
Distributed Transactional Contention
Management as the Traveling Salesman Problem

Bo Zhang, Binoy Ravindran, and Roberto Palmieri

Virginia Tech, Blacksburg VA 24060, USA,
{alexzbzb,binoy,robertop}@vt.edu

Abstract. In this paper we consider designing contention managers for
distributed software transactional memory (DTM), given an input of n
transactions sharing s objects in a network of m nodes. We first con-
struct a dynamic ordering conflict graph G∗

c(φ(κ)) for an offline algo-
rithm (κ, φκ). We show that finding an optimal schedule is equivalent to
finding the offline algorithm for which the weight of the longest weighted
path in G∗

c(φ(κ)) is minimized. We further illustrate that when the set
of transactions are dynamically generated, processing transactions ac-
cording to a χ(Gc)-coloring of Gc does not lead to an optimal schedule,
where χ(Gc) is the chromatic number of Gc. We prove that, for DTM,
any online work conserving deterministic contention manager provides

an Ω(max[s, s
2

D
]) competitive ratio in a network with normalized diam-

eter D. Compared with the Ω(s) competitive ratio for multiprocessor
STM, the performance guarantee for DTM degrades by a factor pro-
portional to s

D
. To break this lower bound, we present a randomized

algorithm Cutting, which needs partial information of transactions and
an approximate algorithm A for the traveling salesman problem with ap-
proximation ratio φA. We show that the average case competitive ratio
of Cutting is O

(
s · φA · log2m log2 n

)
, which is close to O(s).

Keywords: Synchronization, Distributed Transactional Memory

Transactional Memory [18] is an alternative synchronization model for shared
memory objects that promises to alleviate the difficulties of manual implemen-
tation of lock-based concurrent programs, including composability. The recent
integration of TM in hardware by major chip vendors (e.g., Intel, IBM), together
with the development of dedicated GCC extensions for TM (i.e., GCC-4.7) has
significantly increased TM’s traction, in particular its software version (STM).
Similar STM, distributed STM (or DTM) [12, 20, 7, 19, 14, 13] is motivated by
the difficulties of lock-based distributed synchronization.

In this paper we consider the data-flow DTM model [6], where transactions
are immobile, and objects are migrated to invoking transactions. In a realization
of this model [15], when a node initiates a transaction that requests a read/write
operation on object o, it first checks whether o is in the local cache; if not, it
invokes a cache-coherence protocol to locate o in the network. If two transactions
access the same object at the same time, a contention manager is required to

handle the concurrent request. The performance of a contention manager is often
evaluated quantitatively by measuring its makespan — the total time needed to
complete a finite set of transactions [1]. The goal in the design of a contention
manager is often to minimize the makespan, i.e., maximize the throughput.

The first theoretical analysis of contention management in multiprocessors
is due to Guerraoui et. al. [5], where an O(s2) upper bound is given for the
Greedy manager for s shared objects, compared with the makespan produced
by an optimal clairvoyant offline algorithm. Attiya et. al. [1] formulated the
contention management problem as a non-clairvoyant job scheduling problem
and improved this bound to O(s). Furthermore, a matching lower bound of
Ω(s) is given for any deterministic contention manager in [1]. To obtain alter-
native and improved formal bounds, recent works have focused on randomized
contention managers [16, 17]. Schneider and Wattenhofer [16] presented a de-
terministic algorithm called CommitRounds with a competitive ratio Θ(s) and
a randomized algorithm called RandomizedRounds with a makespan O(C logM)
for M concurrent transactions in separate threads with at most C conflicts with
high probability. In [17], Sharma et. al. consider a set of M transactions and
N transactions per thread, and present two randomized contention managers:
Offline-Greedy and Online-Greedy. By knowing the conflict graph, Offline-Greedy
gives a schedule with makespan O(τ · (C + N logMN)) with high probability,
where each transaction has the equal length τ . Online-Greedy is only O(logMN)
factor worse, but does not need to know the conflict graph. While these works
have studied contention management in multiprocessors, no past work has stud-
ied it for DTM, which is our focus.

Alternative solutions for reducing the abort rate in STM and DTM can be
found in [4] and [3, 11], respectively.

In this paper we study contention management in DTM. Similar to [1], we
model contention management as a non-clairvoyant scheduling problem. To find
an optimal scheduling algorithm, we construct a dynamic ordering conflict graph
G∗c(φ(κ)) for an offline algorithm (κ, φκ), which computes a k-coloring instance
κ of the dynamic conflict graph Gc and processes the set of transactions in the
order of φκ. We show that the makespan of (φ, κ) is equivalent to the weight
of the longest weighted path in G∗c(φ(κ)). Therefore, finding the optimal sched-
ule is equivalent to finding the offline algorithm (φ, κ) for which the weight of
the longest weighted path in G∗c(φ(κ)) is minimized. We illustrate that, unlike
the one-shot scheduling problem (where each node only issues one transaction),
when the set of transactions are dynamically generated, processing transactions
according to a χ(Gc)-coloring of Gc does not lead to an optimal schedule, where
χ(Gc) is Gc’s chromatic number.

