeding up the commit-time part
can significantly enhance the overall performance.

One of the important design decisions that affects the
commit-time overhead is the granularity of the locks
acquired during commit. Commit-time locking can be
coarse-grained, as TML [7] and NOrec [8], compacted
using bloom filters [9], as RingSTM [10], or fine-grained
using ownership records, as TL2 [11]. In addition, some
algorithms replace the commit-time locking with an
eager approach where locks are acquired at encounter
time (e.g., TinySTM [12]). In general, fine-grained lock-
ing, either eager or lazy, decreases the probability of
unnecessary serialization of non-conflicting executions
with additional costs due to the presence of many meta-
data to be handled, and a more complex implementation.

Despite the wide spectrum of STM algorithms pro-
vided in literature, almost all of them assume a naive
spin-locking (sometimes with back-off delays). In our
analysis (in Section 3), we show that the overhead of
such a spinning technique forms a significant part of
the overall commit-time latency. This overhead becomes
dominant in high core count architectures where the
slow inter-socket communications contribute with an
additional degradation [13].

Motivated by these observations, we present Remote
Transaction Commit (or RTC) a mechanism for pro-
cessing commit parts of STM transactions “remotely”.
RTC’s basic idea is to execute the commit operations
of a transaction in dedicated servicing threads. In RTC,

IEEE TRANSACTIONS ON COMPUTERS 2

when a client transaction1 reaches the commit phase, it
sends a commit request to a server (potentially more
than one). Instead of competing on spinlocks, the servic-
ing threads communicate with client threads through a
cache-aligned request array. This approach reduces cache
misses (which are often due to the spinning operation
on locks), and reduces the number of CAS operations
during commit2. Additionally, dedicating CPU cores for
servers reduces the probability of interleaving the exe-
cution of different tasks on those cores due to the OS
scheduling. Blocking the execution of commit phase, for
allowing other transactions to interleave their processing
on the same core, is potentially disruptive for achieving
high performance.

In the past, works similar to RTC have been proposed,
but none of them has been specifically tailored (and
optimized) for STM. In particular, RCL [15] is a locking
mechanism based on the idea of executing lock-based
critical sections through remote threads. Applying the
same idea in STM is appealing because it meets the cur-
rent technological trend of having many cores available.

In conclusion, RTC can be seen as a deployment
of earlier attempts to overcome the overhead of spin
locking in lock-based applications by adopting those
new techniques inside STM frameworks. RTC follows
a direction similar to the one of the lazy, lightweight,
coarse-grained STM algorithms, like NOrec [8]. By doing
so, it minimizes the number of locks that will be replaced
by remote execution (precisely, it replaces only one
lock, which is acquired at NOrec’s commit). Moreover,
RTC solves the problem of coarse-grained algorithms,
which serialize independent (i.e., non-conflicting) com-
mit phases due to the single lock, by using additional
secondary servers to execute independent commit re-
quests (which do not conflict with the transaction cur-
rently committed on the main server).

Our implementation and experimental evaluation
show that RTC is particularly effective when transactions
are long and the contention is high. If the write-sets
of transactions are long, transactions that are executing
their commit phases will be a bottleneck. All other
spinning transactions will suffer from blocking, cache
misses, and unnecessary CASing, which are significantly
minimized in RTC. In addition, our experiments show
that when the number of threads exceeds the number
of cores, RTC performs and scales significantly better.
This is because, RTC solves the problem of blocking lock
holders by an adverse OS schedule that causes chained
blocking.

RTC is designed for systems deployed on high core
count multicore architectures where reserving few cores
for executing those portions of transactions does not
significantly impact the overall system’s concurrency

1. We will call an RTC servicing thread as “server” and an applica-
tion thread as “client”.

2. It is well understood that spinning on locks and increased usage
of CAS operations can seriously hamper application performance [14],
especially in multicore architecture.

level. However, the cost of dedicating cores on some ar-
chitecture may be too high given the limited parallelism.
For those architectures, we extend RTC by allowing ap-
plication threads, rather than a dedicated server thread,
to combine the execution of the commit phases. This idea
is similar to the flat combining [16] approach proposed
for concurrent data structures (in fact, we name the new
version of RTC as RTC-FC). Our experiments include the
comparison between RTC and RTC-FC, thus clarifying
the workloads that can benefit more from one approach
or the other.

Summarizing, the paper makes the following contri-
butions:

- We introduce RTC, an STM algorithm that uses
remote execution of internal critical sections (i.e.,
commit phases) to minimize concurrency overhead,
by reducing cache misses, CAS operations, and
thread blocking. Furthermore, RTC uses bloom fil-
ters to allow the concurrent execution of indepen-
dent transactions.

- We analyze STAMP applications [6] to show the
relationship between commit time ratio and RTC’s
performance gain.

- Through experimentation, we show that both RTC
and RTC-FC have low overhead, peak performance
for long running transactions, and significantly im-
proved performance for high number of threads (up
to 4x better than other algorithms in high thread
count configurations). We also show the impact of
increasing the number of secondary servers.

The rest of the paper is organized as follows. In Section 2,
we overview past and related work. Section 3 describes
RTC’s design, Section 4 details the RTC algorithm, and
Section 5 analyzes RTC’s correctness. Section 6 discusses
RTC-FC. We evaluate both RTC and RTC-FC in Section
7, and discuss some possible extensions in Sections 8 and
9. We conclude the paper with Section 10.

2 PAST AND RELATED WORK

The current STM algorithms cover an array of differ-
ent decision alternatives on contention management,
memory validation, and metadata organization. Also,
different STM algorithms are best suited for different
workloads. Thus, an interesting research direction has
been to combine the benefits of different STM algorithms
in an adaptive STM system, which switches at run-time
between the algorithms according to the workload at-
hand [17].

The approach of dedicating threads for specific tasks
has been covered before in both TM [18] and non-TM
proposals [19]. RTC is different from them in the role
assigned to the dedicated threads.

Orthogonal to STM, hardware transactional memory
(HTM) is currently gaining traction as an alternative
for efficiently managing transactions on the hardware
level [3], [4]. However, all the released HTM architec-
tures are best-effort (i.e. there is no guarantee of an

IEEE TRANSACTIONS ON COMPUTERS 3

eventual commit), which means that there is still a need
to have an efficient software fall-back path. Orthogonal
to transactional memory as a whole, other directions
in literature target solving the overhead of accessing
the shared memory by adapting the architectures [20],
proposing new programming models [21], involving the
compiler [22]. Despite the scalability limitations of STM
compared to these alternatives, it remains as a promising
alternative which provides simple, composable, and pro-
grammable, model for designing (reasonably efficient)
large and complex transactional applications on the cur-
rent architectures.

In the following subsections, we overview RCL and
past STM algorithms that are relevant for RTC, and
contrast them with RTC itself.

2.1 Remote Core Locking
Remote Core Locking (RCL) [15] is a mutual exclusion
locking mechanism used for synchronizing cooperating
threads. The main idea of RCL is to dedicate some cores
to execute critical sections. If a thread reaches a critical
section, it will send a request to a server thread using
a cache-aligned requests array. An earlier similar idea
is Flat Combining [16], which dynamically elects one
client to temporarily take the role of the server, instead
of dedicating servicing threads.

