
Extending TM Primitives using Low Level Semantics

Mohamed M. Saad, Roberto Palmieri, Ahmed Hassan and Binoy Ravindran
{msaad,robertop,hassan84,binoy}@vt.edu

Transactional Memory (TM) has recently emerged as an optimistic con-
currency control technique that isolates concurrent executions at the level
of memory reads and writes, therefore providing an easy programming in-
terface. However, such transparency could be overly conservative from an
application-level perspective. In this work, we propose an extension to the
classical TM primitives (read and write) to capture program code semantics
(e.g., conditional expressions) while maintaining the same level of program-
ming abstraction. We deployed this extension on two state-of-the-art STM
algorithms and integrated it into the GCC compiler and the RSTM software
framework. Results showed speedups of up to 4× (average 1.6×) on different
applications including micro benchmarks and STAMP.

1 Introduction

Transactional Memory (TM) is a programming abstraction for accessing
shared memory data without exposing any lock interfaces to the application
so that difficulties and drawbacks such as deadlock, livelock, and priority in-
version are prevented. With TM, programmers organize blocks of code that
access shared memory addresses as atomic sections (or transactions) in which
reads and writes appear to take effect instantaneously. As a common pattern,
each transaction maintains its own read-set and write-set to detect conflicts
with other concurrent transactions. When a conflict happens, a contention
manager [22] resolves it by aborting one transaction and allowing the other
to proceed to commit, yielding (the illusion of) atomicity. TM was originally
proposed in hardware (HTM) [21] and later in software (STM) [34].

In order for a TM implementation to be generic, conflicts are usually de-
tected at the level of memory addresses. For this reason, the TM abstraction
can be expressed using four instructions: TM BEGIN, TM END, TM READ, and
TM WRITE. The first two identify the transaction boundaries while the last

1

two define the barriers for every memory read and write that occurs within
those boundaries. TM algorithms differ in the way those instructions are im-
plemented. Although frameworks may add other features, such as allowing
external aborts, non-transactional reads/writes, or irrevocable operations,
the above four instructions are used to form the body of most TM solutions.

Despite TM’s high programmability and generality, its performance is
still not yet as good as (or better than) optimized manual implementations
of synchronization. To overcome that, researchers have investigated various
approaches with different design choices. Regarding STM, they mostly var-
ied the internal granularity of locking and/or validation of accessed memory
addresses. Examples of those solutions include coarse-grained mutual exclu-
sion of commit phases, as used in NOrec [11]; compact bloom filters [6] to
track memory accesses, as used in RingSTM [35]; and fine-grained ownership
records, as used in TL2 [12]. On the other hand, current HTM proces-
sors [30, 7] have a “best effort” nature because transactions are not guaran-
teed to progress in HTM (even if they are executed alone without any actual
concurrency). That is why an efficient software “fallback” path is needed
(i.e., hybrid TM) when hardware transactions repeatedly fail [13]. Recent
literature proposes many compelling solutions that make the fallback path
fast under different conditions [10, 31, 8, 13, 25, 4].

The key commonality of all the aforementioned approaches is that they do
not challenge the main objective of TM itself, which is providing generality at
the application level. This is also the reason why those smart and advanced
solutions still retain some of the fundamental inefficiency of TM. On the other
hand, providing high performance in multi-threaded applications before the
advent of TM, when thread synchronization was manually done using fine-
grained locks and/or lock-free designs, depended upon the specific application
semantics. For example, identifying the critical sections and the best number
of locks to use are design choices that can be made only after deeply knowing
the semantics of the application itself (i.e., what the application does).

A related question that arises in this regard is: Is there some room for
including semantics in TM frameworks without sacrificing their generality?
If the answer is “yes”, which is what we claim and assess in this paper, then
we will finally be able to overcome one of the main obstacles that has existed
alongside TM since its early stages, and boost its performance accordingly.
Recent literature provides a few semantic-based concurrency controls, which
will be detailed in Section 2. However, they either solve specific application

2

patterns [33], break the high abstraction of TM [20, 15], or are orthogonal
to TM [19, 18].

Motivated by the above question, this paper provides three major con-
tributions. First, we identify a set of semantics that can be included in TM
frameworks without impacting the generality of the TM abstraction (we call
them TM-friendly semantics), and we extend the existing TM API to include
such semantics. Second, we show how to modify STM algorithms to exploit
such semantic-based APIs. Finally, we illustrate how we embedded those ex-
tensions in compiler passes (using GCC) so that the application developing
experience will not be altered.

Regarding the first point, with TM-friendly semantics we mean those
optimizations that can be decoupled from the application layer. In particular,
this paper focuses on optimizing conditional statements (e.g., if x > 0)
and increments/decrements (e.g., x++), which are commonly used in legacy
applications. More details about those semantics are presented in Section 3.

The second contribution involves deploying those TM-friendly semantics
with existing state-of-the-art STM algorithms. Roughly, STM algorithms
can be classified into two groups according to the technique used for val-
idating transactions. The first group uses version-based validation, where
each memory location keeps a version number that is used to identify mem-
ory changes. The second group uses value-based validation, where the con-
tent of each location itself is leveraged to detect memory modifications. For
value-based algorithms, we propose semantic validation as a generalization
of value-based validation, allowing TM frameworks to define a specific val-
idator for the semantic-based instructions. For version-based approaches,
we propose a methodology for adapting them to allow a hybrid (i.e., ver-
sion/semantic) validation mechanism. In Section 4, we show how to modify
NOrec [11] (a value-based algorithm) and TL2 [12] (a version-based algo-
rithm) to include semantics. Then, in Section 5, we discuss the correctness
of those new algorithms.

Our last contribution is to integrate semantic APIs and their correspond-
ing STM algorithms into current TM frameworks. We propose two ap-
proaches to achieve that:
- The first approach is to implement semantic extensions entirely as a com-

piler pass, thus not exposing any API additions to the programmer. This
approach has the advantages of being entirely transparent and retaining
backward compatibility with existing applications that leverage GCC’s
transactional API.

3

- The second approach involves exposing the new semantic APIs as TM
interfaces. These new APIs give conscious programmers an opportunity to
better exploit semantics while developing concurrent applications. Clearly,
this approach increases the chance of achieving higher performance, with
the cost of reducing, although marginally, the programmability level.

Since each of those two solutions fits specific interests, we assess both of
them in this paper. We assess the latter solution (which is easier to imple-
ment) by enriching the API of the RSTM [24] framework with our semantics.
Regarding the former, we show in Section 6 how we modified the compila-
tion passes of GCC to provide full compilation support with limited overhead
in terms of both compilation process and execution time. In Section 7, we
evaluated our semantic-based TM (using both RSTM and GCC) with the
following applications: Bank, a benchmark that simulates a multithread-
ing application where threads mostly perform money transfers; LRU-Cache,
a benchmark that simulates a software cache with the least-recently-used
replacement policy; a hash-table benchmark; and the STAMP benchmark
suite [28]. The results show that enabling semantics boosts performance
consistently, yielding a peak of 4× improvement when semantics is highly
exploited. Also, contrasting the performance trend of GCC experiments
with that of RSTM experiments allows understanding the consequences of
moving the whole TM framework, including our semantic extensions, into
the compiler level.

All the implementations used in this paper, including the new version
of GCC and RSTM, are available as open-source projects at http://www.

hyflow.org.

2 Related Work

Not surprisingly, the trials to include semantics in TM started in the liter-
ature as early as TM itself. In fact, the potential objective of the first TM
proposal, as can be easily inferred from the title of the first TM paper [21],
was providing architectural support for lock-free data structures. However,
the approach proposed in that paper, as well as subsequent approaches, was
fairly general because its main objective was improving programmability. As
a result, the performance of TM could not compete with handcrafted (i.e.,
very optimized) fine-grained and lock-free designs.