We prove that for DTM, an online, work conserving deterministic contention

manager provides an Ω(max[s, s
2

D
]) competitive ratio for s shared objects in

a network with normalized diameter D. Compared with the Ω(s) competitive
ratio for multiprocessor STM, the performance guarantee for DTM degrades by
a factor proportional to s

D
. This motivates us to design a randomized contention

manager that has partial knowledge about the transactions in advance.

We thus develop an algorithm called Cutting, a randomized algorithm based
on an approximate TSP algorithm A with an approximation ratio φA. Cutting
divides the nodes into O(C) partitions, where C is the maximum degree in the
conflict graph Gc. The cost of moving an object inside each partition is at most
AtspA
C , where AtspA is the total cost of moving an object along the approximate

TSP path to visit each node exactly once. Cutting resolves conflicts in two
phases. In the first phase, a binary tree is constructed inside each partition, and
a transaction always aborts when it conflicts with its ancestor in the binary
tree. In the second phase, Cutting uses a randomized priority policy to resolve
conflicts. We show that the average case competitive ratio of Cutting is O

(
s ·

φA · log2m log2 n
)

for s objects shared by n transactions invoked by m nodes,
which is close to the multiprocessor bound of O(s) [1].

Cutting is the first ever contention manager for DTM with an average-case
competitive ratio bound, and constitutes the paper’s contribution.

1 Preliminaries

DTM model. We consider a set of distributed transactions T := {T1, T2, . . . , Tn}
sharing up to s objects O := {o1, o2, . . . , os} distributed on a network of m nodes
{v1, v2, . . . , vm}, which communicate by message-passing links. For simplicity
of the analysis, we assume that each node runs only a single thread, i.e., in
total, there are at most m threads running concurrently.1 A node’s thread issues
transactions sequentially. Specifically, node vi issues a sequence of transactions
{T i1, T i2, . . .} one after another, where transaction T ij is issued once after T ij−1
has committed.

An execution of a transaction is a sequence of timed operations. There are
four operation types that a transaction may take: write, read, commit, and abort.
An execution ends by either a commit (success) or an abort (failure). When a
transaction aborts, it is restarted from its beginning immediately and may ac-
cess a different set of shared objects. Each transaction Ti has a local execution
duration τi, which is the time Ti executes locally without contention (or inter-
ruption). Note that τi does not include the time Ti acquires remote objects. In
our analysis, we assume a fixed τi for each transaction Ti. Such a general as-
sumption is unrealistic if the local execution duration depends on the properties
of specific objects. In that case, when a transaction alters the set of requested
objects after it restarts, the local execution duration also varies. Therefore, if
the local execution duration varies by a factor of c, then the performance of our
algorithms would worsen by the same factor c.

A transaction performs a read/write operation by first sending a read/write
access request through CC. For a read operation, the CC protocol returns a
read-only copy of the object. An object can thus be read by an arbitrary number

1 When a node runs multiple threads, our analysis can still be adopted by treating each
thread as an individual node. This strategy overlooks the possible local optimization
for the same threads issued by the same node. Therefore, multiprocessor contention
management strategy can be used to improve performance.

of transactions simultaneously. For a write operation, the CC protocol returns
the (writable) object itself. At any time, only one transaction can hold the
object exclusively. A contention manager is responsible for resolving the conflict,
and does so by aborting or delaying (i.e., postponing) one of the conflicting
transactions.

A CC protocol moves objects via a specific path (e.g., the shortest path for
Ballistic [6], or a path in a spanning tree for Relay [21]). We assume a fixed CC
protocol with a moving cost dij , where dij is the communication latency to move
an object from node vi to vj under that protocol. We can build a complete cost
graph Gd = (Vd, Ed), where |Vd| = m and for each edge (vi, vj) ∈ Ed, the weight
is dij . We assume that the moving cost is bounded: we can find a constant D
such that for any dij , D ≥ dij .

Conflict graph. We build the conflict graph Gc = (Tc, Ec) for the transaction
subset Tc ⊆ T , which runs concurrently. An edge (Ti, Tj) ∈ Ec exists if and only
if Ti and Tj conflict. Two transactions conflict if they both access the same object
and at least one of the accesses is a write. Let NT denote the set of neighbors of
T in Gc. The degree δ(T) := |NT | of a transaction T corresponds to the number
of neighbors of T in Gc. We denote C = maxi δ(Ti), i.e., the maximum degree of
a transaction. The graph Gc is dynamic and only consists of live transactions.
A transaction joins Tc after it (re)starts, and leaves Tc after it commits/aborts.
Therefore, NT , δ(T), and C only capture a “snapshot” of Gc at a certain time.
More precisely, they should be represented as functions of time. When there is
no ambiguity, we use the simplified notations. We have |Tc| ≤ min{m,n}, since
there are at most n transactions, and at most m transactions can run in parallel.
Then we have δ(T) ≤ C ≤ min{m,n}.

