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Abstract

Transactional Memory (TM) is a powerful abstraction for synchronizing activities of different threads
through transactions. TM implementations guaranteeing Disjoint-Access Parallelism (DAP) are highly de-
sirable on current multi-core architectures because they can exploit low-level parallelism. Unfortunately,
a number of results have been proved concerning the impossibility of implementing TMs that guarantee
different variants of the DAP property, as well as alternative consistency and liveness criteria.

This paper looks for a breach in the wall of existing impossibility results, by attempting to identify the
strongest consistency and liveness guarantees that a TM can ensure while remaining scalable — by ensuring
DAP — and maximizing efficiency in read-dominated workloads — by having invisible and wait-free read-
only transactions.

We show that implementing such a TM is indeed possible if one adopts as consistency criterion Extended
Update Serializability, combined with a weaker variant of real-time order, which we name Witnessable Real
Time Order. Interestingly the resulting semantics share a number of similarities with classic TM safety cri-
teria like Opacity and Virtual World Consistency, while allowing for scalable and efficient implementations.

Along the path of designing this protocol, we report two impossibility results related to ensuring real-
time order in a weakly DAP TM that guarantees wait-free read-only transactions considering different
progress criteria and both visible and invisible read-only transactions.

Finally, we also provide a lower bound on the space complexity of a strictly DAP TM that ensures a
very weak consistency criterion, called Consistent View. We leverage this result to prove that the proposed
protocol is optimal in terms of per object version spatial utilization.
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1 Introduction

Over the last decade, Transactional Memory (TM) [27] has emerged as an attractive paradigm for simplifying
parallel programming. The recent integration of TM in hardware by major chip vendors (e.g., Intel, IBM),
together with the development of dedicated GCC extensions for TM (i.e., GCC-4.7) has significantly increased
TM’s traction, paving the way for its adoption in mainstream software projects.

A property that is deemed as crucial for the scalability of a TM implementation is its ability to avoid any
contention on shared objects, also called base objects, between transactions that access disjoint data sets – a
property called disjoint-access parallelism (or DAP) [20]. Also, since many real-world workloads are often
read-dominated, another aspect that has a strong impact on performance of TM algorithms is to what extent
these optimize the processing of read-only transactions. In this sense, two main properties are regarded as
particularly important for read-only transactions: wait-freedom, i.e. (read-only) transactions should never be
blocked or aborted, and invisible reads, i.e. the execution of a read operation issued by a read-only transaction
should never trigger the update of any data or base object. We succinctly denote the former property as WFRO
and the latter as IRO, and their union as WFIRO.

Unfortunately, the literature on theory of TM has developed a number of impossibility results related to
implementing TM algorithms that guarantee different variants of the DAP property, as well as alternative con-
sistency and liveness criteria [4, 25, 15, 13, 8]. For instance, Attiya et al. [4] proved that an TM cannot be
weak DAP, ensure obstruction freedom and WFIRO, while guaranteeing Strict Serializability or even Snapshot
Isolation. More recently, Bushkov et al. [8] proved the impossibility of implementing a strict DAP TM that
guarantees obstruction freedom and a very weak consistency criterion, namely Weak Adaptive Consistency.

In this paper we attempt to find a breach in this wall of impossibility results, seeking an answer to the
following question: what are the strongest consistency and liveness guarantees that a TM can ensure while
remaining scalable — by ensuring DAP — and maximizing efficiency in read-dominated workloads — by
having invisible and wait-free read-only transactions? Our search space considers the Cartesian product of
the consistency criteria specified by Adya’s hierarchy [1] and of a set of liveness properties that comprises
both TM-specific criteria (weak and strong progressiveness [17]) as well as classical progress criteria originally
defined for shared objects (obtruction-, lock- and wait-freedom [18]).

Along the path that will lead us to answer the above question, we first prove 2 novel impossibility re-
sults. We show that if one selects any consistency criterion that ensures Real Time Order (RTO), and indepen-
dently of the isolation guarantees ensured among concurrent transactions, it is impossible to ensure also WFRO,
obstruction-freedom for update transactions and the weakest form of DAP. We also show that even assuming
weakly progressive update transactions [17], we are still faced with an impossibility result if we want the TM
to preserve the efficiency of read-only transactions by having them performing invisible reads.