In the last decade, involving semantics to improve TM performance has

4

http://www.hyflow.org
http://www.hyflow.org

been an important topic, addressed by approaches such as open nested trans-
actions [29], elastic transactions [15], specialized STM [14], and early re-
lease [20]. The main downside of all those attempts is that they move the
entire burden of providing optimizations to the programmer, and propose a
modified framework to accept those programmer modifications. Since TM
has been mainly proposed to make concurrency control as transparent as
possible from the programmer’s standpoint, the practical adoption of the
above approaches remained limited. The innovations presented in this paper
overcome those issues by providing solutions that preserve the generality of
TM, do not give up optimizations and semantics, and cope with the current
state-of-the-art TM implementations.

Another research direction focused on developing collections of trans-
actional blocks (essentially data structure operations) that perform better
than the corresponding “naive” TM-based counterparts (i.e., when the se-
quential specification of a data structure is made concurrent using TM).
Methodologies like transactional boosting [19, 18], consistency oblivious pro-
gramming [3, 5], semantic locking [16], and partitioned transactions [37] are
examples of that direction. Despite the promising results, those approaches
remain isolated from TM as synchronization abstractions and appear as stan-
dalone components designed mainly for data structures.

Involving compilers in TM’s concurrency control is currently becoming
mandatory given the enhanced GCC release [36], which includes TM sup-
port. However, to the best of our knowledge, very few works addressed the
issue of detecting TM-friendly semantics at compilation time similar to what
we propose in this paper. Among them, one recent approach proposes a
new read-modify-write instruction to handle some programming patterns in
TM [33]. However, that approach still addresses specific execution patterns
and does not generalize the problem like our attempt in this paper, which
rather pushes more in the direction of abstracting the problem and providing
a comprehensive solution to inject semantics into existing TM frameworks.

3 TM-Friendly API

In this section we show the proposed semantics that can be injected into TM
frameworks without hampering the generality of TM itself. As mentioned
before, TM defines two language/library constructs for reading (TM READ)
and writing (TM WRITE) memory addresses. In most cases, these constructs

5

enforce a “conservative” conflict resolution policy; two concurrent transac-
tions are said to be conflicting if they access the same address and at least
one access is a write. Algorithm 1 gives an example that shows why such a
policy may be too conservative due to lack of semantics.

Algorithm 1 Two transactions conflicting at the memory level but not at
the semantic level.

Initially x = y = 5

TM BEGIN(T1)
if x > 0 ‖ y > 0 then

// Do reads/writes ...

TM END

TM BEGIN(T2)
x++
y- -
TM END

In this example, when T1 executes its first line, existing TM algorithms
save x and y in the read-set. Starting from this point, in order to preserve
consistency, most TM implementations force T1 to abort as soon as any
concurrent change in x or y occurs. This abort can be triggered during the
validation of T1’s next read (e.g., in NOrec), when T1 tries to commit (e.g.,
in TL2), or immediately (e.g., in Intel HTM processors). In that specific
example, since T2 writes to x and y and commits before T1 reaches its commit
phase, most TM implementations force T1 to abort. However, T1 has no real
issue at the semantic level and can safely commit since the boolean result of
the conditional expression still holds, which means that the conflict triggered
by the TM framework is a “false conflict” at the semantic level.

TM GT(address, value|address) greater than
TM GTE(address, value|address) greater or equals
TM LT(address, value|address) less than
TM LTE(address, value|address) less or equals
TM EQ(address, value|address) equals
TM NEQ(address, value|address) not equals
TM INC(address, value) increment
TM DEC(address, value) decrement

Table 1: Extended TM Constructs.

Examples like the above motivated us to design extensions to the tra-
ditional transactional constructs that enrich the TM programming model.

6

Those constructs are classified according to their semantics into two cat-
egories (summarized in Table 1). The first category includes conditional
operators, which take two operands and return a boolean state of the con-
ditional expression. The operands in this category can be two addresses or
an address and a value. At the memory level, a traditional execution of
those constructs inside a transaction implies one or two calls to TM READ (de-
pending upon the type of operands). Using our constructs, we consider the
whole expression as one semantic operation, and the safety of the enclosing
transaction is preserved by validating that the return value of the condi-
tion remains the same until the transaction commits. The second category
includes increment/decrement operations, which take an address and an off-
set as arguments. Unlike the first category, the traditional way of handling
transactional increment/decrement involves both TM READ and TM WRITE. In
our solution, leveraging semantics means invoking one semantic operation
that performs the actual read only at commit time, which allows for more
concurrency.

Including those semantic operations in TM frameworks is appealing for
two reasons. First, they are commonly used in applications, as we show
later with some examples. Second, the integration can be entirely done at
compilation time, where the compiler can detect semantic operators and
translate them.

An interesting feature of the semantic operations listed in Table 1 is that
they can compose by having more than one operator and/or more than one
variable in the conditional expression. For example, the scenario shown in
Algorithm 1 can be further enhanced if the whole conditional expression
(i.e., TM READ(x) > 0 || TM READ(y) > 0) is considered as one semantic
read operation. In this example, if the condition was initially true and then
a concurrent transaction modifies only one variable, either x or y, to be
negative, considering the clause as a whole avoids aborting T1 given the OR

operator. A similar enhancement consists of allowing complex expressions
in conditional statements (e.g., x + y > 0), where modifications on multiple
variables may compensate each other so that the return value of the overall
expression remains unchanged. Although supporting such complex expres-
sions is appealing because it may save additional aborts, integrating them
into algorithm designs and GCC may add overheads in terms of compilation
process and execution time. For that reason, we currently do not support
those complex expressions, and we plan for further investigation on them. A
more detailed discussion about those operations is in Appendix A.

7

A D C ZY

H(x)

Xset
state fullfull full full full fulldel free

W

Figure 1: Probing a hash table with open addressing

Algorithm 2 Using our semantic constructs to enhance hash table probing.
TM BEGIN

. Using our constructs: while (TM NEQ(states[index], FREE) && (TM EQ(states[index],
REMOVED) ‖ TM NEQ(set[index], value))
while TM READ(states[index]) != FREE && (TM READ(states[index]) == REMOVED ‖
TM READ(set[index]) != value) do

index = (index + probe)

return TM READ(states[index]) == FREE ? -1 : index;
TM END

3.1 TM-friendly semantics in action

To further support the need of injecting semantics into the classical TM
abstraction, we now show examples from real benchmarks and applications
whose performance can be enhanced by our semantic TM extensions. These
examples are clearly not exhaustive, but they are representative of program-
ming patterns used in concurrent programming.

Hashtable with open addressing. Operations in such a hash table usually
start by probing the table in order to find a matching index for a given hash
value. This function can be enhanced by our approach because it consists of a
chain of conditional expressions that check specific semantics and do not im-
pose certain values of state or set (e.g., it may only require the checked cells
to be not free and either flagged as removed or having a different value from
the hashed one). On the other hand, when using the classical read/write TM
constructs, concurrent changes to the accessed cells will abort the probing
transaction. Considering semantics through our proposed extensions avoid
such aborts. Algorithm 2 depicts pseudocode of the probing method and its
transformed semantic version.

Queues. Any efficient concurrent queue implementation should let an
enqueue operation execute concurrently with a dequeue operation if the
queue is not empty. However, this case is not allowed using traditional TM
constructs because the dequeue operation compares the head with the tail

8

Algorithm 3 Using our semantic constructs to enhance dequeue operation.
TM BEGIN

. Using our constructs: If (TM EQ(head, tail))
if TM READ(head) != TM READ(tail) then

return false;

item = array[TM READ(head) % array size];
. Using our constructs: TM INC(head, 1);

TM WRITE(head, TM READ(head) + 1)
return true;
TM END

in order to detect the special case of an empty queue. Algorithm 3 shows
how we re-enable this level of concurrency in an array-based queue using our
constructs.

Algorithm 4 Using our semantic constructs to enhance reservations in the
Vacation benchmark.