Let o(Ti) := {o1(Ti), o2(Ti), . . .} denote the sequence of objects requested by
transaction Ti. Let γ(oj) denote the number of transactions in Tc that concur-
rently writes oi and γmax = maxj γ(oj). Let λ(Ti) = {o : o ∈ o(Ti)∧ (γ(o) ≥ 1)}
denote the number of transactions in Tc that conflict with transaction Ti and
λmax = maxTi⊂Tc λ(Ti). We have C ≤ λmax · γmax and C ≥ γmax.

2 The DTM Contention Management Problem

2.1 Problem measure and complexity

A contention manager determines when a particular transaction executes in case
of a conflict. To quantitatively evaluate the performance of a contention manager,
we measure the makespan, which is the total time needed to complete a set of
transactions T . Formally, given a contention manager A, makespanA denotes
the time needed to complete all transactions in T under A.

We measure the contention manager’s quality, by assuming Opt, the optimal,
centralized, clairvoyant scheduler which has the complete knowledge of each
transaction (requested objects, locations, released time, local execution time).

The quality of a contention manager A is measured by the ratio makespanA
makespanOpt

,

called the competitive ratio of A on T . The competitive ratio of A is

maxT
makespanA
makespanOpt

, i.e., the maximum competitive ratio of A over all possible

workloads.
An ideal contention manager aims to provide an optimal schedule for any

given set of transactions. However, it is shown in [1] (for STM) that if there
exists an adversary to change the set of shared objects requested by any trans-
action arbitrarily, no algorithm can do better than a simple sequential execution.
Furthermore, even if the adversary can only choose the initial conflict graph and
does not influence it afterwards, it is NP-hard to get a reasonable approximation
of an optimal schedule [16].

We can consider the transaction scheduling problem for multiprocessor STM
as a subset of the transaction scheduling problem for DTM. The two problems
are equivalent as long as the communication cost (dij) can be ignored, compared
with the local execution time duration (τi). Therefore, extending the problem
space into distributed systems only increases the problem complexity.

(a) Conflict graph Gc. (b) Ordering conflict graphGc(φκ).

Fig. 1.

We depict an example of a conflict graph Gc in Figure 1(a), which consists of
9 write-only transactions. Each transaction is represented as a numbered node in
Gc. Each edge (Ti, Tj) is marked with the object which causes Ti and Tj to con-
flict (e.g., T1 and T4 conflict on o1). We can construct a coloring of the conflict
graph Gc = (Tc, E). A 3-coloring scenario is illustrated in Figure 1(a). Trans-
actions are partitioned into 3 sets: C1 = {T1, T2, T3}, C2 = {T4, T5, T6}, C3 =
{T7, T8, T9}. Since transactions with the same color are not connected, every set
Ci ⊂ Tc forms an independent set and can be executed in parallel without facing
any conflicts. With the same argument of [1], we have the following lemma.

Lemma 1 An optimal offline schedule Opt determines a k-coloring κ of the
conflict graph Gc and an execution order φκ such that for any two sets Cφκ(i)
and Cφκ(j), where i < j, if (1) T1 ∈ Cφκ(i), T2 ∈ Cφκ(j), and (2) T1 and T2
conflict, then T2 is postponed until T1 commits.

In other words, Opt determines the order in which an independent set Ci is
executed. Generally, for a k-coloring of Gc, there are k! different choices to order
the independent sets. Assume that for the 3-coloring example in Figure 1(a),
an execution order φκ = {C1, C2, C3} is selected. We can construct an ordering
conflict graph Gc(φκ), as shown in Figure 1(b).

Definition 1 (Ordering conflict graph) For the conflict graph Gc, given a
k-coloring instance κ and an execution order {Cφκ(1), Cφκ(2), . . . , Cφκ(k)}, the
ordering conflict graph Gc(φκ) = (Tc, E(φκ), w) is constructed. Gc(φκ) has the
following properties:
1. Gc(φκ) is a weighted directed graph.
2. For two transactions T1 ∈ Cφκ(i) and T2 ∈ Cφκ(j), a directed edge (or an

arc) (T1, T2) ∈ E(φκ) (from T1 to T2) exists if: (i) T1 and T2 conflict over
object o; (ii) i < j; and (iii) @T3 ∈ Cφκ(j′), where i < j′ < j, such that T1
and T3 also conflict over o.

3. The weight w(Ti) of a transaction Ti is τi; the weight w(Ti, Tj) of an arc
(Ti, Tj) is dij.

For example, the edge (T1, T4) in Figure 1(a) is also an arc in Figure 1(b).
However, the edge (T1, T7) in Figure 1(a) no longer exists in Figure 1(b), because
C2 is ordered between C1 and C3, and T1 and T4 also conflict on o1.

Hence, any offline algorithm can be described by the pair (κ, φκ), and the
ordering conflict graph Gc(φκ) can be constructed. Given Gc(φκ), the execution
time of each transaction can be determined.