Unlike STM, both the number of locks and the logic
of the critical sections vary according to the applications.
Thus, RCL client’s request must include more informa-
tion than RTC, like the address of the lock associated
with the critical section, the address of the function that
encapsulates the client’s critical section, and the variables
referenced or updated inside the critical section. Re-
engineering, which in this case means replacing critical
sections with remote procedure calls, is also required and
made off-line using a refactoring mechanism [23].

RCL outperforms traditional locking algorithms like
MCS [24] and Flat Combining [16] in legacy applications
with long critical sections. This improvement is due to
three main enhancements: reducing cache misses on spin
locks, reducing time-consuming CAS operations, and
ensuring that servers that are executing critical sections
are not blocked by the scheduler.

On the other hand, RCL has some limitations. Han-
dling generic lock-based applications, with the possibil-
ity of nested locks and conditional locking, puts extra
obligations on servers. RCL must ensure livelock free-
dom in these cases, which complicates its mechanism
and requires thread management. Also, legacy appli-
cations must be re-engineered so that critical sections
can be executed as remote procedures. This specific
problem cannot exist in STM because the main goal of
STM is to make concurrency control transparent from
programmers. Finally, it is not clear how sequence locks
(i.e., locks with version numbers), which are used by
most STM algorithms, can be replaced with RCL. As
we will show later, RTC does not suffer from these
limitations, while still retaining all the benefits of RCL.

2.2 STM Algorithms
NOrec [8] is a lazy STM algorithm which uses minimal
metadata. Only one global timestamped lock is acquired
at commit time to avoid write-after-write hazards. Val-
idation on NOrec is value-based, which reduces false
conflicts. Each transaction validates its read-set after each
read and extends its local timestamp if validation suc-
ceeds. At commit time, write-set is published on shared
memory. RTC inherits all the strong properties of NOrec
(e.g., privatization safety, reduced false conflicts, and
minimal locking overhead), and also solves the prob-
lem of executing independent commit phases serially,
by adding dependency detector servers. Moreover, RTC
inherits the easy integration with hardware transactions,
as we show in more details in Section 9.

RingSTM [10] introduced the idea of detecting con-
flicts using bloom filters [9]. Each thread locally keeps
two bloom filters, which represent the thread’s read-set
and write-set. All writing transactions first join a shared
ring data structure with their local bloom filters. Readers
validate a new read against the bloom filters of writing
transactions, which join the ring after the transaction
starts. The main difference between RingSTM and RTC is
in the way they use bloom filters. RingSTM uses bloom
filters to validate read-sets and synchronize writers,
which increases false conflicts according to the size of the
bloom filter. In RTC, as we show later, bloom filters are
only used to detect dependency between transactions,
while validation is still done at the memory level.

TL2 [11] is also an appealing STM algorithm which
uses ownership records. However, this fine-grained spec-
ulation is not compatible with the RTC idea of remote
execution. In addition, the native version of TL2 does
not have the same strong properties of NOrec, such
as privatization safety. Finally, despite the fine-grained
locking approach used in TL2, all writing transactions
eventually modify a shared global timestamp. This issue
is partially addressed in SkyTM [25], a further extension
of TL2 that employs scalable visible readers instead of
relying on a single global timestamp.

3 REMOTE TRANSACTION COMMIT

3.1 Design
The basic idea of RTC is to execute the commit phase
of a transaction in a dedicated main server core, and to
detect non-conflicting pending transactions in another
secondary server core. This way, if a processor contains
n cores, two cores will be dedicated as servers, and the
remaining n − 2 cores will be assigned to clients. For
this reason, RTC is more effective when the number
of cores is large enough to afford dedicating two of
them as servers. However, the core count in modern
architectures is increasing, so that reserving two cores
does not represent a limitation for RTC applicability.

As stated in Section 1, the architecture of RTC can be
considered as an extension of NOrec. Figure 1 shows the
structure of a NOrec transaction. A transaction can be

IEEE TRANSACTIONS ON COMPUTERS 4

seen as the composition of three main parts: initializa-
tion, body, and commit. The initialization part adjusts
the local variables at the beginning of the transaction.
In the transaction body, a set of speculative reads and
writes are executed. During each read, the local read-
set is validated to detect conflicting writes of concurrent
transactions, and, if the validation is successful, the new
read is added to the read-set. Writes are also saved in
local write-sets to be published at commit. During the
commit phase, the read-set is repeatedly validated until
the transaction acquires the lock (by an atomic CAS
operation to increase the global timestamp). The write-
set is then published into the shared memory, and finally,
the global lock is released.

Fig. 1. Structure of a NOrec transaction.

This well defined mechanism of NOrec can be con-
verted to remotely executing the transaction commit
part. Unlike lock-based applications, which contain
programmer-defined locks with generic critical sections,
RTC knows precisely the number of locks to acquire
(i.e., only one global lock), when to execute the com-
mit (i.e., at the transaction end), and what to execute
inside the commit (i.e., validating transaction read-set
and publishing its write-set). This simplifies the role of
the servers, in contrast to server-based optimizations for
locks such as RCL [15] and Flat Combining [16], which
need additional mechanisms (either by re-engineering as
in RCL or at run-time as in Flat Combining) to indicate
the procedures to execute in behalf of the clients to the
servers.

RTC is therefore simple: clients communicate with
servers (either main or secondary) using a cache-aligned
requests array to reduce caching overhead. A client’s
commit request always contains a reference to the trans-
actional context (read-set and write-set, local timestamp,
and bloom filters). This context is attached to the trans-
action request when it begins. A client starts its commit
request by changing a state field in the request to a
pending state, and then spins on this state field until
the server finishes the execution of its commit and resets
the state field again. On the server side, the main server
loops on the array of commit requests until it finds a

client with a pending state. The server then obtains the
transaction’s context and executes the commit. While the
main server is executing a request, the secondary server
also loops on the same array, searching for independent
requests. Note that it does not execute any client re-
quests unless the main server is executing another non-
conflicting request.

Figure 2 illustrates the flow of execution in both
NOrec and RTC. Assume we have three transactions.
Transaction TA is a long running transaction with a
large write-set. Transaction TB does not conflict with
TA and can be executed concurrently, while transaction
TC is conflicting with TA. Figure 2(a) shows how NOrec
executes these three transactions. If TA acquires the lock
first, then both TB and TC will spin on the shared lock
until TA completes its work and releases the lock, even
if they can run concurrently. Spinning on the same lock
results in significant number of useless CAS operations
and cache misses. Moreover, if TA is blocked by the OS
scheduler, then both the spinning transactions will also
wait until TA resumes, paying an additional cost. This
possibility of OS blocking increases with the number of
busy-waiting transactions.

In Figure 2(b), RTC moves the execution of TA’s com-
mit to the main server. Transactions TB and TC send
a commit request to the server and then spin on their
own requests (instead of spinning on a shared global
lock) until they receive a reply. During TA’s execution,
the secondary server (which is dedicated to detecting
dependency) discovers that TB can run concurrently
with TA, so it starts executing TB without waiting for
TA to finish. Moreover, when TA is blocked by the OS
scheduler, this blocking does not affect the execution
of its commit on the main server, and does not block
other transactions. Blocking of the servers is much less
frequent here, because client transactions are not allowed
to execute on server cores.

(a) NOrec (b) RTC

Fig. 2. Flow of commit execution in NOrec and RTC.