TM BEGIN
for n = 0; n ¡ ids.length; n++ do

res = tablePtr.find(ids[n]);
. Using our constructs: TM GT(res.numFree, 0)

if TM READ(res.numFree) > 0 then
. Using our constructs: TM GT(res.price, max price)

if TM READ(res.price) > max price then
max price = TM READ(res.price);
max id = id;

reservation = tablePtr.find(max id);
. Using our constructs: TM INC(res.numFree, -1)

TM WRITE(res.numFree, TM READ(res.numFree) - 1));
TM END

Vacation. This application is included in the STAMP suite [28] and sim-
ulates a travel reservation system. The workload consists of clients’ reser-
vations; each client uses a coarse-grained transaction to execute its session.
Vacation has two main operation profiles: making a reservation and updat-
ing offers (e.g., price changes). Although the reservation profile checks the
common attributes of the offer (e.g., the number of free slots and the range
of price), most of those checks are semantic and do not seek specific values.
Using the classical (more conservative) TM model, any update on offers will
conflict with all concurrent reservations because of those conditional state-
ments. Using our semantic extensions, as depicted in Algorithm 4, the reser-
vation will not abort as long as the outcomes of the comparison conditions
hold (e.g., number of free slots > 0 and price > max price). The key
idea, which also explains well the intuition behind our proposal, is that a
reservation does not use the exact value of price or the amount of available

9

resources, it just checks if the price is in the right range and resources are
still available.

Algorithm 5 Using our semantic constructs to enhance the Kmeans bench-
mark.

TM BEGIN
. Using our constructs: TM INC(*new centers len[index], 1);

TM WRITE(*new centers len[index], TM READ(*new centers len[index]) + 1);
for j = 0; j < nfeatures; j++ do

. Using our constructs: TM INC(new centers[index][j], feature[i][j]));
TM WRITE(new centers[index][j], TM READ(new centers[index][j]) + feature[i][j]));

TM END

Kmeans. Kmeans is another STAMP application, which implements a
clustering algorithm that iterates over a set of points and groups them into
clusters. The main transactional overhead is in updating the cluster centers,
which can be enhanced using our TM INC operation, as shown in Algo-
rithm 5.

4 Semantic-Based TM Algorithms

The first step towards injecting semantics into STM algorithms is to find an
abstract way to define them. The semantic operations listed in Table 1 can
be seen as the implementation of two abstract methods:

bool cmp(operator, address, val)

void inc(address, delta)

where cmp and inc represent the semantic actions that replace the normal
TM behavior (delta can be positive or negative to support increment and
decrement). In this abstraction, we restrict cmp operations in Table 1 to
those that have an address and a value as arguments. However, as we show
in Section 6, our compilation pass also detects the address-address case and
translates it to a specific API call. Extending the STM algorithms presented
in this section to cover the address-address case is straightforward, thus we
do not include it to simplify the presentation.

In this section, we show how we integrate the above two abstract methods
into two state-of-the-art STM algorithms: NOrec [11] and TL2 [12].

10

4.1 S-NOrec

NOrec is an STM algorithm that exploits value-based validation to eliminate
the need for fine-grained locks. A transaction stores the values it reads as
metadata in a local read-set and validates this read-set before every read,
as well as at the commit phase of writing transactions. The commit phase
is protected by a single global timestamped lock. The validation procedure
succeeds if all accessed addresses have the same values as what is saved in
the read-set.

We extend NOrec to support our constructs as shown in Algorithm 6 (we
call the new algorithm S-NOrec), mainly by executing cmp and inc using
additional procedures. The main difference between read and cmp is that
read appends the normal address/value pair to the read-set (line 41) while
cmp saves the conditional expression (or its inverse if the condition is false)
in the read-set (line 34). To simplify the validate procedure, we consider
read as a semantic TX EQ operation. Consequently, the validate procedure
(lines 1-9) becomes a generalization of the original NOrec that uses a semantic
validation instead of the original value-based one.

Both read and cmp read the address using a special procedure, called
readValid (lines 10-16), that performs a read-set validation (if the global
timestamp changed) to ensure the consistency of the current state of the
read-set.

Supporting inc operations requires storing the delta (i.e., incremented
or decremented value) in the write-set, and applying it at commit time. In
practice, we support inc by overloading NOrec’s write-set. In particular, a
flag is added to each write-set entry to indicate whether it stores a standard
write or an increment.

The cases where a variable is read/written (either semantically or non-
semantically) by two different operations in the same transaction are handled
by S-NOrec as follows:
- write after write: If an inc is preceded by a write or an inc, the new

delta is accumulated over the entry’s value without changing the entry’s
flag (line 46). If a write is preceded by a write or an inc, it just overwrites
the value and changes the flag to indicate a write operation (line 51).

- read after write: Both compare and read check the write-set first for read-
after-write conflicts (lines 31 and 39). If the write-set entry is an increment,
the inc is promoted to traditional read and write operations (see lines 19-

11

Algorithm 6 S-NOrec
1: procedure Validate(Transaction tx)
2: time = global lock
3: if (time & 1) != 0 then go to 2 end if
4: for each (addr, operation, val) in reads do
5: if ! (addr OP val) then . Semantic validation
6: Abort()

7: if time != global lock then go to 2 end if
8: return time
9: end procedure
10: procedure ReadValid(Address addr, Transaction tx)
11: val = *addr
12: while snapshot != global lock do
13: snapshot = Validate(tx)
14: val = *addr
15: return val
16: end procedure
17: procedure RAW(Address addr, Transaction tx)
18: if writes[addr].type = INCREMENT then
19: val = ReadValid(addr, tx) . Promote increment
20: reads.append(address, val, EQUALS)
21: writes[addr] = (entry.value + val, WRITE)

22: return writes[addr].value
23: end procedure
24: procedure Start(Transaction tx)
25: do
26: snapshot = global lock
27: while (snapshot & 1) 6= 0
28: end procedure
29: procedure Compare(Address addr, Operation op, Value operand, Transaction tx)
30: if writes[addr] 6= φ then
31: return RAW(addr, tx) OP operand

32: val = ReadValid(addr, tx)
33: result = (val OP operand)
34: reads.append(addr, operand, result ? OP : Inverse(OP))
35: return result
36: end procedure
37: procedure Read(Address addr, Transaction tx)
38: if writes[addr] 6= φ then
39: return RAW(addr, tx)

40: val = ReadValid(addr, tx)
41: reads.append(addr, val, EQUALS)
42: return val
43: end procedure
44: procedure Increment(Address addr, Value delta, Transaction tx)
45: if writes[addr] 6= φ then
46: writes[addr] = (entry.value + delta, entry.type)
47: else
48: writes[addr] = (delta, INCREMENT)

49: end procedure
50: procedure Write(Address addr, Value value, Transaction tx)
51: writes[addr] = (value, WRITE)
52: end procedure

12

21). The read part of the promotion is also done using the readValid

procedure (line 19).
- write after read: This case is inherently covered because the value of the

address will be validated anyway at commit time (because of the read)
before the write takes place. It does not matter if the read/write operations
are semantic or non-semantic.

- read after read: We add two different entries in the read-set for each read.
Although this approach looks redundant and may nullify the gain of adopt-
ing a semantic validation if one read is semantic and the other is non-
semantic, the overhead of discovering duplicates may not be negligible in
the normal cases.

S-NOrec is the first STM algorithm, to the best of our knowledge, that
supports cmp operations. For inc operations, a recent approach discusses
supporting a pattern similar to our proposal [33]. Interestingly, in contrast
with [33], S-NOrec maintains the same privatization and publication proper-
ties [26] of the original NOrec algorithm, since it still uses the global times-
tamp at commit time. In fact, there is no considerable overhead of S-NOrec
over NOrec with respect to both processing time and memory occupied, as it
only adds the read-set operation type and the write-set flag to the algorithm’s
metadata.

4.2 S-TL2

TL2 is an STM algorithm that maps shared memory locations to a table
of ownership records (orecs). Writing transactions lock the orecs of their
write-set entries at commit instead of acquiring a global lock as in NOrec.
Because of that, writing transactions can commit concurrently as long as they
access different orecs, and hence TL2 is known to scale better than NOrec.
To validate reads, TL2 leverages: i) a global timestamp, which is atomi-
cally incremented by each writing transaction at commit; ii) a start version
for each transaction, which is set at the beginning of the transaction by
snapshotting the global timestamp; and iii) an orec version for each orec,
which is modified by the writing transaction at commit time. This way,
validation is done simply by ensuring that the orec version of a newly read
address is less than the start version of the transaction, and revalidating the
orec versions of the whole read-set at commit time (only if the transaction
is a writing transactions).