Theorem 2 For the ordering conflict graph Gc(φκ), given a directed path P =
{TP (1), TP (2), . . . , TP (L)} of L hops, the weight of P is defined as
w(P) =

∑
1≤i≤L w(TP (i))+

∑
1≤j≤L−1 w(TP (j), TP (j+1)). Then transaction T0 ∈

Tc commits at time: maxP={TP (1),...,T0} tP (1) + w(P), where TP (1) starts at time
tP (1).

Proof. We prove the theorem by induction. Assume T0 ∈ Cφκ(j). When j=1, T0
executes immediately after it starts. At time t0+τ0, T0 commits. There is only
one path that ends at T0 in Gc(φκ) (which only contains T0). The theorem holds.

Assume that when j = 2, 3, . . . , q − 1, the theorem holds. Let j = q. For
each object oi ∈ o(T0), find the transaction T0(i) such that T0(i) and T0 conflict
over oi, and (T0(i), T0) ∈ E(φκ). If no such transaction exists for all objects,
the analysis falls into the case when j = 1. Otherwise, for each transaction T0(i),
from Definition 1, no transaction which requests access to oi is scheduled between
T0(i) and T0. The offline algorithm (κ, φκ) moves oi from T0(i) to T0 immediately
after T0(i) commits. Assume that T0(i) commits at tc0(i). Then T0 commits at time:

maxoi∈o(T0) t
c
0(i) +w(T0(i), T0) +w(T0). Since (T0(i), T0) ∈ E(φκ), then from the

induction step, we know that tc0(i) = maxP={TP (1),...,T0(i)} tP (1) + w(P). Hence,

by replacing tc0(i) with maxP={TP (1),...,T0(i)} tP (1) + w(P), the theorem follows.

Theorem 2 illustrates that the commit time of transaction T0 is determined
by one of the weighted paths in Gc(φκ) which ends at T0. Specifically, if every
node issues its first transaction at the same time, the commit time of T0 is
solely determined by the longest weighted path in Gc(φκ) which ends at T0.
However, when transactions are dynamically generated over time, the commit
time of a transaction also relies on the starting time of other transactions. To
accommodate the dynamic features of transactions, we construct the dynamic
ordering conflict graph G∗c(φκ) based on Gc(φκ).

Definition 2 (Dynamic ordering conflict graph) Given an ordering con-
flict graph Gc(φκ), the dynamic ordering conflict graph G∗c(φκ) is constructed
by making the following modifications on Gc(φκ):

1. For the sequence of transactions {T i1, T i2, . . . , T iL} issued by each node vi, an
arc (T ij−1, T

i
j) is added to G∗c(φκ) for 2 ≤ j ≤ L and w(T ij−1, T

i
j) = 0.

2. If transaction Tj which starts at tj does not have any incoming arcs in
G∗c(φκ), then w(Tj) = tj + τj.

Theorem 3 The makespan of algorithm (κ, φκ) is the weight of the longest
weighted path in G∗c(φκ): makespan(κ,φκ) = maxP∈G∗c(φκ) w(P)

Proof. We start the proof with special cases, and then extend the analysis to
the general case. Assume that (i) each node issues only one transaction, and (ii)
all transactions start at the same time. Then the makespan of (κ, φκ) is equiva-
lent to the execution time of the last committed transaction: makespan(κ,φκ) =
maxT0∈Tc,P∈Gc(φκ),P={...,T0} w(P) = maxP∈Gc(φκ) w(P) = maxP∈G∗c(φκ) w(P).
Then, we can progressively relax the assumptions and use Theorem 2 to prove
this theorem. Now, we relax the second assumption: each node issues a sin-
gle transaction at arbitrary time points. Let P be the path which maximizes
makespan(κ,φκ). Therefore, TP1 (the head of P) has no incoming arcs in G∗c(φκ)
(since each node only issues a single transaction). From the construction of
G∗c(φκ), w(TP1

) = t(P1) + τP1
. We can find a path P ∗ in G∗c(φκ) which contains

the same elements as P with weight w(P ∗) = t(P1) +w(P), which is the longest
path in G∗c(φκ).

Now, we relax the first assumption: each node issues a sequence of transac-
tions, and all nodes start their first transactions at the same time. Similar to the
first case, we have: makespan(κ,φκ) = maxP∈Gc(φκ),P={TP1

,...,T0} t(P1) + w(P).
Let P be the path which maximizes makespan(κ,φκ). If TP1

(the head of
P) is the first transaction issued by a node, the theorem follows. Otherwise,
∀oi ∈ o(TP1), TP1 is the first transaction scheduled to access oi by (κ, φκ),
because there is no incoming arc to TP1 in Gc(φκ). If TP1 is the lth transaction
issued by node vj , when we convert from Gc(φκ) to G∗c(φκ), the longest path P ∗

that ends at T0 is a path starting from T j1 to T jl−1, followed by an arc (T jl−1, TP1
),

and then followed by P . Note that T jl−1 commits at tP1
(the starting time of TP1

).