3.2 Dependency Detection
RTC leverages a secondary server to solve the problem
of unnecessary serialization of independent commit re-
quests. The secondary server uses bloom filters [9] to de-
tect dependency between transactions. Each transaction

IEEE TRANSACTIONS ON COMPUTERS 5

Benchmark 8 threads 16 threads 32 threads 48 threads
%trans %total %trans %total %trans %total %trans %total

genome 49 32 53 14 54 5 56 3
intruder 25 19 37 31 39 26 19 9
kmeans 43 34 56 27 60 15 62 11

labyrinth 0 0 0 0 0 0 0 0
ssca2 83 53 94 63 95 66 92 39

vacation 6 5 17 16 42 36 50 45

TABLE 1
Ratio of NOrec’s commit time in STAMP benchmarks.

keeps two local bloom filters and updates them at each
read/write (in addition to updating the normal read-
set and write-set). The first one is a write filter, which
represents the transaction writes, and the second one
is a read-write filter, which represents the union of the
transaction reads and writes. If the read-write filter of a
transaction TX does not intersect with the write filter of
a transaction TY currently executed in the main server,
then it is safe to execute TX in the secondary server. (We
provide a proof of the independence between TX and
TY in Section 5).

Synchronization between threads in NOrec is done
using a single global sequence lock. Although RTC needs
more complex synchronization between the main server
and the secondary server, in addition to synchronization
with the clients, we provide a lightweight synchroniza-
tion mechanism that is basically based on the same
global sequence lock, and one extra servers lock. This
way, we retain the same simplicity of NOrec’s synchro-
nization. (Section 4 details RTC’s synchronization).

The effectiveness of the secondary server is evident
when the write-set size is large. The secondary server
adds synchronization overhead to the main server. This
overhead will be relatively small if commit phase is long,
and transactions are mostly independent. On the other
hand, if write-sets are short (indicating short commit
phases), then even if transactions are independent, the
time taken by the secondary server to detect such inde-
pendent transactions is long enough so that the main
server may finish its execution before the secondary
server makes a substantial progress. To solve this issue,
RTC dynamically enables/disables the secondary server
according to the size of the transaction write-set. The
secondary server works on detecting non-conflicting
transactions when the write-set size exceeds a certain
threshold (In Section 8, we show an experimental analy-
sis of this threshold). As a consequence, the interactions
between main and secondary servers are minimized so
that the performance of the transactions executed in the
main server (that represents the critical path in RTC) is
not affected.

Another trade off for RTC is the bloom filter size.
If it is too small, many false conflicts will occur and
the detector will not be effective. On the other hand,
large bloom filters need large time to be accessed. Bloom
filter access must be fast enough to be fruitful. In our
experiments, we used the same size as in the RSTM

default configuration (1024 bits), as we found that other
sizes give similar or worse performance.

3.3 Analysis of NOrec Commit Time
As we mentioned before, RTC is more effective if the
commit phase is not too short. Table 1 provides an anal-
ysis of NOrec’s commit time ratio of the STAMP bench-
marks [6]3. In this experiment, we measure the commit
time as the sum of the time taken to acquire the lock
and the time taken for executing the commit procedure
itself. We calculated both A) the ratio of commit time to
the transactions execution time (%trans), and B) the ratio
of commit time to the total application time (%total). The
results show that the commit time is already predomi-
nant in most of the STAMP benchmarks. The percentage
of commit time increases when the number of threads
increases (even if the %total decreases, which means that
the non-transactional execution increases). This means
that the overhead of acquiring the lock and executing
commit becomes more significant in the transactional
parts.

As our experimental results show in Section 7, the
increase of RTC performance is proportional to the com-
mit latency. In fact, benchmarks with higher percentage
of commit time (genome, ssca2, and kmeans) gain more
from RTC than the others with small commit execution
time (intruder and vacation) because the latter do not
take advantages from the secondary server. However,
they still gain from the main server, especially when
the number of transactions increases and competition
between transactions on the same lock becomes a sig-
nificant overhead. Benchmarks with a dominating non-
transactional workloads (labyrinth) show no difference
between NOrec and RTC because no operations are done
for those non-transactional parts during the commit
phase.

4 RTC ALGORITHM

The main routines of RTC are servers loops and the
new commit procedure. The initialization procedure and
transaction body code are straightforward, thus we only

3. We excluded yada here and in all our further experiments as it
evidenced errors (segmentation fault) when we tested them on RSTM,
even in the already existing algorithms like NOrec. We also excluded
bayes because its performance varies significantly between runs, so it
is not useful for benchmarking.

IEEE TRANSACTIONS ON COMPUTERS 6

briefly discuss them. Our full implementation, examples
and test-scripts used for experimental evaluation, are
available for reviewers as a supplemental material.

4.1 RTC Clients

Client commit requests are triggered using a cache-
aligned requests array. Each commit request contains
three items:

- state. This item has three values. READY means
that the client is not currently executing commit.
PENDING indicates a commit request that is not
handled by a server yet. ABORTED is used by the
server to inform the client that the transaction must
abort.

- Tx. This is the reference to the client’s transactional
context. Basically, servers need the following in-
formation from the context of a transaction: read-
set to be validated, write-set to be published, the
local timestamp, which is used during validation, and
filters, which are used by the secondary server.

- pad. This is used to align the request to the cache
line (doing so decreases false sharing).

RTC initialization has two main obligations. The first one
is allocating the requests array and starting the servers.
The second one is to set the affinity of the servers to their
reserved cores.

When a transaction begins, it is bound to the clients’
cpuset to prevent execution on server cores (note that
it’s allowed to bound more than one client to the same
core, according to the scheduler). It also inserts the
reference of its context in the requests array. Finally,
the local timestamp is assigned to the recent consistent
global timestamp. Reads and writes update the bloom
filters in addition to their trivial updates of read-sets and
write-sets. Reads update the read-write filter, and writes
update both the write filter and the read-write filter.

Client post validation is value-based like NOrec. Al-
gorithm 1 shows how it generally works. In lines 3-4,
transaction takes a snapshot of the global timestamp
and loops until it becomes even (meaning that there is
no commit phase currently running on both main and
secondary servers). Then, read-set entries are validated
(line 5). Finally, the global timestamp is read again to
make sure that nothing is modified by another transac-
tion while the transaction was validating (Lines 6-9).

Servers need also to validate the read-set before pub-
lishing the write-set. The main difference between server
validation and client validation is that there is no need
to check the timestamp by the server, because the main
server is the only thread that changes the timestamp.

Algorithm 2 shows the commit procedure of RTC
clients. Read-only transactions do not need to acquire
any locks and their commit phase is straightforward.
A read-write transaction starts its commit phase by
validating its read-set to reduce the overhead on servers
if it is already invalid (line 5). If validation succeeds,
it changes its state to PENDING (line 7). Then it loops

Algorithm 1 RTC: client validation
1: procedure CLIENT-VALIDATION
2: t = global timestamp
3: if t is odd then
4: retry validation
5: Validate read-set values
6: if t 6= global timestamp then
7: retry validation
8: else
9: return t

10: end procedure

Algorithm 2 RTC: client commit
1: procedure COMMIT
2: if read only then
3: ...
4: else
5: if ¬ Client-Validate(Tx) then
6: TxAbort()
7: req.state = PENDING
8: loop while req.state /∈ (READY, ABORTED)
9: if req.state = ABORTED then

10: TxAbort()
11: else
12: TxCommit()
13: ResetFilters()

14: end procedure

until one of the servers handles its commit request and
changes the state to either READY or ABORTED (line
8). It will either commit or roll-back according to the
reply (lines 9–12). Finally, the transaction clears its bloom
filters for reusing them (line 13).