These results highlight the necessity of relaxing RTO in order to implement a scalable TM that maximizes
the efficiency of read-only transactions by jointly guaranteeing DAP and WFIRO. This leads us to introduce a
weaker variant of RTO, which we name Witnessable Real Time Order (WRTO), which demands that the real
time order relation between two transactions is enforced only if these exhibit a data conflict. WRTO preserves
some desirable properties of classic RTO, such as that if a transaction T running solo issues a read on a data
item x, T is guaranteed to return the version of x produced by the last transaction to have committed before
T ’s start and updated x. On the other hand, WRTO admits schedules in which a set of sequential transactions
T2, T3 accessing disjoint data sets can be observed in an arbitrary order, which possibly contradicts their RTO
relations, by a concurrent transaction T4 (as exemplified by historyHWRTO in Figure 1). The WRTO property
is indeed designed in order to be amenable for DAP implementations, as it demands that RTO is enforced only
among conflicting transactions (that clearly access non-disjoint data sets), and which can track such ordering
relations via some shared base-object (which serves as a witness) without violating DAP.

We show that, by adopting WRTO, it is in fact possible to implement a WFIRO TM that guarantees the
strongest variant of DAP, strong progressiveness and a consistency criterion whose semantics is very close to
those provided by popular safety properties for TM, such as Opacity [16] or Virtual World Consistency [19].
This consistency criterion, known in the literature as Extended Update Serializability (EUS) [24] or PL-3U
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!!!!!!!!!!!!!!!!!!!!!!!!!T3:!!!b3!!W3(y3)!!c3!!!!!!!!!!!!!!!!!!!!!!T2:!!!b2!!W2(x2)!!c2!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!T1:!!!b1!!R1(x0)!!R1(y3)!!c1!!

!!!!!!!!!!!!!!!!T4:!!!b4!!R4(y0)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!R4(x2)!!c4!!

WRTO!

RTO!

HWRTO!=!{T2,T3,T4}!sa8sfies!EUS!and!WRTO!!but!not!RTO!!

HEUS!=!{T1,T2,T3,T4}!sa8sfies!EUS!but!neither!SER!nor!WRTO!!

Figure 1: Example of histories accepted by EUS and WRTO (dependence edges shown with thin lines, (W)RTO
edges with thick lines).

extended to executing transactions [1], guarantees the serializability of the history of committed update trans-
actions — hence ensuring the absence of anomalies for transactions that update the state of the system. Further,
analogously to Opacity or Virtual World Consistency, EUS provides guarantees also on transactions that even-
tually abort, ensuring that the snapshots that they observe must be producible by some equivalent serialization
of the history of (committed) update transactions. On the other hand, EUS admits non-serializable histories
in which read-only transactions may serialize update transactions in different orders (as it is the case for read-
only transactions T1 and T4 that observe T2 and T3 in different orders in history HEUS , see Figure 1). We
argue that this anomaly is a necessary price to pay to implement a DAP WFIRO TM (that ensures meaning-
ful progress guarantees for update transactions), as, while demonstrating the impossibility of implementing a
TM that guarantees DAP, WFIRO and Serializability, Attiya et al. [4] show the ineluctability precisely of this
anomaly.

2 Formalism and Assumptions

System and transaction execution model. We consider an asynchronous shared memory system composed of
Np processes (or threads) p1, . . . , pNp that communicate by executing transactions and may fail by crashing.

A transaction starts with a begin operation, and can be followed by a sequence of read and write operations
on shared objects, and finally completed by either a commit (or abort) operation. We denote with xi the version
of the object x committed by a transaction Ti, where i is an index that univocally identifies a transaction. We
note opi an operation issued by Ti and with OPi the set of operations issued by Ti, which is assumed to be
totally ordered. We denote the write operation of Ti on object x with Wi(xi), and use the notation Ri(xj) to
indicate that transaction Ti has read version xj of x written by transaction Tj . We say that two operations opi
and opj , with i 6= j, are conflicting if they access a common object x and at least one of them is a write.
History and DSG. A historyH over a set of transactions {T1, . . . , Tn} is a partial order≺H defined over the set
of operations OPH =

⋃n
i=1OPi such that i) ≺H preserves the ordering of the operations of each transaction Ti

(≺H⊇
⋃n

i=1OPi), and ii) for any two conflicting operations opi, opj ∈ H, either opi ≺H opj or opj ≺H opi.
In additionH implicitly induces a total order� on the committed versions of each object [1].