Hence, we have w(P ∗) = t(P1) + w(T jl−1, TP1
) + w(P). Since w(T jl−1, TP1

) = 0
(from the construction of G∗c(φκ)), we have t(P1) +w(P) = w(P ∗). We conclude
that the path in Gc(φκ) corresponding to the commit time of transaction T0 is
equivalent to the longest path which ends at T0 in G∗c(φκ). The theorem follows.

Theorem 3 shows that, given an offline algorithm (κ, φκ), finding its makespan
is equivalent to finding the longest weighted path in the dynamic ordering conflict
graphG∗c(φκ). Therefore, the optimal schedule Opt is the offline algorithm which
minimizes the makespan.

Corollary 4 makespanOpt = minκ,φκ maxP∈G∗c(φκ) w(P)

It is easy to show that finding the optimal schedule is NP-hard. For the one-
shot scheduling problem, where each node issues a single transaction, if τ0 = τ
for all transactions T0 ∈ T and D � τ , the problem becomes the classical
node coloring problem. Finding the optimal schedule is equivalent to finding the
chromatic number χ(Gc). As [10] shows, computing an optimal coloring, given
complete knowledge of the graph, is NP-hard, and computing an approximation

within the factor of χ(Gc)
log χ(Gc)

25 is also NP-hard.
If s = 1, i.e., there is only one object shared by all transactions, finding the

optimal schedule is equivalent to finding the traveling salesman problem (TSP)
path in Gd, i.e., the shortest hamiltonian path in Gd. When the cost metric
dij satisfies the triangle inequality, the resulting TSP is called the metric TSP,
and has been shown to be NP-complete by Karp [9]. If the cost metric is sym-
metric, Christofides [2] presented an algorithm approximating the metric TSP
within approximation ratio 3/2. If the cost metric is asymmetric, the best known
algorithm approximates the solution within approximation ratio O(logm) [8].

When each node generates a sequence of transactions dynamically, it is not
always optimal to schedule transactions according to a χ(Gc)-coloring. Since the
conflict graph evolves over time, an optimal schedule based on a static conflict
graph may lose potential parallelism in the future. In the dynamic ordering con-
flict graph, a temporarily-optimal scheduling does not imply that the resulting
longest weighted path is optimal.

2.2 Lower bound

Our analysis shows that to compute an optimal schedule, even knowing all infor-
mation about the transactions in advance, is NP-hard. Thus, we design an online
algorithm which guarantees better performance than that can be obtained by
simple serialization of all transactions. Before designing the contention manager,
we need to know what performance bound an online contention manager could
provide in the best case. We first introduce the work conserving property [1]:

Definition 3 A scheduling algorithm is work conserving if it always runs a
maximal set of non-conflicting transactions.

In [1], Attiya et al. showed that, for multiprocessor STM, a deterministic
work conserving contention manager is Ω(s)-competitive, if the set of objects
requested by a transaction changes when the transaction restarts. We prove
that for DTM, the performance guarantee is even worse.

Theorem 5 For DTM, any online, work conserving deterministic contention

manager is Ω(max[s, s
2

D
])-competitive, where D := D

minGd dij
is the normalized

diameter of the cost graph Gd.

Proof. The proof uses s2 transactions with the same local execution duration τ .
A transaction is denoted by Tij , where 1≤i, j≤s. Each transaction Tij contains
a sequence of two operations {Ri,Wi}, which first reads from object oi and then

writes to oi. Each transaction Tij is issued by node vij at the same time, and
object oi is held by node vi1 when the system starts. For each i, we select a set
of nodes Vi := {vi1, vi2, . . . , vis} within the range of the diameter Di ≤ D

s .

Consider the optimal schedule Opt. Note that all transactions form an s× s
matrix, and transactions from the same row ({Ti1, Ti2, . . . , Tis} for 1≤i≤s) have
the same operations. Therefore, at the start of the execution, Opt selects one
transaction from each row, thus s transactions start to execute. Whenever Tij
commits, Opt selects one transaction from the rest of the transactions in row i
to execute. Hence, at any time, there are s transactions that run in parallel.

The order that Opt selects transactions from each row is crucial: Opt should
select transactions in the order such that the weight of the longest weighted path
in G∗c(Opt) is optimal. Since transactions from different rows run in parallel,
we have: makespanOpt = s · τ + max1≤i≤sTsp(Gd(oi)), where Gd(oi) denotes
the subgraph of Gd induced by s transactions requesting oi, and Tsp(Gd(oi))
denotes the length of the TSP path of Gd(oi), i.e., the shortest path that visits
each node exactly once in Tsp(Gd(oi)).

Now consider an online, work conserving deterministic contention manager
A. Being work conserving, it must select to execute a maximal independent set
of non-conflicting transactions. Since the first access of all transactions is a read,
the contention manager starts to execute all s2 transactions.