4.2 Main Server
The main server is responsible for executing the commit
part of any pending transaction. Algorithm 3 shows the
main server loop. By default, the dependency detection
(DD) is disabled. The main server keeps looping on client
requests until it reaches a PENDING request (line 6).
Then it validates the client read-set. If validation fails,
the server changes the state to ABORTED and continues
searching for another request. If validation succeeds, it
starts the commit operation in either DD-enabled or DD-
disabled mode according to a threshold of the client
write-set size (lines 7–14).

Execution of the commit phase without enabling DD
is straightforward. The timestamp is increased (which
becomes odd, indicating that the servers are working),
the write-set is published to memory, the timestamp is
then increased again (to be even), and finally the request
state is modified to be READY.

When DD is enabled, synchronization between the
servers is handled using a shared servers lock. First,
the main server informs the secondary server about
its current request number (line 23). Then, the global
timestamp is increased (line 24). The order of these two
lines is important to ensure synchronization between the
main and secondary servers. The main server must also
acquire servers lock before it increments the timestamp
again at the end of the commit phase (lines 26–29)
to prevent the main server from proceeding until the

IEEE TRANSACTIONS ON COMPUTERS 7

Algorithm 3 Main server loop. Server commit with
dependency detection disabled/enabled.

1: procedure MAIN SERVER LOOP
2: DD = false
3: while true do
4: for i← 1, num transactions do
5: req ← req array[i]
6: if req.state = PENDING then
7: if ¬ Server-Validate(req.Tx) then
8: req.state = ABORTED
9: else if write set size < t then

10: Commit(DD-Disabled)
11: else
12: DD = true
13: Commit(DD-Enabled)
14: DD = false

15: end procedure
16: procedure COMMIT(DD-Disabled, req)
17: global timestamp++
18: WriteInMemory(req.Tx.writes)
19: global timestamp++
20: req.state = READY
21: end procedure

22: procedure COMMIT(DD-Enabled, req, i)
23: mainreq = req array[i]
24: global timestamp++
25: WriteInMemory(req.Tx.writes)
26: loop while !CAS(servers lock, false, true)
27: global timestamp++
28: mainreq = NULL
29: servers lock = false
30: req.state = READY

31: end procedure

secondary server finishes its work. As we will show
in the correctness part (in Section 5), this servers lock
guarantees that the secondary server will only execute as
an extension of the main server’s execution. Comparing
the two algorithms, we see that DD adds only one CAS
operation on a variable, which is (only) shared between
the servers. Also, DD is not enabled unless the write-set
size exceeds the threshold. Thus, the overhead of DD is
minimal.

4.3 Secondary Server
Algorithm 4 shows the secondary server’s operation. It
behaves similar to the main server except that it does
not handle PENDING requests unless it detects that:
- DD is enabled (line 4);
- Timestamp is odd, which means that main server is

executing a commit request (line 6);
- The new request is independent from the current

request handled by the main server (line 9).
The commit procedure is shown in lines 12–26. Vali-

dation is done before acquiring servers lock to reduce
the time of holding the lock (lines 13–14). However,
since it is running concurrently with the main server, the
secondary server has to validate that the main server is
still handling the same request (line 16) after acquiring
servers lock. This means that, even if the secondary
server reads any false information from the above three
points, it will detect that by observing either a different
timestamp or a NULL mainreq after the acquisition of
servers lock. The next step is to either commit or abort
according to its earlier validation (lines 18-24). Finally,

Algorithm 4 RTC: secondary server
1: procedure SECONDARY SERVER LOOP
2: while true do
3: for i← 1, num transactions do
4: if DD = false then continue
5: s = global timestamp
6: if s&1 = 0 then continue
7: req ← req array[i]
8: if req.state = PENDING then
9: if Independent(req,mainreq) then

10: Commit(Secondary)
11: end procedure

12: procedure COMMIT SECONDARY(req)
13: if ¬ Server-Validate(req.Tx) then
14: aborted = true
15: if CAS(servers lock, false, true) then
16: if s <> global timestamp or mainreq = NULL then
17: servers lock = false
18: else if aborted = true then
19: req.state = ABORTED
20: servers lock = false
21: else
22: WriteInMemory(req.Tx.writes)
23: req.state = READY
24: servers lock = false
25: loop while global timestamp = s

26: end procedure

in case of commit, secondary server loops until the main
server finishes its execution and increases the timestamp
(line 25). This is important to prevent handling another
request, which may be independent from the main
server’s request but not independent from the earlier
request.

The secondary server does not need to change the
global timestamp. Only the main server increases it at the
beginning and at the end of its execution. All pending
clients will not make any progress until the main server
changes the timestamp to an even number, and the main
server will not do so until the secondary server finishes
its work (because if the secondary server is executing a
commit phase, it will be holding servers lock).

5 CORRECTNESS

To prove the correctness of RTC, we first show that
there are no race conditions impacting RTC’s correctness
when the secondary server is disabled. Then, we prove
that our approach of using bloom filters guarantees
that transactions executed on the main and secondary
servers are independent. Finally, we show how adding a
secondary server does not affect race-freedom between
the main and the secondary server, or between clients
and servers 4.

RTC with DD Disabled: With the secondary server
disabled, RTC correctness is similar to that of NOrec.
Briefly, the post validation in Algorithm 1 ensures that:
i) no client is validating while server is committing, and
ii) each transaction sees a consistent state after each read.

4. In all of the proof arguments, we assume that instructions are
executed in the same order as shown in Section 4’s algorithms –
i.e., sequential consistency is assumed. We ensure this in our C/C++
implementation by using memory fence instructions when necessary
(to prevent out-of-order execution), and by using volatile variables
when necessary (to prevent compiler re-ordering).

IEEE TRANSACTIONS ON COMPUTERS 8

The only difference between NOrec and RTC without
dependency detection is in the way they increment the
timestamp. Unlike NOrec, there is no need to use the
CAS operation to increase the global timestamp, because
no thread is increasing it except the main server. All
commit phases are executed serially on the main server,
which guarantees no write conflicts during commit,
either on the timestamp or on the memory locations
themselves.

Transaction Independence: The secondary server
adds the possibility of executing two independent trans-
actions concurrently. To achieve that, each transaction
keeps two bloom filters locally: a write-filter “wf(t)”,
which is a bitwise representation of the transaction write-
set, and a read-write filter “rwf(t)”, which represents the
union of its read-set and write-set. Concurrent commit
routines (in both main and secondary servers) are guar-
anteed to be independent using these bloom filters. We
can state that: if a transaction T1 is running on the RTC
main server, and there is a pending transaction T2 such
that rwf(T2) ∩wf(T1) = ∅, then T2 is independent from
T1 and can run concurrently using the secondary server.
This can be proven as follows: T1 does not increase the
timestamp unless it finishes validation of its read-set.
Thus, T2 will not start unless T1 is guaranteed to commit.
Since rwf(T2) ∩ wf(T1) = ∅, T1 can be serialized before
T2. T1 cannot invalidate T2 because T1’s write-set does
not intersect with T2’s read-set. The write-after-write
hazard also cannot happen because the write filters are
not intersecting. If T2 aborts because of an invalidated
read-set, it will not affect T1’s execution.