We define the Direct Serialization Graph DSG(H) on a history H (as in [1, 7]) as a direct graph with a
vertex for each transaction Ti inH and a directed edge from Ti to Tj , where i 6= j, if there exist two operations
opi,opj ∈ OPH such that opi ≺H opj or opj ≺H opi. As in [1], we distinguish three types of edges depending
on the type of conflicts between Ti and Tj :

- Direct read-dependence edge, if there exists an object x such that both Wi(xi) and Rj(xi) are in H. We
say that Tj directly read-depends on Ti and we use the notation Ti

wr−→ Tj .
- Direct write-dependence edge, if there exists an object x such that both Wi(xi) and Rj(xj) are inH and
xj immediately follows xi in the total order defined by�. We say that Tj directly write-depends on Ti
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and we use the notation Ti
ww−−→ Tj .

- Direct anti-dependence edge, if there exists an object x and a committed transaction Tk inH, with k 6= i
and k 6= j, such that both Ri(xk) and Wj(xj) are in H and xj immediately follows xk in the total order
defined by�. We say that Tj directly anti-depends on Ti and we use the notation Ti

rw
� Tj .

DAP and Invisible Reads. In this paper we rely on two versions of disjoint-access parallelism (DAP), namely
strict disjoint-access parallelism [15] (SDAP), and weak disjoint-access parallelism [4] (WDAP). A TM en-
sures SDAP if two transactions conflict on a common base object only if they access some common transactional
object. As base object we mean any information (data and meta-data) associated with a high-level transactional
object, that is accessible by transactions. On the other hand, a TM implementation ensures WDAP if two con-
current transactions T1 and T2 conflict on a common base object only if there is a path that connect the two
transactions in the undirected version of the DSG of the minimal execution interval containing the execution
intervals of T1 and T2 [4].

A read operation Ri performed by Ti is called invisible if does not apply a write operation on any base
object. Otherwise it is called visible. A read-only transaction performing only invisible reads, is called invisible.
Progress guarantees. A TM is strongly progressive [17] if (i) transactions executed by the TM that do not
encounter any conflict must be able to commit, and (ii) at least one transaction among a set of transactions
that only conflict on one common object must be able to commit. A weaker form of this progress condition,
i.e., weak progressiveness, has also been defined in [17], which requires that a transaction can only abort if it
experiences a conflict.

We consider two additional liveness properties, namely obstruction-freedom and wait-freedom. A TM is
obstruction-free [15] if for every history H executed by the TM, a transaction Ti ∈ H is forcefully aborted
only if Ti encounters step contention. We have a step contention for a transaction Ti if a process different from
the one running Ti executes a step after the first operation of Ti and before its completion (whether commit or
abort). As for wait-freedom we adopt the definition adapted for TM that was introduced in Attya et al. [4]: a TM
is wait-free [18] if any transaction executed by a non-faulty process eventually commits in a finite number of
steps despite the behavior of concurrent transactions1. We consider processes as non-faulty if they do not crash
and they are not parasitic, i.e., they eventually request the commit of every transaction that they start unless
they crash before [9].
Consistency criteria. Throughout our paper we will refer to the hierarchy of consistency criteria defined by
Adya [1], which encompass a number of criteria defined in terms of the anomalies that they proscribe.

The minimum correctness level considered in this paper is the well known Read Committed level [6] in-
cluded by the formalization of the PL-2 level in [1]. PL-2 includes both PL-2+ and EUS, and it proscribes
the anomalies G1a, G1b and G1c. Proscribing G1a means that values created by transactions that abort can-
not be observed. Anomaly G1b allows for observing intermediate non-committed values. Finally, avoiding
anomaly G1c ensures the absence of an oriented cycle of all dependence edges in the DSG(Hc) graph built
on the historyHc, whereHc is derived fromH by removing aborted and executing (i.e. ongoing) transactions.
Informally, an TM implementation that guarantees PL-2, allows a transaction Tk to only read the updates of
transactions that have committed by the time Tk commits.

We consider also a correctness criterion stronger than PL-2, named Consistent View (PL-2+) [1]. Besides
G1a, G1b, G1c, PL-2+ prevents the G-single anomaly, hence avoiding that DSG(H) contains an oriented
cycle with exactly one anti-dependence edge. Roughly speaking, PL-2+ demands that transactions are always
provided with a consistent view of the transactional state, as long as write transactions apply their changes
consistently.