After the first read operation, for each row i, all transactions in row i
attempt to write oi, but only one of them can commit and the others will
abort. Otherwise, atomicity is violated, since inconsistent states of some trans-
actions may be accessed. When a transaction restarts, the adversary deter-
mines that all transactions change to write to the same object, e.g., {Ri,W1}.
Therefore, the rest s2 − s transactions can only be executed sequentially af-
ter the first s transactions execute in parallel and commit. Then we have:
makespanA ≥ (s2− s+ 1) · τ + minGd Tsp(Gd(s

2− s+ 1)), where Gd(s
2− s+ 1)

denotes the subgraph of Gd induced by a subset of s2 − s+ 1 transactions.

Now, we can compute A’s competitive ratio. We have: makespanA
makespanOpt

≥

max
[
(s2−s+1)·τ

s·τ ,
minGd Tsp(Gd(s

2−s+1))

max1≤i≤s Tsp(Gd(oi))

]
≥ max[s

2−s+1
s ,

(s2−s+1)·minGd dij

(s−1)·Ds
] =

Ω(max[s, s
2

D
]). The theorem follows.

Theorem 5 shows that for DTM, an online, work conserving deterministic
contention manager cannot provide a similar performance guarantee compared
with multiprocessor STM. When the normalized network diameter is bounded
(i.e., D is a constant, where new nodes join the system without expanding the
diameter of the network), it can only provide an Ω(s2)-competitive ratio. In
the next section, we present an online randomized contention manager, which
needs partial information of transactions in advance, in order to provide a better
performance guarantee.

3 Algorithm: Cutting

3.1 Description

We present the algorithm Cutting, a randomized scheduling algorithm based
on a partitioning constructed on the cost graph Gd. To partition the cost graph,
we first construct an approximate TSP path (ATSP path) in Gd AtspA(Gd) by
selecting an approximate TSP algorithm A. Specifically, A provides the approx-

imation ratio φA, such that for any graph G, AtspA(G)
Tsp(G) = O(φA). Note that if dij

satisfies the triangle inequality, the best known algorithm provides an O(logm)
approximation [8]; if dij is symmetric as well, a constant φA is achievable [2].
We assume that a transaction has partial knowledge in advance: a transaction
Ti knows its required set of objects oi after it starts. Therefore, a transaction
can send all its object requests immediately after it starts.

Based on the constructed ATSP path AtspA, we define the (C,A) partition-
ing on Gd, which divides Gd into O(C) partitions. A constructed partition P is
a subset of nodes, which satisfies either: 1) |P | = 1; or 2) for any pair of nodes
(vi, vj) ∈ P , dij ≤ AtspA

C .

Definition 4 ((C,A) partitioning) In the cost graph Gd, the (C,A) partition-
ing P(C,A, v) divides m nodes into O(C) partitions in two phases.

Phase I. Randomly select a node v, and let node vj be the jth node (excluding
v) on the ATSP path AtspA(Gd) starting from v. Hence, AtspA(Gd) can be
represented by a sequence of nodes {v0, v1, . . . , vm−1}.

Phase II. Inside each partition Pt = {vk, vk+1, . . .}, each node vk is assigned
a partition index ψ(vj) = (j mod k), i.e., its index inside the partition.
1. Starting from v0, add v0 to P1, and set P1 as the current partition.

2. Check v1. If AtspA(Gd)[v
0, v1] ≤ AtspA(Gd)

C , where AtspA(Gd)[v
1, v2] is the

length of the part of AtspA(Gd) from v0 to v1, add v1 to P1. Else, add v1

to P2, and set P2 as the current partition.
3. Repeat Step 2 until all nodes are partitioned. For each node vk and the cur-

rent partition Pt, this process checks the length of AtspA(Gd)[v
j , vk], where

vj is the first element added to Pt. If AtspA(Gd)[v
j , vk] ≤ AtspA(Gd)

C , vk

is added to Pt. Else, vk is added to Pt+1, and Pt+1 is set as the current
partition.

The conflict resolution also has two phases. In the first phase, Cutting
assigns each transaction a partition index. When two transactions T1 (invoked by
node vj1) and T2 (invoked by node vj2) conflict, the algorithm checks: 1) whether
they are from the same partition Pt; 2) If so, whether ∃ integer ν ≥ 1 such

that bmax{ψ(vj1),ψ(vj2)}
2ν c = min{ψ(vj1), ψ(vj2)}. Note that by checking these

two conditions, an underlying binary tree Bt(Pt) is constructed in Pt as follows:
1. Set vj0 as the root of Bt(Pt) (level 1), where ψ(vj0 = 0), i.e., the first node

added to Pt.
2. Node vj0 ’s left pointer points to vj0+1 and right pointer points to vj0+2.

Nodes vj0+1 and vj0+2 belong to level 2.

3. Repeat Step 2 by adding nodes sequentially to each level from left to right.
In the end, O(log2m) levels are constructed.