RTC with DD Enabled: Finally, we prove that transac-
tion execution is still race-free when the secondary server
is enabled. Synchronization between the main and the
secondary server is guaranteed using the servers lock.
The main server acquires the lock before finishing
the transaction (clearing mainreq and incrementing the
global timestamp) to ensure that the secondary server
is idle. The secondary server acquires the servers lock
before starting, and then it validates both mainreq and
the timestamp. If they are invalid, the secondary server
will not continue, and will release the servers lock,
because it means that the main server finishes its work
and starts to search for another request.

More detailed, in lines 26-29 of Algorithm 3, the main
server increments the timestamp in a mutually exclusive
way with lines 15-24 of the secondary server execution
in Algorithm 4 (because both parts are enclosed by
acquiring and releasing the servers lock). Following all
possible race conditions between line 27 of Algorithm
3 and the execution of the secondary server shows that
the servers’ executions are race-free. Specifically, there
are four possible cases for the secondary server when the
main server reaches line 27 (incrementing the timestamp
after finishing execution):
- Case 1: before the secondary server takes a snapshot

of the global timestamp (before line 5). In this case, the
secondary server will detect that the main server is no

longer executing any commit phase. This is because,
the secondary server will read the new (even) times-
tamp, and will not continue because of the validation
in line 6.

- Case 2: after the secondary server takes the snapshot
and before it acquires the servers lock (after line 5 and
before line 15). In this case, whatever the secondary
server will detect during this period, once it tries to
acquire the servers lock, it will wait for the main
server to release it. This means that, after the secondary
server acquires the servers lock, it will detect that the
timestamp is changed (line 16) and it will not continue.

- Case 3: after the secondary server acquires the
servers lock and before this lock is released (after line
15 and before line 24). This cannot happen because
the servers lock guarantees that these two parts are
mutually exclusive. So, in this case, the main server
will keep looping until the secondary server finishes
execution and releases the servers lock.

- Case 4: after the secondary server releases the
servers lock (after line 24). This scenario is the only
scenario in which the main and secondary servers
are executing commit phases concurrently. Figure 3
shows this scenario. In this case, the secondary server
works only as an extension of the currently executed
transaction in the main server, and the main server
cannot finish execution and increment the timestamp
unless the secondary server also finishes execution.
Thus, the main server will not continue searching

for another request until the secondary server finishes
its execution of any independent request. Line 25 of
Algorithm 4 guarantees the same behavior in the other
direction. If the secondary server finishes execution first,
it will keep looping until the main server also finishes its
execution and increments the timestamp (which means
that the secondary server executes only one independent
commit request per each commit execution on the main
server).

In conclusion, the RTC servers provide the same se-
mantics of single lock STM algorithms. Although two
independent commit blocks can be concurrently exe-
cuted on the main and secondary servers, they appear
to other transactions as if they are only one transaction
because they are synchronized using different locks (not
the global timestamp). Figure 3 shows that the global
timestamp increment (to be odd and then even) encap-
sulates the execution of both the main and the secondary
servers. This also guarantees that the clients’ validations
will not have race-conditions with the secondary server,
because clients are not validating in the period when the
timestamp is odd.

Using a single lock means that RTC is privatization-
safe, because writes are atomically published at com-
mit time. The value-based validation minimizes false
conflicts and enables the detection of non-transactional
writes. Finally, servers repeatedly iterate on clients re-
quests, which guarantees livelock-freedom and more fair
progress of transactions.

IEEE TRANSACTIONS ON COMPUTERS 9

Fig. 3. Flow of commit execution in the main and sec-
ondary servers. Even if the main server finishes execution
before the secondary server, it will wait until the sec-
ondary server releases the servers lock.

6 RTC WITH FLAT-COMBINING

The approach of dedicating cores for executing server
threads has its own cost because it disallows cores from
running application threads and it enforces data accessed
by transactions to be cached on those cores. As we show
later in Section 7, in most workloads this cost is domi-
nated by the benefits of reducing cache misses, reducing
CAS operations, and preventing lock holders from being
descheduled. However, in some architectures, especially
those with low core count, this cost may become notable
and impact the performance. To address this issue, we
extend RTC by introducing RTC-FC, a version of RTC
with no dedicated cores for servers.

The only distinguishing point between RTC-FC and
RTC is on the assignment of the thread that plays the
role of the server. In RTC-FC, we use an idea similar to
flat combining [16] that selects one of the running clients
to combine the requests of pending clients. To do that,
each client changes its request status from READY to
PENDING, and then it tries to be the combiner (using one
CAS operation on a combiners-lock). If it succeeds, it
executes one server iteration, serving all the PENDING re-
quests, including its own request, similar to an iteration
of Algorithm 3 with DD-DISABLED. If the CAS fails, this
means that another thread became the combiner, thus,
the thread spins on its request status similarly to RTC.
During its spinning, it periodically checks if the current
combiner releases the combiners-lock. If so, it retries
to be the combiner.

Although RTC-FC avoids dedicating cores for servers,
it has the following overheads: first, it adds at
least one more CAS operation for each transaction;
second, it increases the probability of descheduling
the combiners-lock holder; and finally, it obligates
threads to pause their executions while servicing other

requests, which also adds an overhead due to caching
the data of other requests. The problem of descheduling
a combiner can be partially solved by enforcing the
clients that fail to CAS the combiners-lock to call
sched yield in order to give up their OS time slice instead
of spinning. The effect of overloading the combiner cache
with the data of other transactions can also be alleviated
by using a NUMA-aware flat-combining algorithm sim-
ilar to [26], where the combiner executes the commit
phases of transactions belonging only to its NUMA-zone
in order to exploit the locality of this NUMA-zone. In the
next section we show how those parameters affect the
performance of RTC-FC, and discuss the cases in which
RTC-FC fits best.

7 EXPERIMENTAL EVALUATION

We implemented RTC in C++ (compiled with gcc 4.6)
and integrated into the RSTM framework [27] (com-
piled using default configurations). Our experiments are
performed on a 64-core AMD Opteron machine (128GB
RAM, 2.2 GHz, 64K of L1 cache, 2M of L2 cache) with
4 sockets and 16 cores per socket (with 2 NUMA-zones
per physical socket, making a total of 8 NUMA-zones).
Each NUMA-zone has a 6M of L3 cache.

Our benchmarks for evaluation included micro-
benchmarks (such as red-black tree and linked list),
and the STAMP benchmark suite [6]. We also evaluated
multi-programming cases, where the number of transac-
tions is more than the number of cores. Our competitors
include NOrec (as representative of approaches relying
on global metadata), RingSW (because it uses bloom
filter), and TL2 (representing an ownership-record based
approach). We used a privatization-safe version of TL2
for a fair comparison. All the STM algorithms and
the benchmarks used are those available in RSTM. All
reported data points are averages of 5 runs.

7.1 Red-Black Tree
Figure 4 shows the throughput of RTC, RTC-FC, and
their competitors on a red-black tree with 1M elements
and a delay of 100 no-ops between transactions. In
Figure 4(a), when 50% of operations are reads, all algo-
rithms scale similarly (RTC-FC is slightly better than the
others), but both versions of RTC sustain high through-
put, while other algorithms’ throughput degrades. This
is a direct result of the cache-aligned communication
among transactions. In high thread count, RTC is slightly
better than RTC-FC because of the overheads of the
latter as discussed in Section 6. In Figure 4(b), when
80% of the operations are reads, the degradation point
of all algorithms shifts (to the right) because contention
is lower. However, RTC scales better and reaches peak
performance when contention increases. At high thread
count, RTC improves over the best competitor by 60%
in the first case and 20% in the second one.