Finally, EUS [24], also called PL-3U extended to executing transactions by Adya [1], is a consistency
criterion stronger that PL-2+. EUS proscribes the same anomalies of PL-2 as well as Extended G-update,
namely the DSG(Hupc

Tk
) graph built on the committed write transactions inH plus transaction Tk inH contains

an oriented cycle with one or more anti-dependence edges.
1We adopt the definition provided in [4] because we want to relate the results presented in this paper with the ones presented in [4].

For a formal definition of the strongest progress condition specifically defined for (S)TM, i.e., local progress, refer to the work in [9].
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The graph considered in the Extended G-update anomaly only includes committed write transactions and
at most one additional transaction Tk belonging to one among the following categories: aborted, executing
or read-only transactions. EUS admits non-serializable histories, as illustrated in history HEUS of Figure 1,
which allows two read-only transactions (T4 and T1 in HEUS) to observe in different orders the commits of
non-conflicting update transactions (T2 and T3 inHEUS).

On the other hand, the only discrepancies in the serialization orders observable by read-only, executing
and aborted transactions under EUS are imputable to the re-ordering of update transactions that neither conflict
(directly or transitively) on data, nor are causally dependent. In other words, the only discrepancies perceivable
by end-users are associated with the ordering of logically independent concurrent events, which has typically
no impact on the correctness of a wide range of real-world applications [1].
Real-Time Order and Witnessable Real-Time Order. Real-Time Order (RTO) is a partial order defined over
a transaction history H, noted ≺RTO

H , which reflects the happened-before relation between transactions in a
history. A transaction Tq is ordered before Tk in RTO, Tq ≺RTO

H Tk, if the commit operation cq of Tq precedes
the begin operation bk of Tk inH.

We introduce a weaker variant of RTO, which we call Witnessable Real Time Order (WRTO), which tracks
happened-before relations exclusively between directly conflicting transactions, or formally Tq ≺WRTO

H Tk if
Tq ≺RTO

H Tk and Tq and Tk conflict.
A historyH preserves RTO, respectively WRTO, if after having included in DSG(H) a direct edge ∀Tq, Tk

inH, such that Tq ≺RTO
H Tk, respectively Tq ≺WRTO

H Tk, then the resulting graph does not contain cycles that
include Tq and Tk. An example history that ensures WRTO but not RTO is shown in Figure 1 (HWRTO), in
which T4 that runs concurrently with two update transactions T3 and T2, where T2 runs sequentially after T3

(hence T2 ≺WRTO
H T3) and update disjoint data sets (hence T2 ⊀WRTO

H T3), observes the committed versions
of T2 but not those of T3.

3 The Impossibility Results on DAP and Real-Time Order

In this Section we try to understand whether it is possible to combine RTO and a reasonable consistent criterion
in DAP TM that guarantees also desirable guarantees such as WFRO and IRO.

To answer this, we prove that a DAP TM cannot guarantee both RTO and WFRO if the progress requirement
for write transactions is obstruction-freedom (Theorem 1). The result is independent of the provided consistency
level and the visibility of read-only transactions. The intuition underlying the proof is that any TM that does
not violate the RTO between any pair of transactions having a direct conflict (i.e., WRTO), then the TM must
also admit a history that violates RTO.

Theorem 1 Given a WDAP, obstruction-free TM, that guarantees WFRO, ∃H accepted by the TM such thatH
does not preserve RTO.

Proof. The proof follows by contradiction and throughout the proof we assume that two different transactions
are executed by two distinct processes. We assume by contradiction that ∀H accepted by the TM H preserves
RTO. Hence, the TM must at least preserve WRTO.

Therefore every read operation in H must return the last value committed at the time the operation was
executed. Formally, for each transaction Th in H and object x, if rh(xj) is in H, then @xk, where xj � xk, at
the time rh(xj) begins its execution.