Algorithms 7 and 8 depict our extended version of TL2 (called S-TL2).

13

Algorithm 7 S-TL2
1: procedure Start(Transaction tx)
2: tx.start version = global timestamp
3: end procedure
4: procedure Compare(Address addr, Operation op,
5: Value operand, Transaction tx)
6: if writes[addr] 6= φ then
7: return RAW(addr, tx)

8: orec = getOrec(addr)
9: L1 = orec.version
10: if tx.reads.isEmpty() then . Phase 1: No reads yet
11: if orec.lock /∈ {tx, φ} then
12: go to 8 . Wait until unlocked

13: val = *addr
14: L2 = orec.version
15: if L1 6= L2 then
16: go to 8 . Retry read

17: result = (val OP operand) . Add to compare-set
18: compares.append(addr, operand, result ? OP : Inv(OP))
19: if L1 > start version then
20: time = global timestamp
21: ValidateCompareSet()
22: if time != global timestamp then
23: go to 20 . Retry validation
24: else
25: start version = time . Extend start version
26: else . Phase 2: At least one pervious read occur
27: if orec.lock /∈ {tx, φ} then
28: Abort()

29: val = *addr
30: L2 = orec.version
31: if L1 > start version ∨ L1 != L2 then
32: Abort()

33: result = (val OP operand) . Add to compare-set
34: compares.append(addr, operand, result ? OP : Inv(OP))

35: return result
36: end procedure
37: procedure Read(Address addr, Transaction tx)
38: if writes[addr] 6= φ then
39: return RAW(addr, tx)

40: orec = getOrec(addr)
41: L1 = orec.version
42: if orec.lock /∈ {tx, φ} then
43: Abort()

44: val = *addr
45: L2 = orec.version
46: if L1 > start version ∨ L1 != L2 then
47: Abort()

48: reads.append(orec) . Add to read-set
49: return val
50: end procedure

14

Algorithm 8 S-TL2 cont.
51: procedure ValidateReadSet(Transaction tx)
52: for each (orec) in tx.reads do
53: if orec.lock /∈ {tx,φ} ∨ orec.version ¿ start version then
54: Abort()

55: end procedure
56: procedure ValidateCompareSet(Transaction tx)
57: for each (addr, operation, val) in tx.compares do
58: current = *addr
59: orec = getOrec(addr)
60: if orec.version ¿ start version then
61: if orec.lock /∈ {tx,φ} then
62: repeat until orec.lock = φ . Wait until unlocked

63: if !(current OP val) then . Semantic validation
64: Abort()

65: end procedure
66: procedure Commit(Transaction tx)
67: AcquireWriteSetLocks(tx)
68: time = global timestamp
69: if start version 6= time then
70: ValidateCompareSet(tx)

71: if !CAS(global timestamp, time, time+1) then
72: go to 68 . Retry compare-set validation

73: if start version + 1 6= time then
74: ValidateReadSet(tx)

75: WriteBack(tx, time + 1)
76: ReleaseWriteSetLocks(tx)
77: end procedure

The write-set handlers (inc, write and raw) are similar to Algorithm 6, so
we did not show them in Algorithm 7. On the other hand, supporting the
cmp operation in S-TL2 is more complex than S-NOrec. The first issue is
that the actual addresses and their values are not saved in the read-set; only
the corresponding orecs are saved. To solve this problem, we first define
a separate compare-set for saving cmp operations whose structure is similar
to S-NOrec’s read-set. In particular, a read operation saves the orec of the
address in the read-set (line 48), and a cmp operation saves the actual address
along with the information about the compare operation in the compare-set
(lines 18 and 34).

The second problem is that we now have two ways of validating reads: the
first relies on value-based validation (for cmp operations), while the second re-
lies on the relation between the read version of an orec and the start version
of the enclosing transaction (for read operations). To address this issue in
an efficient way, we split the execution into three phases. The first phase
starts from the transaction begin until the first read operation. The second

15

one starts from the first read until right before commit. The last phase is
the commit phase.

In the first phase, before the first read operation, cmp operations can be
optimized similar to S-NOrec (lines 10-25): the transaction’s start version
is not used, and rather the compare-set is validated after each cmp opera-
tion (line 21). If this validation succeeds, the transaction’s start version is
extended (line 25). This way, we allow semantic validations as long as no
read operation is executed yet. Another optimization, although less impor-
tant, is when the address’s orec is observed to be locked by a concurrent
transaction. In this case, the cmp operation waits until the orec is unlocked
instead of aborting the transaction (line 62). In those cases, we employ a
timeout mechanism (not shown in the algorithm) to avoid starvation. This
optimization makes sense only for cmp operations. This is because for read

operations, observing a locked orec means that its orec version will likely be
updated before it is unlocked, which also means that the read will be invali-
dated and the transaction will be aborted anyway. The same optimization is
made when a concurrent transaction changes the orec version while reading
the variable (line 16), and also when the global-timestamp is changed during
the compare-set validation (line 23).

In the second phase, after the first read operation, cmp operations have
to preserve consistency with previous reads, and therefore the transaction’s
start version cannot be extended anymore. That is why, in this phase, both
read (lines 37-50) and cmp (lines 26-34) validate that the newly read address
(even if inside a cmp operation) is consistent with the previous reads, by
comparing the orec version with the transaction’s start time as the original
TL2 does.

The commit phase is depicted in lines 66-77. In TL2, the commit phase
starts by locking the writes’ orecs and atomically incrementing the global
timestamp. Then the reads are re-validated. If validation succeeds, writes
are published and then locks are released. The commit phase of S-TL2 differs
from that of TL2 in two points: i) the way reads are validated; ii) the way
the global timestamp is incremented.

Regarding the first point, the read-set and the compare-set are vali-
dated differently using ValidateReadSet (lines 51-55) for the former and
ValidateCompareSet (lines 56-65) for the latter. Specifically, when the
read version of an orec is greater than the start version of the transac-
tion, which means that the value of the address may have been changed,

16

ValidateReadSet aborts the transaction (line 54), while ValidateCompareSet
re-computes the expression and aborts only if the return value changes (line 64).

Second, if a concurrent transaction starts its commit phase during the exe-
cution of ValidateCompareSet, the compare-set has to be re-validated. This
is important because the return value of one cmp operation may be affected by
this new commit, and thus ValidateCompareSet procedure may return an
incorrect result. Lines 68-72 depict how we achieve that (the order of lines is
important here): the global timestamp is snapshotted, ValidateCompareSet
is called, and then the global timestamp is incremented using CAS instead of
using AtomicFetchAndAdd. If the CAS fails, validation is retried. It is worth
to note that this mechanism is not needed for ValidateReadSet because it
conservatively aborts the transaction if any orec in the read-set has changed.

S-TL2 requires adding a compare-set as well as a flag in the write-set in
addition to the original metadata of TL2. An additional source of overhead
is that cmp operations may involve calling ValidateCompareSet, whose exe-
cution time is linear with respect the size of the compare-set itself. However,
as we show in the evaluation, those overheads are mostly dominated by the
performance gain due to avoiding unnecessary aborts.

5 Correctness

The correctness of a TM algorithm is usually inferred by proving that all
histories it generates are opaque [17]. We infer the correctness of S-NOrec
and S-TL2 in the same way.

We start by roughly recalling some definitions related to opacity, borrowed
from [17], to make the presented intuitions self-contained. A history H is a
sequence of operations issued by transactions on a set of shared objects.
Intuitively, we say that a history H is sequential if no two transactions are
concurrent. A sequential specification of a shared object ob, called Seq(ob), is
the set of all sequences of operations on ob that are considered correct when
executed sequentially. A sequential history is legal if, for every shared object
ob, the subsequence of operations on ob in H is in Seq(ob). Two histories are
equivalent if they contain the same transactions with the same operations
and the same return values. Given a history H, Complete(H) indicates the
set of histories obtained by committing or aborting every commit-pending
transaction in H, and aborting every other live transaction in H. A history

17

H is opaque if any history in Complete(H) is equivalent to a legal sequential
history S that preserves the real-time order of H.