Additionally, we focused on making a connection be-
tween the performance (in terms of throughput) and the

IEEE TRANSACTIONS ON COMPUTERS 10

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p

s/
se

c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p

s/
se

c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10 20 30 40 50 60

1
M

 o
p

s
/s

e
c

Number of threads

(a) 50% reads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

1
M

 o
p

s
/s

e
c

Number of threads

(b) 80% reads

Fig. 4. Throughput (per micro-second) on red-black tree
with 1M elements.

average number of cache misses per transaction generate
by NOrec and RTC. Figure 5 shows the results. At high
number of threads, the number of cache misses per
transaction on NOrec is higher than RTC. Comparing
Figures 4(a) and 5, an interesting connection can be
found between the point in which the performance
of NOrec starts to drop and the point in which the
number of NOrec’s cache misses starts to increase. This
comparison clearly points out the impact of RTC design
on decreasing cache misses due to spin locks. RTC-
FC on the other hand, suffers from more cache-misses.
However, those misses are not generated because of
spinning. Rather, they are generated because each client
is playing the role of the server frequently, and thus it
is obligated to validate the read-set of the other clients,
which may result in evicting its own data from its cache.
Summarizing, although the number of cache misses is
not the only parameter that affects the performance of
RTC, Figure 5 gives an important reasoning about the
effect of RTC and RTC-FC on the cache misses on both
the actual data and the meta-data. Such a comparison
allows for a better understanding of their behavior.

In the next experiment, we created up to 256 threads5

and repeated the experiment while progressively en-
abling the cores of only one socket (16 cores), two sockets
(32 cores), and the whole four sockets (64 cores). Our
goal in this experiment is to make a stress test to reveal

5. This is the maximum number of threads allowed by RSTM.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 10 20 30 40 50 60

C
a

c
h

e
 m

is
s
e

s
 p

e
r

tr
a

n
s
a

c
ti
o

n

Threads

NOrec
RTC

RTC-FC

Fig. 5. Cache misses per transaction on red-black tree
with 1M elements.

the side effect of having server-client communication
in heavy loads, as well as to seek RTC’s performance
saturation point. More specifically, we use the approach
of enabling/disabling CPU sockets to analyze the effect
of i) running very large number of concurrent threads
on few number of cores, while dedicating two of them
as servers, and ii) having inter-socket synchronization
rather than intra-socket synchronization.

Figure 6 shows the results in a red-black tree with 50%
reads. In Figure 6(a), when only one socket is enabled, all
the transactions execute on one socket, which decreases
the overhead of cache misses and CAS operations. For
this reason, both versions of RTC cannot gain a lot
from the efficient remote core locking mechanism, and
thus the gap between them and the other algorithms
is small. Additionally, dedicating two cores out of six-
teen as servers in RTC has a significant effect on the
overall performance. That is why in this case, RTC-
FC performs better than RTC. In Figure 6(b), when the
number of cores becomes 32 (on 2 sockets), the penalty
of dedicating two cores for RTC decreases, thus RTC
and RTC-FC perform similarly. At the same time, the
overheads in the other algorithms increase because meta-
data now are cached in two sockets rather than one.
As a result, the overall performance of RTC/RTC-FC
increases compared to the other STM algorithms. The
performance improvement continues in the last case
(Figure 6(c)), when the number of cores becomes 64
(on 4 sockets). Specifically, starting from 32 threads,
RTC/RTC-FC perform better than the best competitor
by an average of 3x at high thread count. Our analysis
confirms previous studies, which conclude that cross-
socket sharing should be minimized as it is one of the
performance killers [13]. Also, in this case, RTC becomes
better than RTC-FC because the overhead of dedicating
cores is minimized while the overhead of overloading
the clients with the combiner tasks increases.

Figure 6 also shows that in the multi-programming
case (when threads become more than cores), RTC’s
performance starts to slightly degrade like the other STM
algorithms. However, this degradation is the normal
degradation due to the contention on the shared red-
black tree, which confirms that RTC solves the issue of

IEEE TRANSACTIONS ON COMPUTERS 11

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60
1

M
 o

p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300

1
M

 o
p

s
/s

e
c

Number of threads

(a) 16 cores - 1 socket

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300

1
M

 o
p

s
/s

e
c

Number of threads

(b) 32 cores - 2 sockets

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300

1
M

 o
p

s
/s

e
c

Number of threads

(c) 64 cores - 4 sockets

Fig. 6. Throughput on red-black tree with 1M elements, 100 no-ops between transactions, 50% reads.

spin locking and leaves the overhead of STM framework
limited to the contention on the application-level data.

To conclude, RTC still has some limitations, like the
effect of dedicating cores for servers, and the normal
contention on the application-level data (which is not
targeted by RTC’s mechanism). However, when the
number of cores increases, these negative effects are
dominated by the improvements due to the optimized
locking mechanism.

7.2 Linked List
In Figure 7(a), we show the results using the linked
list benchmark. It represents the worst case workload
for RTC/RTC-FC and we include it in order to show
the RTC design’s limitations in unfavorable scenarios.
Linked list is a benchmark which exposes non optimal
characteristics in terms of validation and commit. In
fact, in a doubly linked list with only 500 nodes, each
transaction makes on average hundreds of reads to
traverse the list, and then it executes few writes (two
writes in our case) to add or remove the new node. This
means that the read-set size is too large compared to
the write-set size. Since RTC servers have to re-validate
the read-set of the clients before publishing the write-set,
pulling a large read-set like that affects the performance
significantly and nullifies any gains from optimizing the
actual commit phase (which mainly consists of acquiring
the global timestamp and publishing the write-set). Fig-
ure 7(b) confirms that by showing the cache-misses per
transaction in that case. Here, the cache misses saved by
the cache-aligned communication are clearly dominated
by thrashing the cache of the servers with the read-sets
of the clients. The problem increases in RTC-FC since
the combiners are actual client threads that may sacrifice
their own cached data to validate the reads-set of the
other clients. It is worth to note that this issue does not
occur for read-only workloads, because RTC does not
involve servers in executing read-only transactions.

As a solution to this issue, an STM runtime can be
made to heuristically detect these cases of RTC degra-
dation by comparing the sizes of read-sets and write-

sets, and switching at run-time from/to another ap-
propriate algorithm as needed. Earlier work proposes
a lightweight adaptive STM framework [17]. In this
framework, the switch between algorithms is done in a
”stop-the world” manner, in which new transactions are
blocked from starting until the current in-flight transac-
tions commit (or abort) and then switch takes place. RTC
can be easily integrated in such a framework. Switching
to RTC only requires allocating the requests array and
binding the servers and clients to their cpusets (which
can be achieved using C/C++ APIs). Switching away
from RTC requires terminating the server threads and
deallocating the requests array.

7.3 STAMP

Figure 8 shows the results for six STAMP benchmarks,
which represent more realistic workloads with different
attributes. It is important to relate these results to the
commit time analysis in Table 1. RTC has more impact
when commit time is relatively large, especially when
the number of threads increases.