This is mandatory because of the following two reasons: (i) As the system must ensure WDAP, and as
we are assuming that the set of data items to be accessed during the transactions execution is not a priori
known, then during the begin a transaction Th cannot access any base object in order to determine the set of
transactions that have already committed before Th started. If it did, in fact, there always exists a history in
which Th accesses a base object y that is being updated by a transaction Tq, which registers its commit event
in y and such that Tq is not connected to Th via a path in the conflict graph, hence violating WDAP. (ii) If
the last committed value is not returned by a read operation, there always exist two histories H? and H̄, and a
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transaction Th such thatH? and H̄ are indistinguishable for Th and Th violates WRTO in H̄. The two histories
are defined as H? = bh, bq,Wq(xq), cq, Rh(x0), ch and H̄ = bq,Wq(xq), cq, bh, Rh(x0), ch (where we assume
that x0 is the initial value of x), and we say that they are indistinguishable for Th because the operations of Th

perform the same steps (i.e., returns the same values) in both histories.
Note that Th must commit in both histories because it is wait-free (as it is a read-only transaction). In

addition, Tq must commit because it is obstruction-free and it has the opportunity to run solo in both histories.
Now we show that always reading the last available version of an object causes the violation of RTO,

thus contradicting the hypothesis. In fact, a TM adopting that policy can accept history HWRTO depicted in
Figure 1, where T4 is a read-only transaction and y0 is the initial version of y. History HWRTO does not
preserve RTO because i) T3 ≺RTO

HWRTO
T2 and ii) there exists the oriented path T2

wr−→ T4
rw

� T3 from T2 to
T3 in DSG(HWRTO).

Note that, in the execution that generatesHWRTO, T3 cannot abort even if the TM accepts visible read-only
transactions, otherwise the TM would not guarantee obstruction-free update transactions. This follows by the
fact that: i) T3 is not able to distinguish between an execution that generatesHWRTO and an execution in which
T4 commits before T3 begins; ii) T3 cannot wait for the commit of T4, otherwise the execution of T3 is slowed
down due to possible interruption (or crash) of the execution of the process running T4.

Therefore we have showed that a WDAP, obstruction-free TM, that guarantees WFRO and at least WRTO,
can always generate a history likeHWRTO that violates RTO. Hence a WDAP, obstruction-free TM, that guar-
antees WFRO, does not preserve RTO, namely ∃H accepted by the TM such that H does not preserve RTO.

ut

In the next result we analyze the possibility to have real-time order when considering weak progressive-
ness as the progress guarantee for write transactions. The answer is still negative (Theorem 2) if we require
WFIRO, namely wait-free and invisible read-only transactions. The idea behind the proof follows the one of
Theorem 1 and considers also that write transactions cannot detect a conflict with read-only transactions due to
the invisibility of the latter. For space constraints we leave the proof of Theorem 2 in the Appendix.

Theorem 2 Given a WDAP, weakly-progressive TM, that guarantees WFIRO, ∃H accepted by the TM such
thatH does not preserve RTO.

Interestingly there exists a SDAP TM implementation proposed in [3] that guarantees Opacity (and hence
RTO), and which can be easily shown to ensure WFRO. However, this TM adopts visible read-only transactions
(hence not contradicting Theorem 2), because their execution needs to block the commit of concurrent and
conflicting write transactions.

Another SDAP TM implementation that also guarantees invisible read-only and strongly progressive trans-
actions while preserving Opacity is TLC [5]. However TLC is not able to guarantee wait-free read-only trans-
actions, thus again one of the hypothesis of Theorem 2 is not met by that algorithm.

4 A SDAP TM with Real-Time Order of Conflicting Transactions

In [4], authors prove that it is impossible to combine WDAP and WFIRO in a TM implementation that guar-
antees (Strict) Serializability [23] or Snapshot Isolation [6]. Since these properties are still highly desirable, in
this section we look for the strongest consistency criterion among those included in the Adya’s hierarchy that a
TM can ensure while preserving meaningful progress guarantee for update transactions.

As for what concerns RTO, our result in Theorem 2 assesses the impossibility of implementing a WDAP
TM that guarantees WFIRO, RTO, even assuming a very weak progress criterion such as weakly progressive
write transactions.