The definition of opacity is general enough to be applied on shared objects
with generic APIs, as long as every shared object has a well-defined sequential
specification based on those APIs. However, as we mentioned before, most
TMs consider the read-write register abstraction with two APIs: a read

operation, which takes no argument and returns the current state of the
register, and a write operation, which takes a value v as argument and always
returns ok. This simple scheme implies a trivial sequential specification for
each register x, as defined in [17]: the set of all sequences of read and write
operations on x such that every read operation returns the value given as
an argument to the latest preceding write operation (the initial value is the
default).

Although this simple scheme best fits shared memory models, it does not
match the API of our semantic-based TM because it does not distinguish be-
tween reads/writes that are made within a comparison/increment expression
and all other reads/writes. That is why the first step towards proving the
correctness of our algorithms is to define the new abstraction for our TM.
Our TM algorithms (S-Norec and S-TL2) implement a TM whose shared
registers export four operations: read, which takes no argument and returns
the current state of the register; write, which takes a value v as an argu-
ment and returns always ok; inc, which takes a value d as an argument and
returns always ok; and cmp, which takes a value v cmp and an operator type
Op whose value is given from the enum {==, !=, ¿, ¿=, ¡, ¡=} as arguments
and returns true or false.

The sequential specification of a register x in our TM, Seq(x), is defined
as follows: the set of all sequences of read, write, cmp, and inc operations
on x, such that:
- every read operation returns v +

∑
d, where v is the value given as an

argument to the latest preceding write operation, w, and
∑

d is the sum
of the values given as arguments to every inc between the read operation
and w;

- every cmp operation returns the boolean value of the expression (v Op v cmp),
where v is the return value of the corresponding read operation.

Algorithm 9 gives an example that clarifies the importance of defining
a new abstraction for our TM. Using the original read-write register ab-
straction, the corresponding history has two possible equivalent sequential
histories (T1 → T2 and T2 → T1), and both of them are not legal because T1

18

Algorithm 9 A history that is opaque with our API.
Initial values are 0

TM BEGIN(T1)
if x >= 0 then

z = y;

TM END

TM BEGIN(T2)
x = 1
y = 1
TM END

returns an illegal value for y in the former and an illegal value for x in the
latter. However, using our (correct) abstraction, T2 → T1 is an equivalent
legal sequential history because x is read using cmp and the return value of
this cmp is legal, which means that the history is opaque.

Another interesting example to assess the correctness of S-NOrec and S-
TL2 is shown in Algorithm 10. The history of this example is not opaque
even with the new API because the value of x at the moment of executing
the cmp operation was different from its value when the transaction read y.

Algorithm 10 A history that is not opaque with our API.
Initial values are 0

TM BEGIN(T1)
z = y

if x >= 1 then
z = 1

TM END

TM BEGIN(T2)
x = 1
y = 1
TM END

Based on the two cases in Algorithms 9 and 10, it is easy to under-
stand the idea behind proving opacity of histories containing cmp operations,
which is proving that: i) the address read inside each cmp is consistent with
all the previous reads at the moment of computing the return value of the
conditional expression, and ii) this return value does not change until the
transaction commits (even if the value of the address becomes inconsistent).

Proving that a history containing inc operations is opaque is easier to in-
fer. This is because the read part of inc can be deferred to the commit phase
where the address is locked, and thus the whole inc operation is considered
as a write operation during the transaction execution. The only exception
for that is when the address accessed by an inc operation is also accessed by

19

another operation in the same transaction. In the following two sections, we
show how those cases are covered by S-NOrec and S-TL2.

5.1 Correctness of S-NOrec

Based on the opacity definition, the correctness of S-NOrec can be inferred if
we identify the legal sequential history S that is equivalent to a generic history
H generated at any point of its execution (after completing H). Roughly, H
may contain committed transactions (either read-only or writing) and live
transactions (considering aborted transaction as live right before they trigger
the abort call). S is identified, similar to NOrec, as follows: committed
writing transactions are serialized when they CAS the global timestamp at
commit; and both read-only and live transactions are serialized when the
validation of their last finished read/cmp succeeds (i.e., after the committed
writing transaction that sets the global timestamp with the value returned
at line 8).

The history S remains legal with the existence of cmp operations because
of the following reasons: i) every address is initially read consistently using
readValid procedure in all read, cmp, and RAW calls; and ii) the seman-
tic validation made after each read and during commit guarantees that the
return values of each cmp remain the same.

The existence of inc operations also does not affect the legality of S
because: i) at commit time, inc is handled exactly like write, which is safe
because the transaction has an exclusive access to the address (in fact commit
phases in NOrec are executed serially); and ii) live transactions that execute
inc along with other operations on the same address are always consistent
because the read operations (read and cmp) check the write-set first and
promote the inc operation if needed, and the write operations (write and
inc) properly override the write-set entry.

5.2 Correctness of S-TL2

The legal equivalent serialization of a history generated by S-TL2 is slightly
different from TL2. In fact, handling inc operations does not affect the
serialization because of the same reasons mentioned for S-NOrec. However,
we identify two differences that arise due to cmp operation.

First, committed writing transactions are serialized in TL2 when they
atomically increment the timestamp. In S-TL2, this atomic increment is re-

20

placed with a CAS operation which forms the new serialization point (line 71).
Using CAS instead of AtomicFetchAndAdd is needed because it is not legal
for a transaction to observe the writes of any transaction that increments the
global timestamp after it. Note that it is guaranteed that the transaction
observes the writes of all transactions that increment the timestamp before
it, because the orecs of the write-set entries are locked before increment-
ing the timestamp (line 67) and the transaction waits until those orecs are
unlocked.

Second, the serialization of read-only and live transactions depends on
the phase they are executing. If the transaction is in the first phase, before
any read operation, the serialization point is, similar to S-NOrec, when the
validation during the last cmp operation succeeds (more specifically, when
start version is advanced at line 25). That is because all the committed
writing transactions so far did not change the return value of all cmp opera-
tions. On the other hand, if the transaction is in the second phase, after the
first read operation, it is serialized similar to TL2, namely before all writing
transactions that commit with a timestamp greater than its start version.
That is legal because: i) all cmp operations in the first phase are consistent
up to the current value of start version; and ii) all read and cmp operations
in the second phase use this start version in validation.

6 Integration with GCC

GCC has supported STM since version 4.7 and HTM since version 4.9. The
integration of TM into GCC resulted in adding transaction atomic to the
constructs of C/C++ [2, 23]. Statements within a transaction atomic

block are translated by GCC to the appropriate TM calls that follow an
Application Binary Interface (ABI) similar to the TM ABI proposed by In-
tel [1]. Those calls are handled according to the TM algorithm chosen by the
programmer. The implementation of those TM algorithms is encapsulated
in the libitm library1.

The first, straightforward, step we made towards embedding our semantic
interfaces is adding three semantic operations to libitm’s ABI (see Table 2).
The first two operations, ITM S2R and ITM S1R, handle cmp operation with
address-address and address-value modes, while ITM SW handles inc oper-

1We use GCC 5.3 and libitm libraries from https://github.com/mfs409/transmem,
which include NOrec.

21

https://github.com/mfs409/transmem

ation. Then, we deployed our S-NOrec algorithm as an additional TM al-
gorithm in the libitm library, and implemented the new ABI operations as
described in Section 4.1. Due to lack of a TL2 implementation that matches
the baseline we used to construct our S-TL2, we plan the integration of S-TL2
as a future work. Besides, in the TM algorithms currently existing in libitm
library, those new operations are implemented by delegating their execution
to the classical read and write handlers.

ITM S2Rtype address-address semantic read operation
ITM S1Rtype address-value semantic read operation
ITM SWtype semantic write operation

Table 2: Extended GCC ABI.

The next, more complicated, step is to detect the code patterns of our
semantic operations (cmp and inc) during compilation. We do that after
GCC generates the GIMPLE [27] representation of the program. GIMPLE
is a language independent, tree-based representation that uses 3-operands
expressions (except for function calls) in Static Single Assignment (SSA) [9]
form. We chose GIMPLE to deploy our optimization passes for two rea-
sons. First, GIMPLE is both architecture and language independent, thus
optimizing it is considered a transparent middle-end optimization. Second,
GIMPLE uses temporary variables to put its expressions in 3-operand form,
where every variable is assigned only once. This form simplifies dependency
analysis.