Note that by satisfying these two conditions, the transaction with the smaller
partition index must be an ancestor of the other transaction in Bt(Pt). There-
fore, a transaction may conflict with at most O(log2m) ancestors in this case.
Cutting resolves the conflict greedily so that the transaction with the smaller
partition index always aborts the other transaction.

In the second phase, each transaction selects an integer π ∈ [1,m] randomly
when it starts or restarts. If one transaction is not an ancestor of another transac-
tion, the transaction with the lower π proceeds and the other transaction aborts.
Whenever a transaction is aborted by a remote transaction, the requested object
is moved to the remote transaction immediately.

3.2 Analysis

We now study two efficiency measures of Cutting from the average-case per-
spective: the average response time (how long it takes for a transaction to commit
on average) and the average makespan (i.e., the expected value produced by the
randomization in the algorithm).

Lemma 6 A transaction T needs O
(
C log2m log n

)
trials from the moment it

is invoked until it commits, on average.

Proof. We start from a transaction T invoked by the root node vψ ∈ Bt(Pt).
Since vψ is the root, T cannot be aborted by another ancestor in Bt(Pt). Hence,
T can only be aborted when it chooses a larger π than π′, which is the integer
chosen by a conflicting transaction T ′ invoked by node vψ

′ ∈ Pt′ . The probability
that for transaction T , no transaction T ′ ∈ NT selects the same random number
π′ = π is: Pr(@T ′ ∈ NT |π′ = π) =

∏
T ′∈NT (1− 1

m) ≥ (1− 1
m)δ(T) ≥ (1− 1

m)m ≥
1
e . Note that δ(T) ≤ C ≤ m. On the other hand, the probability that π is at
least as small as π′ for any conflicting transaction T ′ is at least 1

(C+1) . Thus, the

probability that π is the smallest among all its neighbors is at least 1
e(C+1) .

We use the following Chernoff bound:

Lemma 7 Let X1, X2, . . . , Xn be independent Poisson trials such that, for 1 ≤
i ≤ n, Pr(Xi = 1) = pi, where 0 ≤ pi ≤ 1. Then, for X =

∑n
i=1Xi, µ = E[X] =∑n

i=1 pi, and any δ ∈ (0, 1], Pr(X < (1− δ)µ) < e−δ
2µ/2.

By Lemma 7, if we conduct 16e(C + 1) lnn trials, each having a success proba-
bility 1

e(C+1) , then the probability that the number of successes X is less than

8 lnn becomes: Pr(X < 8 lnn) < e−2 lnn = 1
n2 .

Now we examine the transaction T l invoked by node vψ
l ∈ Pt, where vψ

l

is
the left child of the root node vψ in Bt(Pt). When T l conflicts with T , it aborts
and holds off until T commits or aborts. Hence, T l can be aborted by T at most
16e(C+1) lnn times with probability 1− 1

n2 . On the other hand, T l needs at most
16e(C + 1) lnn to choose the smallest integer among all conflicting transactions

with probability 1− 1
n2 . Hence, in total, T l needs at most 32e(C + 1) lnn trials

with probability (1− 1
n2)2 > (1− 2

n2).

Therefore, by induction, the transaction TL invoked by a level-L node vψ
L

of Bt(Pt) needs at most (1 + log2 L) log2 L ·8e(C+ 1) lnn trials with probability

at least 1− (1+log2 L) log2 L
2n2 . Now, we can calculate the average number of trials:

E[# of trials a transaction needs to commit] = O
(
C log2m log n

)
.

Since when the starting point of the ATSP path is randomly selected, the
probability that a transaction is located at level L is 1/2Lmax−L+1. The lemma
follows.

Lemma 8 The average response time of a transaction is O
(
C log2m log n · (τ +

AtspA
C)

)
.

Proof. From Lemma 6, each transaction needs O
(
C log2m log n

)
trials, on av-

erage. We now study the duration of a trial, i.e., the time until a transaction
can select a new random number. Note that a transaction can only select a new
random number after it is aborted (locally or remotely). Hence, if a transac-
tion conflicts with a transaction in the same partition, the duration is at most
τ + AtspA

C ; if it conflicts with a transaction in another partition, the duration is
at most τ +D. Note that a transaction sends its requests of objects simultane-
ously once after it (re)starts. If a transaction conflicts with multiple transactions,
the first conflicting transaction it knows is the transaction closest to it. From
Lemma 6, a transaction can be aborted by transactions from other partitions by
at most 16e(C+1) lnn times. Hence, the expected commit time of a transaction
is O

(
C log2m log n · (τ + AtspA

C)
)
. The lemma follows.

Theorem 9 The average-case competitive ratio of Cutting is
O
(
s · φA · log2m log2 n

)
.