In the light of this set of impossibility results we target as consistency criterion EUS combined with WRTO.
The choice of these consistency levels allows us to design a SDAP TM algorithm, which enforces WFIRO and
guarantees strong progressiveness for update transactions. We note that the impossibility result in [8] prevents
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Algorithm 1 Read operation of transaction tx on process pi
1: Val read(T tx, Var v)
2: if ∃ val′ : < v, val′ > ∈ tx.writeSet then
3: return val′

4: [Val result,bool mostRecent]← doRead(tx, v)
5: if tx.writeSet 6= ∅ ∧mostRecent = ⊥ then
6: abort(tx)
7: else
8: return result
9:

10: [Val,bool] doRead(T tx, Var v)
11: Version ver ← v.mostRecentV ers
12: while nonVisible(tx,ver) ∨ unsafe(tx,ver,v) do
13: if tx.upperS[ver.cid] ≥ ver.S[ver.cid] then
14: tx.upperS[ver.cid]← ver.S[ver.cid]− 1

15: ver ← ver.prev
16: end while
17: pi.maxS[ver.cid]←max(pi.maxS[ver.cid], ver.S[ver.cid]
18: tx.readSet← tx.readSet ∪ < v, ver >
19: return [ver.value, ver = v.mostRecentV ers]

20:
21:

22: bool nonVisible(T tx, Version ver)
23: if ∃k : tx.upperS[k] 6= −1 ∧ tx.upperS[k] < ver.S[k] then
24: return >
25: return ⊥
26:
27: bool unsafe(T tx, Version ver, Var v)
28: if ∃k : pi.maxS[k] < ver.S[k] then
29: if locked(v) then
30: return >
31: for all < v, version >∈ tx.readSet do
32: if overwritten(tx, v, version, ver) then
33: return >
34: return ⊥
35:
36: bool overwritten(T tx, Var vRead, Version verRead, Version

target)
37: Version curr ← vRead.mostRecentV ers
38: while curr 6= verRead do
39: if curr.S ≤ target.S then
40: return >
41: end while
42: return ⊥

our algorithm from being able to achieve obstruction freedom, as it guarantees EUS (which is stronger than
Weak Adaptive Consistency) and SDAP.

In the following algorithm we rely on vector clocks as identifiers of the snapshots committed and as refer-
ences to select the right versions during read operations. Specifically, each process pi maintains a vector clock,
maxS, where maxS[k] records the maximum timestamp of process pk as seen by pi; and a scalar, tc, that
stores the timestamp associated to the last commit of process pi. In addition, each transaction Ti has also a
vector clock, upperS, where upperS[k] represents the bound that Ti cannot exceed when reading a version
written by process pk.

To univocally identify the commits in a totally decentralized way, each version is associated with two
identifiers, i.e., cid and S. The former is the identifier of the process having committed that version, while the
latter is the vector clock the identifies the committed snapshot containing the version.

The core idea behind the proposed algorithm is similar to the one of the SDAP extension of TL2 presented
in [5], i.e., TLC. Both protocols, in fact, ensure SDAP since transactions can only synchronize on public data
structures, e.g., cid and S, associated with transactional objects and only if they execute read/write operations
on those objects. Further, unlike TLC, our proposal is able to guarantee that read-only transactions always
commit because their read operations always return the right version belonging to the last committed consistent
snapshot that they can observe without violating EUS or WRTO.

Throughout the description of the algorithm the binary relation ≤ is used to define an order for both scalar
values and vector clock values. In case of scalar values the relation is the standard less-than-or-equal relation
defined for natural numbers. On the contrary, in case of vector clock values the relation has the meaning defined
as follows. For each pair of vector clock values v1, v2, the pair 〈v1, v2〉 is in ≤, by also writing v1 ≤ v2, if
∀i, v1[i] ≤ v2[i]. If there exists also an index j such that v1[j] < v2[j], where < is the standard less relation
defined for natural numbers, then v1 < v2 holds.
Handling read and write operations. Now we focus on the key aspects of the protocol. The read operation
(see Algorithm 1) on x of transaction Ti is responsible for seeking the appropriate object version to read,
according to the transaction’s history. Clearly, if x has been previously written by Ti, the read operation returns
the written value. Otherwise, the versions chain associated with x is traversed from the newest committed
version to the oldest one. Specifically for each version ver, the vector clocks upperS and maxS are compared
to ver’s snapshot S. If maxS ≥ S, which means that the process that is executing Ti has already observed
a snapshot at least as recent as S, then ver can be observed by the read of Ti. There are two scenarios in
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Algorithm 2 Commit operation of transaction tx on process pi
1: commit(T tx)
2: if tx.writeSet 6= ∅ then
3: VectorClock newS← [0, . . . , 0]
4: for < v, val >∈ tx.writeSet do
5: bool locked← tryLock(v)
6: if locked = ⊥ then
7: abort(tx)
8: else
9: newS ←max(newS, v.mostRecentV ers.S)