The tm mark pass is one of the optimization passes on the GIMPLE rep-
resentation where statements that perform transactional memory operations
are replaced with the appropriate TM built-ins. We extended this pass to
detect the code patterns of cmp and inc operations as follows.
- cmp: For any conditional expression we track the origins of its two operands

along the GIMPLE tree. If one origin refers to a direct transactional mem-
ory access and the other refers to either a literal value or a local variable,
then we replace the condition with a call to the ITM S1R built-in. If the
two origins refer to direct transactional memory accesses, we use ITM S2R.

- inc: For any transactional write, we track the origin of its right hand side,
and if it is calculated using a mathematical “+” or “-” equation, we track
both its operands. If the origin of one of them is a transactional read to the
same written address and the origin of the second operand is either a literal
value or a local variable, we call the ITM SW built-in instead of generating

22

the transactional write. At this stage, the original transactional read of the
inc still exists and has to be removed. We did so by developing another
optimization pass, named tm optimize, that removes TM read calls for
never-live variables, since the read part of every inc becomes one of those
never-live variables reads after replacing the write part with our call. This
pass is made in a conservative way; it does not remove a read if there is no
guarantee that it is never-live.

A side optimization that our tm optimize pass performs is removing any
TM read that is part of a never-live assignment, even if it is not originally
part of an inc operation. The current GCC version does not perform any
liveness optimization or dead assignment identification on the transactional
code, therefore it does not remove such reads.

Another important note is that cases where a shared variable is involved
in both semantic (i.e., cmp and inc) and non-semantic (i.e., read and write)
operations of the same transaction are handled by the TM algorithm as
mentioned in Section 4 (see lines 31 & 46 of Algorithm 6, and line 7 of
Algorithm 7), therefore it is not needed to detect those cases in the compiler
passes.

One of the advantages of our optimizations is that they reduce the number
of TM calls from two to one when using ITM S2R or ITM SW. Such reduction
has a visible impact on application performance; in fact, TM calls are costly
because GCC performs three indirect calls per TM call. Also, our pass does
not require complex alias analysis for tracking the operands origin because
we look for simple expression patterns that usually reside in the same basic
block.

7 Evaluation

We tested our extended semantic-based TM on a set of micro-benchmarks, as
well as applications of the STAMP suite [28]. We conducted our experiments
on an AMD machine equipped with 2 Opteron 6168 CPUs, each with 12 cores
running at 1.9 GHz. The total memory available is 12 GB. We reported the
throughput for the micro-benchmarks, and the application execution time
for STAMP, by varying the number of threads executing concurrently. We
reported the results for both RSTM and GCC implementations.

Table 3 shows the average number of invocations per operation type in
the used benchmarks. They are measured at runtime using RSTM because it

23

Hashtable Bank LRU

ba
se

se
m
a
n
ti
c

ba
se

se
m
a
n
ti
c

ba
se

se
m
a
n
ti
c

Read 3440 0 22.5 0.05 173 12
Write 6.2 6.2 12.7 0 19.7 19.7
Compare - 3440 - 10 - 161
Increment - 0 - 12.7 - 0.03
Promote - 0 - 0.05 - 0.01

Vacation Kmeans Labyrinth Yada SSCA2 Genome Intruder

ba
se

se
m
a
n
ti
c

ba
se

se
m
a
n
ti
c

ba
se

se
m
a
n
ti
c

ba
se

se
m
a
n
ti
c

ba
se

se
m
a
n
ti
c

ba
se

se
m
a
n
ti
c

ba
se

se
m
a
n
ti
c

Read 14704 13714 25 0 176 4 142 135 2 1 84 84 28.5 28.5
Write 28.5 12 25 0 173 173 21.4 21.4 2 1 3 3 2.6 2.6
Compare - 989.5 - 0 - 172 - 7 - 0 - 0.06 - 0
Increment - 16.7 - 25 - 0 - 0 - 1 - 0.01 - 0
Promote - 15.7 - 0 - 0 - 0 - 0 - 0 - 0

Table 3: Average Number of Operations per Transaction.

provides more flexibility to extract statistics than GCC. In this table, seman-
tic and non-semantic algorithms are contrasted to give an intuition about the
number of read and write operations saved by applying our semantic con-
structs. Reduction is substantial, which enables performance improvement
as showed later.

7.1 RSTM-based implementations

In the following experiments, depicted in Figure 2, throughput/time and
abort rate were computed for NOrec and TL2 in both their semantic and
original (i.e., non-semantic) versions.

7.2 Micro Benchmarks

In our first set of experiments we considered three micro benchmarks: Hashtable
with Open Addressing, Bank, and Least Recently Used (LRU) Cache.

Hashtable with Open Addressing . The workload in this experiment was
a collection of set and get operations, where each transaction performed
10 set/get operations. Both S-NOrec and S-TL2 exploited our semantic
extensions in the probing procedure, as depicted in Algorithm 2. As a result,
and as shown in Table 3, all read operations were transformed into semantic

24

TL2 S-TL2 NOrec S-NOrec

 0

 20

 40

 60

 80

 100

 120

 140

2 4 6 8 10 12 14 16 18 20 22 24

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(a) Hashtable-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 20

 30

 40

 50

 60

 70

 80

 90

 100

A
b
o
rt

s
 %

Threads

(b) Hashtable-Aborts

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

2 4 6 8 10 12 14 16 18 20 22 24

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(c) Bank-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
b
o
rt

s
 %

Threads

(d) Bank-Aborts

 100

 150

 200

 250

 300

 350

 400

 450

2 4 6 8 10 12 14 16 18 20 22 24

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(e) LRU Cache-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
b
o
rt

s
 %

Threads

(f) LRU Cache-Aborts

Figure 2: Micro Benchmarks using RSTM.

25

cmp operations. This reduced the number of aborts significantly (Figure 2b),
which directly raised the throughput (up to 4× speedup) in both algorithms
(Figure 2a).

Bank . Each transaction performs multiple transfers (at most 10) between
accounts with an overdraft check (i.e., skip the transfer if account balance
is insufficient). In the semantic version of the benchmark, the reads/writes
were transformed into cmp and inc operations. As shown in Figure 2c, ex-
ploiting semantics helps S-NOrec to outperform NOrec at low-contention (1-8
threads). However, when contention increases, both NOrec and S-NOrec de-
grade and perform similarly. This is mainly because the probability of having
true conflicts increases, and transactions start to abort even if they are se-
mantically validated. Moreover, due to the overhead of semantic validation,
S-NOrec performs slightly worse in some cases. In TL2, concurrent commits
are allowed, thus it scales better than NOrec. Similarly, S-TL2 benefits from
the underlying semantics and performs 20% better than TL2, and incurs 25%
fewer aborts.

LRU Cache. This benchmark simulates an m×n cache with least-frequently-
used replacement policy. The cache uses m cache lines, and each line contains
n buckets. Each bucket stores both the data and the hit frequency. Each
transaction either sets or looks up multiple entries in the cache. Table 3
shows that 93% of the read operations were transformed into cmp opera-
tions. Accordingly, as shown in Figures 2e and 2f, S-NOrec reduced the
aborts dramatically and achieved up to 2× speedup. S-TL2 was not im-
proved much (only 25% speedup). The reason is that the non-transformed
reads in S-TL2 prevented it from advancing its snapshot (i.e., it makes the
first phase described in Section 4.2 shorter); thus, any compare operations
had to preserve the snapshot identified by the start version and the overall
behavior becomes similar to TL2.