In four out of these six benchmarks (ssca2, kmeans,
genome, and labyrinth), RTC has the best performance
when the number of threads exceeds 20. Moreover, for
kmeans and ssca2, which have the largest commit over-
head according to Table 1, RTC has better performance
than all algorithms even at low number of threads. For
labyrinth, RTC performs the same as NOrec and TL2,
and better than RingSW. This is because, RTC does not
have any overhead on non-transactional parts, which
dominate in labyrinth. Also, in all cases, RTC outperforms
NOrec at high number of threads. Even for vacation
and intruder, where the commit time percentage is small
(6%–50% and 19%–39%, respectively), RTC outperforms
NOrec and has the same performance as RingSW for
high number of cores. In those two benchmarks, TL2
is the best algorithm (especially for low thread count)
because they represent low-contention workloads, where
serializing the (mostly independent) commit phases, as
in NOrec and RTC, affects the performance. For RTC

IEEE TRANSACTIONS ON COMPUTERS 12

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p

s/
se

c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p

s/
se

c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

1
M

 o
p

s
/s

e
c

Number of threads

(a) Throughput

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

C
a

c
h

e
 m

is
s
e

s
 p

e
r

tr
a

n
s
a

c
ti
o

n

Threads

NOrec
RTC

RTC-FC

(b) Cache-misses

Fig. 7. Throughput and cache-misses per transaction on
doubly linked list with 500 elements, 50% reads, and 100
no-ops between transactions.

specifically, like linked list, scalability in those bench-
marks is clearly affected by the small ratio of the commit
phase (as mentioned in Table 1).

In general, both RTC and RTC-FC perform similarly.
However, RTC-FC performs better in the low-contention
workloads (e.g. genome and vacation), especially for small
thread count (less than 8). This gap decreases at high
number of threads (more than 8), because the benefit
of dedicating cores for servers in RTC (e.g., disallowing
lock holder descheduling) increases.

8 EXTENDING RTC WITH MORE SERVERS

The current implementation of RTC uses only two
servers: one main server and one secondary server. It
is easy to show that using one main server is reason-
able. This is because we replace only one global lock
(in NOrec) with a remote execution. Even if we add
more main servers, their executions will be serialized
because of this global locking. Adding more secondary
servers (which search for independent requests) is, how-
ever, reasonable. This is because it may increase the
probability of finding such an independent request in
a reasonable time, which increases the benefits from
secondary servers. However, leveraging on a fine grain
performance analysis, we decided to tune RTC with only
one secondary server. This decision is supported by the
results obtained by running RTC with more secondary

servers, which are shown in Figure 9. They highlight
that the synchronization overhead needed for managing
the concurrent execution of more secondary servers, is
higher than the gain achieved.

In Figure 9, N reads and N writes of a large array’s
elements are executed in a transaction, which results
in write-sets of size N . The writes are either totally
dependent by enforcing at least one write to be shared
among transactions, or independent by making totally
random reads and writes in a very long array. Figure 9
shows that the overhead of adding another secondary
server is more than its gain. Performance enhancement
using one DD is either the same or even better than
using two DD in all cases. The same conclusion holds for
executing more than one commit phase on the secondary
server in parallel with the same main server’s commit.
Although both enhancements should have a positive
effect in some theoretical cases of very long main server
commits, we believe that in practical cases, like what we
analyzed, the gain is limited.

We also used this experiment to determine the best
threshold of the write-set size after which we should
enable dependency detection. The time taken by the
main server to finish the commit phase is proportional
to the size of the write-set (read-set size is not a pa-
rameter because validation is made before increasing
the timestamp). Thus, small write-sets will not allow the
secondary server to work efficiently and will likely add
unnecessary overhead (putting into consideration that
the time taken by the secondary server to detect indepen-
dent transactions does not depend on the transaction size
because bloom filters are of constant size and they are
scanned in almost constant time). To solve this problem,
RTC activates the secondary server only when the size
of the write-set exceeds a certain threshold.

In case of dependent transactions, the dependency
detector (DD) cannot enhance performance because it
will not detect a single independent transaction. Note
that, the overhead of DD does not exceed 5% though,
and it also decreases when the write-set size increases
(reaches 0.5% when the size is 50). When transactions
are independent, DD starts to yield significant perfor-
mance improvement when the write-set size reaches 20
elements (obtains 30% improvement when size is 40).
Before 10 elements, DD’s overhead is larger than the gain
from concurrent execution, which results in an overall
performance degradation.

We also calculated the number of transactions which
are executed on the secondary server. In all the indepen-
dent cases, it varies from 2% to 11%. Since the percentage
of improvement is higher in most cases, this means
that DD also saves extra time by selecting the most
appropriate transaction to execute among the pending
transactions, which reduces the probability of abort.

According to these results, we use only one secondary
server, and we select a threshold of 20 elements to enable
the secondary server in our experiments.

IEEE TRANSACTIONS ON COMPUTERS 13

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60

1
M

 o
p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 10 20 30 40 50 60
1

M
 o

p
s/

se
c

Number of threads

RingSW
NOrec

TL2
RTC

RTC-FC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60

T
im

e
 i
n

 S
e

c
o

n
d

s

Number of threads

(a) kmeans

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

T
im

e
 i
n

 S
e

c
o

n
d

s

Number of threads

(b) ssca2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 10 20 30 40 50 60

T
im

e
 i
n

 S
e

c
o

n
d

s

Number of threads

(c) labyrinth

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60

T
im

e
 i
n

 S
e

c
o

n
d

s

Number of threads

(d) intruder

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 10 20 30 40 50 60

T
im

e
 i
n

 S
e

c
o

n
d

s

Number of threads

(e) genome

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60

T
im

e
 i
n

 S
e

c
o

n
d

s

Number of threads

(f) vacation

Fig. 8. Execution time on STAMP benchmark suite’s applications.

-20

-10

 0

 10

 20

 30

 40

 50

5 10 20 30 40 50

P
e
rc

e
n
ta

g
e
 o

f
Im

p
ro

v
e
m

e
n
t

Transaction Size

independent - one DD
independent - two DD

dependent - one DD
dependent - two DD

Fig. 9. Effect of adding dependency detector servers.

9 USING RTC IN HYBRID TM

NOrec has been successfully used as a fallback path
to best-effort HTM transactions [28], [29], [30]. This is
because it uses only one global timestamp as a shared
meta-data. Replacing NOrec with RTC in such hybrid al-
gorithms is a feasible extension to our work. To do so, no
modification is needed at the client (software) execution
because HTM transactions only need to know whether
there is a software transaction executing its commit
phase or not (which would be done by the servers
exploiting the global timestamp). Moreover, centralizing
the commit phases in the servers allows for more opti-
mizations on the hybrid algorithms themselves, such as
exploiting servers for profiling the HTM execution.

10 CONCLUSIONS

Software transactional memory is a highly promising
synchronization abstraction, but state-of-the-art STM al-
gorithms are plagued by performance and scalability
challenges. Analysis of these STM algorithms on the
STAMP benchmark suite shows that transaction commit
phases are one of the main sources of STM overhead.
RTC reduces this overhead with a simple idea: execute
the commit phase in a dedicated servicing thread. This
reduces cache misses, spinning on locks, CAS operations,
and thread blocking. Our implementation and evalua-
tion shows that the idea is very effective – up to 4x
improvement over state-of-the-art STM algorithms in
high thread count.

RTC builds upon similar ideas on remote/server
thread execution previously studied in the literature,
most notably, Flat Combining and RCL. However, one
cannot simply apply them to an STM framework as is.
In one sense, our work shows that, this line of reasoning
is effective for improving STM performance.