Proof. By following the Chernoff bound provided by Lemma 7 and Lemma 8,
we can prove that Cutting produces a schedule with average-case makespan
O
(
C log2m log n · (τ + AtspA

C) + (N · log2m log2 n · τ + AtspA)
)
, where N is

the maximum number of transactions issued by the same node. We then find
that makespanOpt ≥ max1≤i≤s

(
τ · max[γi, N] + Tsp(Gd(oi))

)
, since γi trans-

actions concurrently conflict on object oi. Hence, at any given time, only one
of them can commit, and the object moves along a certain path to visit γi
transactions one after another. Then we have: makespanOpt ≥ max1≤i≤s

(
τ ·

max[γi, N] + Tsp(Gd(oi))
)
≥ τ ·max[

∑
1≤i≤s γi

s , N] +
∑

1≤i≤s Tsp(Gd(oi))

s . There-

fore, the competitive ratio of Cutting is: makespanCutting

makespanOpt
= s · log2m log2 n ·

τ ·C+AtspA
τ ·
∑

1≤i≤s γi+
∑

1≤i≤s Tsp(Gd(oi))
. Note that C ≤

∑
1≤i≤s γi and∑

1≤i≤sTsp(Gd(oi)) ≥ Tsp(Gd). The theorem follows.

4 Conclusions

Cutting provides an efficient average-case competitive ratio. This is the first
such result for the design of contention management algorithms for DTM. The

algorithm requires that each transaction be aware of its requested set of objects
when it starts. This is essential in our algorithms, since each transaction can send
requests to objects simultaneously after it starts. If we remove this restriction,
the original results do not hold, since a transaction can only send the request of
an object once after the previous operation is done. This increases the resulting
makespan by a factor of Ω(s).

Acknowledgement

This work is supported in part by US National Science Foundation under grants
CNS-1116190.

References

1. H. Attiya, L. Epstein, H. Shachnai, and T. Tamir. Transactional contention man-
agement as a non-clairvoyant scheduling problem. In PODC, pages 308–315, 2006.

2. N. Christofides. Worst case analysis of a new heuristic for the traveling sales-
man problem. Technical Report CS-93-13, G.S.I.A., Carnegie Mellon University,
Pittsburgh, USA, 1976.

3. N. L. Diegues and P. Romano. Bumper: Sheltering Transactions from Conflicts.
In SRDS, pages 185–194, 2013.

4. N. L. Diegues and P. Romano. Time-warp: lightweight abort minimization in
transactional memory. In PPOPP, pages 167–178, 2014.

5. R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional con-
tention managers. In PODC, pages 258–264, 2005.

6. M. Herlihy and Y. Sun. Distributed transactional memory for metric-space net-
works. Distributed Computing, 20(3):195–208, 2007.

7. S. Hirve, R. Palmieri, and B. Ravindran. HiperTM: High Performance, Fault-
Tolerant Transactional Memory. In ICDCN, pages 181–196, 2014.

8. H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation algo-
rithms for asymmetric TSP by decomposing directed regular multigraphs. J. ACM,
52:602–626, 2005.

9. R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and
J. W. Thatcher (editors). Complexity of Computer Computations, pages 85–103,
1972.

10. S. Khot. Improved Inaproximability Results for MaxClique, Chromatic Number
and Approximate Graph Coloring. In FOCS, pages 600–609, 2001.

11. J. Kim, R. Palmieri, and B. Ravindran. Enhancing Concurrency in Distributed
Transactional Memory through Commutativity. In Euro-Par, pages 150–161, 2013.

12. R. Palmieri, F. Quaglia, and P. Romano. OSARE: Opportunistic Speculation in
Actively REplicated Transactional Systems. In SRDS, pages 59–64, 2011.

13. P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, and L. Rodrigues. An Optimal
Speculative Transactional Replication Protocol. In ISPA, pages 449–457, 2010.

14. P. Romano, R. Palmieri, F. Quaglia, N. Carvalho, and L. Rodrigues. Brief an-
nouncement: on speculative replication of transactional systems. In SPAA, pages
69–71, 2010.

15. M. M. Saad and B. Ravindran. HyFlow: a high performance distributed software
transactional memory framework. In HPDC, pages 265–266, 2011.

16. J. Schneider and R. Wattenhofer. Bounds on Contention Management Algorithms.
In ISAAC, pages 441–451, 2009.

17. G. Sharma, B. Estrade, and C. Busch. Window-Based Greedy Contention Man-
agement for Transactional Memory. In DISC, pages 64–78, 2010.

18. N. Shavit and D. Touitou. Software Transactional Memory. In PODC, pages
204–213, 1995.

19. K. Siek and P. T. Wojciechowski. Brief announcement: towards a fully-articulated
pessimistic distributed transactional memory. In SPAA, pages 111–114, 2013.

20. A. Turcu, B. Ravindran, and R. Palmieri. Hyflow2: a high performance distributed
transactional memory framework in scala. In PPPJ, pages 79–88, 2013.

21. B. Zhang and B. Ravindran. Dynamic analysis of the relay cache-coherence pro-
tocol for distributed transactional memory. In IPDPS, pages 1–11, 2010.