7.3 STAMP

STAMP is a suite of applications designed for evaluating in-memory concur-
rency controls. We did not show the results of three applications (Genome,
Intruder, and SSCA2) because we found that the semantic operations per
transaction were very limited (see Table 3). Hence, there was no difference
in both abort rate and throughput in those three applications, which is ex-
pected since both the overhead and the potential gain depend on having
semantic operations. We also excluded Bayes because of its nondeterminis-

26

TL2 S-TL2 NOrec S-NOrec

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(a) Kmeans-Execution Time

2 4 6 8 10 12
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
b
o
rt

s
 %

Threads

(b) Kmeans-Aborts

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(c) Vacation-Execution Time

2 4 6 8 10 12
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
b
o
rt

s
 %

Threads

(d) Vacation-Aborts

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(e) Yada-Execution Time

2 4 6 8 10 12
 0

 10

 20

 30

 40

 50

 60

 70

A
b
o
rt

s
 %

Threads

(f) Yada-Aborts

Figure 3: STAMP Applications using RSTM.

27

tic behavior. Since the performance saturated at a high number of threads
in all tested applications, we show the results only up to 12 threads.

Kmeans is a clustering algorithm that iterates over a set of points and
associate them to clusters. The main computation is in finding the nearest
point, while shared data updates occur at the end of each iteration. As il-
lustrated in Algorithm 5, updating the centroid is changed by transforming
all writes into increments. S-NOrec and S-TL2 achieve 25%-40% speedup
(Figure 3a). However, at a high number of threads, both NOrec and S-NOrec
saturate and start to degrade in performance, which indicates a high con-
tention workload due to the coarse-grained locking. Consequently, starting
from 8 threads, S-NOrec performs slightly worse than NOrec (see Figure 3a)
because it adds an overhead that is not exploited to reduce the abort rate
(see Figure 3b).

Vacation is a travel reservation system using an in-memory database.
The workload consists of client reservations. This application emulated an
OLTP workload. The reservation procedure was optimized as in Algorithm 4;
however, only 7% of the reads were transformed into compares. This is
because most of the read operations are part of the internal red-black tree
operations. Additionally, almost all the inc operations were promoted to
read and write operations because of an additional sanity check performed
by the transaction. Although these two factors limited the gain of using the
benchmark semantics, both S-NOrec and S-TL2 consistently outperformed
the original algorithms.

Yada is a mesh triangulation benchmark implementing Ruppert’s algo-
rithm. Threads iterate over the mesh and try to produce a smoother one by
identifying triangles whose minimum angle is below some threshold. NOrec’s
behavior is similar to Labyrinth. Interestingly, although S-TL2 reduced the
number of aborts, throughput was not affected (Figures 3e & 3f). Our mea-
surements revealed that the reason for this behavior is in the aborted trans-
actions. Although resolving the semantic conflicts of transactions in S-TL2
allowed them to proceed with execution, true conflicts caused most of them
to abort later. Therefore, the length of the aborted transactions in S-TL2
became longer than TL2 without real benefit (since transactions eventually
aborted). This is similar to what happened in Bank.

Labyrinth is a multi-path maze solver. The maze is represented as a
three-dimensional uniform grid, and each thread tries to connect input pairs
by a path of adjacent maze points. Upon finding a path, it is highlighted in
a shared output grid. Different checks along the routing path (e.g., isEmpty,

28

TL2 S-TL2 NOrec S-NOrec

 10

 20

 30

 40

 50

 60

 70

 80

2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(a) Labyrinth 1-Execution Time

2 4 6 8 10 12
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

A
b
o
rt

s
 %

Threads

(b) Labyrinth 1-Aborts

 10

 20

 30

 40

 50

 60

 70

2 4 6 8 10 12

T
im

e
 (

S
e
c
)

Threads

(c) Labyrinth 2-Execution Time

2 4 6 8 10 12
 0

 2

 4

 6

 8

 10

 12

 14

A
b
o
rt

s
 %

Threads

(d) Labyrinth 2-Aborts

Figure 4: Labyrinth STAMP Application using RSTM.

isGarbage) were transformed into semantic cmp operations, which allowed S-
TL2 to outperform TL2 by 20%-50% speedup and to save half of the aborts
(see Figures 4a & 4b). Both S-NOrect and NOrec perform similarly, which in-
dicates that transactions that fail in NORec’s value-based validation also fail
in S-NOrec’s semantic validation. In [32], an optimized version of Labyrinth
was proposed, where some non-transactional operations (memory copy) are
moved outside the transaction, which in effect reduces the transaction size.
Figures 4c & 4d show the performance in this new version. Although S-TL2
still has lower abort rate, the returned gain in performance became insignif-
icant because most of the work was moved outside transactions.

29

NOrec Modi ed-GCC NOrec S-NOrec

 6

 8

 10

 12

 14

 16

 18

2 4 6 8 10 12 14 16 18 20 22

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(a) Hashtable-Throughput

2 4 6 8 10 12 14 16 18 20 22
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
b
o
rt

s
 %

Threads

(b) Hashtable-Aborts

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

2 4 6 8 10 12 14 16 18 20 22

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(c) Bank-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
b
o
rt

s
 %

Threads

(d) Bank-Aborts

 40

 50

 60

 70

 80

 90

 100

 110

 120

2 4 6 8 10 12 14 16 18 20 22

T
h
ro

u
g
h
p
u
t

(k
 T

x
/S

e
c
)

Threads

(e) LRU Cache-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

A
b
o
rt

s
 %

Threads

(f) LRU Cache-Aborts

Figure 5: Micro Benchmarks using GCC.

7.4 GCC-based implementations

Now we discuss the results of the above experiments using our modified GCC
instead of RSTM. As mentioned in Section 6, in these experiments we focus

30

NOrec Modi ed-GCC NOrec S-NOrec

 12

 14

 16

 18

 20

 22

 24

2 4 6 8 10 12 14 16 18 20 22

T
im

e
 (

S
e
c
)

Threads

(a) Kmeans-Execution Time

2 4 6 8 10 12 14 16 18 20 22
 0

 10

 20

 30

 40

 50

 60

 70

A
b
o
rt

s
 %

Threads

(b) Kmeans-Aborts

 0

 20

 40

 60

 80

 100

 120

 140

2 4 6 8 10 12 14 16 18 20 22

T
im

e
 (

S
e
c
)

Threads

(c) Vacation-Execution Time

2 4 6 8 10 12 14 16 18 20 22
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
b
o
rt

s
 %

Threads

(d) Vacation-Aborts

Figure 6: Some STAMP Applications using GCC.

on NOrec and S-NOrec. We also added one more version of NOrec that
uses our modified GCC API but does not handle them semantically. The
only difference between this version and NOrec is that, in the former, the
applications calls our semantic API and internally delegates them to the
normal reads/writes of NOrec, while the latter calls NOrec’s API directly.

The results in Figures 5 and 6 follow the same trends described above
with RSTM (we excluded Labyrinth and Yada from the GCC figures be-
cause NOrec and S-NOrec behave similarly in both of them, as shown in
Figure 2) . As before, our semantic extensions help improve performance
in all benchmarks. Compared to RSTM, the actual throughput values de-
creased. This is mainly because GCC speculates every read and write within
the transaction atomic blocks, while RSTM speculates only addresses ac-
cessed using its transactional TM READ and TM WRITE APIs. However, GCC
algorithms scale better than RSTM algorithms, mainly because of the inter-

31

nal optimizations in GCC, such as using more efficient structures to store and
handle metadata. Interestingly, using our modified GCC, even without ex-
ploiting semantics (“NOrec Modified-GCC”), we observe some performance
improvement due to decreasing the overall number of TM calls.

8 Conclusions

In this paper, we show that generality of TM does not always contradict
application semantics. We did so by identifying TM-friendly semantics and
proposing an approach to inject them in current TM algorithms and frame-
works. We also integrated our work in GCC and provide full compiler support
for them. Our experimental results depicted a promising improvement over
the base algorithms. We plan to extend this line of research by investigating
more on including HTM algorithms and supporting more complex semantic
patterns.

9 Acknowledgments

Authors would like to thank Marina Sadini and Yuzhong Wen for their sup-
port in integrating our extensions into GCC. We also thank our anonymous
reviewers for their valuable comments. This work is partially supported by
Air Force Office of Scientific Research (AFOSR) under grant FA9550-14-1-
0187.

References

[1] Intel transactional memory compiler and runtime application binary
interface. https://software.intel.com/sites/default/files/m/5/
a/2/a/f/8097-Intel_TM_ABI_1_0_1.pdf, 2008.