ACKNOWLEDGMENT

Authors would like to thank the invaluable comments of
anonymous IEEE TC reviewers. This work is supported
in part by US National Science Foundation under grant
CNS-1217385, and by US Air Force Office of Scientific
Research under grant FA9550-14-1-0187.

IEEE TRANSACTIONS ON COMPUTERS 14

REFERENCES

[1] T. Harris, J. Larus, and R. Rajwar, “Transactional memory,”
Synthesis Lectures on Computer Architecture, vol. 5, no. 1, pp.
1–263, 2010.

[2] Intel Corporation, “Intel C++ STM Compiler 4.0,
Prototype Edition,” http://software.intel.com/en-us/articles/
intel-c-stm-compiler-prototype-edition/, 2009.

[3] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le, “Robust architectural support for transactional memory in
the power architecture,” in ISCA, 2013, pp. 225–236.

[4] J. Reinders, “Transactional synchronization in Haswell,”
http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/, 2013.

[5] TM Specication Drafting Group, “Draft specification of transac-
tional language constructs for c++, version 1.1,” 2012.

[6] C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp:
Stanford transactional applications for multi-processing,” in
Workload Characterization, 2008. IISWC 2008. IEEE International
Symposium on. IEEE, 2008, pp. 35–46.

[7] M. Spear, A. Shriraman, L. Dalessandro, and M. Scott, “Trans-
actional mutex locks,” in SIGPLAN Workshop on Transactional
Computing, 2009.

[8] L. Dalessandro, M. Spear, and M. Scott, “Norec: streamlining
stm by abolishing ownership records,” in ACM Sigplan Notices,
vol. 45, no. 5. ACM, 2010, pp. 67–78.

[9] B. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426,
1970.

[10] M. Spear, M. Michael, and C. von Praun, “Ringstm: scalable
transactions with a single atomic instruction,” in Proceedings of
the twentieth annual symposium on Parallelism in algorithms and
architectures. ACM, 2008, pp. 275–284.

[11] D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii,”
Distributed Computing, pp. 194–208, 2006.

[12] T. Riegel, C. Fetzer, and P. Felber, “Time-based transactional mem-
ory with scalable time bases,” in Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and architectures.
ACM, 2007, pp. 221–228.

[13] T. David, R. Guerraoui, and V. Trigonakis, “Everything you
always wanted to know about synchronization but were afraid
to ask,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. ACM, 2013, pp. 33–48.

[14] M. Herlihy and N. Shavit, The Art of Multiprocessor
Programming, Revised Reprint. Elsevier, 2012.

[15] J. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Remote
core locking: migrating critical-section execution to improve the
performance of multithreaded applications,” in Work in progress
in the Symposium on Operating Systems Principles, SOSP, vol. 11,
2011.

[16] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat combining
and the synchronization-parallelism tradeoff,” in Proceedings of
the 22nd ACM symposium on Parallelism in algorithms and
architectures. ACM, 2010, pp. 355–364.

[17] M. Spear, “Lightweight, robust adaptivity for software transac-
tional memory,” in Proceedings of the 22nd ACM symposium
on Parallelism in algorithms and architectures. ACM, 2010, pp.
273–283.

[18] G. Kestor, R. Gioiosa, T. Harris, O. Unsal, A. Cristal, I. Hur, and
M. Valero, “Stm2: A parallel stm for high performance simulta-
neous multithreading systems,” in International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2011.
IEEE, 2011, pp. 221–231.

[19] C. B. Zilles, J. S. Emer, and G. S. Sohi, “The use of multithread-
ing for exception handling,” in Proceedings of the 32nd annual
ACM/IEEE international symposium on Microarchitecture. IEEE
Computer Society, 1999, pp. 219–229.

[20] M. Stonebraker, “The case for shared nothing,” IEEE Database
Eng. Bull., vol. 9, no. 1, pp. 4–9, 1986.

[21] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell,
S. L. Graham, P. Hargrove, P. Hilfinger, P. Husbands et al., “Pro-
ductivity and performance using partitioned global address space
languages,” in Proceedings of the 2007 international workshop on
Parallel symbolic computation. ACM, 2007, pp. 24–32.

[22] M. Bond, M. Kulkarni, M. Salmi, M. Zhang, S. Biswas, J. Huang,
and A. Sengupta, “Octet: Practical concurrency control for dy-
namic analyses and systems.”

[23] M. Fowler and K. Beck, Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

[24] J. Mellor-Crummey and M. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM
Transactions on Computer Systems (TOCS), vol. 9, no. 1, pp. 21–
65, 1991.

[25] Y. Lev, V. Luchangco, V. J. Marathe, M. Moir, D. Nussbaum,
and M. Olszewski, “Anatomy of a scalable software transactional
memory,” in TRANSACT, 2009.

[26] P. Fatourou and N. D. Kallimanis, “Revisiting the combining
synchronization technique,” in Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 2012, New Orleans, LA, USA, February
25-29, 2012, 2012, pp. 257–266.

[27] V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. Scherer III, and M. Scott, “Lowering the overhead of nonblock-
ing software transactional memory,” in Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing
(TRANSACT), 2006.

[28] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear, “Hybrid NOrec: A case study in the effectiveness
of best effort hardware transactional memory,” in Proceedings of
the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASP-
LOS XVI, 2011, pp. 39–52.

[29] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer,
“Optimizing hybrid transactional memory: the importance of
nonspeculative operations,” in SPAA 2011: Proceedings of the
23rd Annual ACM Symposium on Parallelism in Algorithms and
Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with
FCRC 2011), 2011, pp. 53–64.

[30] A. Matveev and N. Shavit, “Reduced Hardware NOrec: A Safe
and Scalable Hybrid Transactional Memory,” in Proceedings of
the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASP-
LOS ’15. ACM, 2015, pp. 59–71.

Ahmed Hassan received the BSc in computer
science and the MSc in computer engineering
at Alexandria University, Egypt. He is currently a
PhD student at Virginia Tech. His research inter-
ests include transactional memory, concurrent
data structures, and distributed computing.

Roberto Palmieri received the BSc in computer
engineering, MSc and PhD degree in computer
science at Sapienza, University of Rome, Italy.
He is a Research Assistant Professor in the
ECE Department at Virginia Tech. His research
interests include exploring concurrency control
protocols for multicore systems, cluster and ge-
ographically distributed systems, with high pro-
grammability, scalability, and dependability.

Binoy Ravindran is a Professor of Electrical
and Computer Engineering at Virginia Tech,
where he leads the Systems Software Research
Group, which conducts research on operating
systems, run-times, middleware, compilers, dis-
tributed systems, fault-tolerance, concurrency,
and real-time systems. Ravindran and his stu-
dents have published more than 220 papers in
these spaces, and some of his group’s results
have been transitioned to the DOD. Dr. Ravin-
dran is an Office of Naval Research Faculty

Fellow and an ACM Distinguished Scientist.

http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

	Introduction
	Past and Related Work
	Remote Core Locking
	STM Algorithms

	Remote Transaction Commit
	Design
	Dependency Detection
	Analysis of NOrec Commit Time

	RTC Algorithm
	RTC Clients
	Main Server
	Secondary Server

	Correctness
	RTC with Flat-Combining
	Experimental Evaluation
	Red-Black Tree
	Linked List
	STAMP

	Extending RTC with more servers
	Using RTC in Hybrid TM
	Conclusions
	References
	Biographies
	Ahmed Hassan
	Roberto Palmieri
	Binoy Ravindran