[2] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich. Draft specifi-
cation of transactional language constructs for c++, 2009.

[3] Y. Afek, H. Avni, and N. Shavit. Towards consistency oblivious pro-
gramming. In OPODIS, pages 65–79, 2011.

32

https://software.intel.com/sites/default/files/m/5/a/2/a/f/8097-Intel_TM_ABI_1_0_1.pdf
https://software.intel.com/sites/default/files/m/5/a/2/a/f/8097-Intel_TM_ABI_1_0_1.pdf

[4] Y. Afek, A. Matveev, O. R. Moll, and N. Shavit. Amalgamated lock-
elision. In DISC, pages 309–324, 2015.

[5] H. Avni and B. C. Kuszmaul. Improving HTM scaling with consistency-
oblivious programming. In TRANSACT, 2014.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[7] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le.
Robust architectural support for transactional memory in the power
architecture. In ISCA, pages 225–236, 2013.

[8] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy. Improved single
global lock fallback for best-effort hardware transactional memory. In
TRANSACT, 2014.

[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
An efficient method of computing static single assignment form. In
POPL, pages 25–35, 1989.

[10] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear. Hybrid NOrec: A case study in the effectiveness of
best effort hardware transactional memory. In ASPLOS, pages 39–52,
2011.

[11] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by abolishing ownership records. In PPoPP, pages 67–78, 2010.

[12] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC,
pages 194–208, 2006.

[13] N. Diegues and P. Romano. Self-tuning Intel transactional synchroniza-
tion extensions. In ICAC, pages 209–219, 2014.

[14] A. Dragojevic and T. Harris. STM in the small: trading generality for
performance in software transactional memory. In EuroSys, pages 1–14,
2012.

[15] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In DISC,
pages 93–107, 2009.

33

[16] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Automatic
scalable atomicity via semantic locking. In PPoPP, pages 31–41, 2015.

[17] R. Guerraoui and M. Kapalka. On the correctness of transactional mem-
ory. In PPoPP, pages 175–184, 2008.

[18] A. Hassan, R. Palmieri, and B. Ravindran. Optimistic transactional
boosting. In PPoPP, pages 387–388, 2014.

[19] M. Herlihy and E. Koskinen. Transactional boosting: A methodology
for highly-concurrent transactional objects. In PPoPP, pages 207–216,
2008.

[20] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
transactional memory for dynamic-sized data structures. In PODC,
pages 92–101, 2003.

[21] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA, pages 289–300, 1993.

[22] W. N. S. III and M. L. Scott. Advanced contention management for
dynamic software transactional memory. In PODC, pages 240–248, 2005.

[23] V. Luchangco, M. Wong, H. Boehm, J. Gottschlich, J. Maurer,
P. McKenney, M. Michael, M. Moir, T. Riegel, M. Scott, et al. Trans-
actional memory support for c++. 2014.

[24] V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. Scherer III, and M. Scott. Lowering the overhead of nonblocking
software transactional memory. In TRANSACT, 2006.

[25] A. Matveev and N. Shavit. Reduced hardware norec: A safe and scalable
hybrid transactional memory. In ASPLOS, pages 59–71, 2015.

[26] V. Menon, S. Balensiefer, T. Shpeisman, A. Adl-Tabatabai, R. L. Hud-
son, B. Saha, and A. Welc. Practical weak-atomicity semantics for java
stm. In SPAA, pages 314–325, 2008.

[27] J. Merrill. Generic and gimple: A new tree representation for entire
functions. In Proceedings of the 2003 GCC Developers Summit, pages
171–179, 2003.

34

[28] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford transactional applications for multi-processing. In IISWC, pages
35–46, 2008.

[29] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson,
J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting in software
transactional memory. In PPoPP, pages 68–78, 2007.

[30] J. Reinders. Transactional synchronization in Haswell.
http://software.intel.com/en-us/blogs/2012/02/07/

transactional-synchronization-in-haswell/, 2013.

[31] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing
hybrid transactional memory: The importance of nonspeculative oper-
ations. In SPAA, pages 53–64, 2011.

[32] W. Ruan, Y. Liu, and M. Spear. Stamp need not be considered harmful.
In TRANSACT, 2014.

[33] W. Ruan, Y. Liu, and M. F. Spear. Transactional read-modify-write
without aborts. TACO, 11(4):63:1–63:24, 2014.

[34] N. Shavit and D. Touitou. Software transactional memory. In PODC,
pages 204–213, 1995.

[35] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable
transactions with a single atomic instruction. In SPAA, pages 275–284,
2008.

[36] Transactional Memory Specification Drafting Group. Draft specification
of transactional language constructs for C++, version 1.1, February
2012. Available http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2013/n3725.pdf.

[37] L. Xiang and M. L. Scott. Software partitioning of hardware transac-
tions. In PPoPP, pages 76–86, 2015.

35

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3725.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3725.pdf

A Future Extensions

A.1 Complex Semantic Expressions

Compositional and complex expressions can be generalized, in the same way
as presented in Section 3, as an abstract method cmp(address1, address2,

..., val1, val2, ...), where the number of arguments depends on the
expression. This way, S-NOrec and S-TL2 can handle them similar to any
other cmp operation, as long as they guarantee that all the included variables
inside an expression are read consistently.

On the other hand, integrating such semantics in the compiler passes
is more complicated because it requires to first identify the code pattern
that matches the conditional expression. Unfortunately, unlike the “trivial”
expressions mentioned in Table 1, those complex expressions are transformed
by the compiler into different basic blocks. Thus, handling those conditions
as a single semantic read operation during the compilation process requires an
inter-block analysis. From a compiler design perspective, this optimization
will add a non-negligible overhead to the compilation process. This difficulty
raises a compromise on the practicality of supporting them at the compiler
level, especially if the trivial expressions already cover the common use cases
at the application level. At the current stage, we handle compound conditions
as multiple semantic reads. A deeper investigation on those expressions is
needed in order to know the best way to solve the tradeoff between saving
additional aborts and complicating the compiler passes.

A.2 Semantic-Based HTM

The challenges of injecting semantics into STM algorithms and HTM algo-
rithms are very different. Concurrency controls in STM are entirely per-
formed and integrated into software frameworks. That allows any sort of
modification to the transaction execution, including embedding our proposal
of defining new semantic constructs and calling them instead of the classical
ones (i.e., TM READ and TM WRITE). On the other hand, the current
HTM release [30, 7] leverages hardware for detecting conflicting executions
and gives very limited chances for optimization to the TM framework. For
instance, it leaves no control on modifying the granularity of the speculation
in HTM transaction; in other words, every memory access within the bound-
aries of an HTM transaction is monitored by the hardware itself (exploiting

36

an enhanced cache coherency protocol). As a result, executing HTM trans-
actions means preventing any straightforward solution for replacing the basic
TM READ/TM WRITE constructs with semantic calls (as it can be done
for STM).

Although injecting semantics in HTM algorithms is harder than STM,
we believe that there is still room for that. For example, the following two
approaches can be adopted separately:
- Injecting semantics in the software fallback path of the HTM transaction,

similar to how we injected them in pure STM algorithms. For example,
RH-NOrec [25] is an HTM algorithm whose software fallback paths are
similar to NOrec and can be enhanced similar to S-NOrec.

- Exploiting our compilation passes to make further enhancements. For ex-
ample, if the conflicting reads/writes are shifted by the compiler to the end
of the transaction, the probability of raising a conflict at runtime decreases.
Compilation-time solutions do not require modifying the execution pattern
of HTM transactions at runtime (which is impossible in current HTM mod-
els), providing a good direction to overcome the limited flexibility of HTM
APIs.

37

	Introduction
	Related Work
	TM-Friendly API
	TM-friendly semantics in action

	Semantic-Based TM Algorithms
	S-NOrec
	S-TL2

	Correctness
	Correctness of S-NOrec
	Correctness of S-TL2

	Integration with GCC
	Evaluation
	RSTM-based implementations
	Micro Benchmarks
	STAMP
	GCC-based implementations

	Conclusions
	Acknowledgments
	Future Extensions
	Complex Semantic Expressions
	Semantic-Based HTM