10: for < v, version >∈ tx.readSet do
11: bool locked← trySharedLock(v)
12: if locked = ⊥ then
13: abort(tx)

14: for < v, version >∈ tx.readSet do
15: if version 6= v.mostRecentV ers then

16: abort(tx)
17: else
18: newS ←max(newS, v.mostRecentV ers.S)

19: pi.tc++
20: newS[i]← pi.tc
21: pi.maxS[i]← pi.tc
22: for < v, val >∈ tx.writeSet do
23: Version newV ersion
24: newV ersion.value← val
25: newV ersion.S ← newS
26: newV ersion.cid← i
27: newV ersion.prev ← v.mostRecentV ers
28: v.mostRecentV ers← newV ersion
29: for < v,− >∈ tx.readSet ∪ tx.writeSet do
30: unlock(v)

which the current version could not be readable by Ti: when upperS < S on the significant entries (i.e., those
different from -1), or when maxS is less than or not comparable with S. In these scenarios, in fact, reading
the version could lead to a history that violates EUS. In the former scenario, Ti cannot read ver because it
belongs to a snapshot already skipped by Ti in a previous read, which has serialized Ti before the transaction
that committed the snapshot S (that includes version ver). In the latter scenario, Ti has to check if by reading
version ver, which implies serializing Ti after the transaction T ′ that committed ver, it is still possible to
serialize all the reads already performed by the transaction after T ′ (which is tracked by advancing maxS to
S). For this reason, a re-validation of the read-set of Ti is needed to check if there exists a version ver? that has
been committed after any version in Ti’s read-set, and the snapshot that contains ver? is serialized before the
snapshot that contains ver (which can be determined by comparing the vector clocks of their snapshots S). In
this aspect, the proposed algorithm shares similarities with LSA [26], which also forces a re-validation of the
read-set in analogous circumstances, but which relies on a shared global clock and is therefore non-DAP.

After each read operation, maxS is updated by computing the maximum between the snapshot S of the
returned version and the current transaction’s maxS. Finally the transaction keeps track of the read version
through the read-set. During a read operation only write transactions can be aborted if they cannot access the
newest version of read object.

The write operation is straightforward. It logs only the written object in the transaction’s write-set and, in
case a write is executed multiple times on the same object, only the last value is maintained in the write-set.
Handling commit operation. When a transaction tries to commit (see Algorithm 2), it tries to acquire an
exclusive lock on each object stored in its write-set, thus it can safely add a new version to the chain. If at
least one of the lock acquisitions fails the transaction immediately aborts. After that, transaction tries to acquire
shared locks on the objects listed in its read-set. As before, a failed lock acquisition triggers the abort of the
transaction. Only after a successful acquisition of all the requested locks, the transaction validates its read-set
(by checking that the read versions are the last committed ones) and flushes the write-set into shared memory,
as in classical multi-version TM implementations [26, 10].

Finally the snapshot S of each newly committed version (i.e., newS in the pseudocode) results in a vector
clock greater than all the most recent committed snapshots associated with the objects in the read-set and
write-set. Further, the cid of those versions is equal to the identifier of the process executing the committing
transaction.

For space constraint we have to insert the correctness proof of the algorithm in the Appendix. Concern-
ing liveness guarantees, the presented algorithm ensures wait-free read-only transactions (recall that we are
assuming parasitic-free histories, see Section 2) and strong progressive update transactions. The former follows
trivially from that we never block or abort a read-only transaction. As for update transactions, they achieve
strong progressiveness as the commit scheme that they adopt follows the lock-based scheme implemented in
TL2 [12], which has been already proved to guarantee strong progressiveness in [17].
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Figure 2: Read-only transaction Ti creating a cycle C with exactly one anti-dependence edge in DSG(H).

5 Spatial complexity of ensuring WFIRO in a SDAP TM

We now investigate the spatial cost, in terms of metadata to be stored in the base object associated with each
object version, which need to be incurred by a SDAP TM that guarantees WFIRO and WRTO. We prove a
lower bound that holds assuming the Consistent View consistency criterion (a.k.a. as PL-2+, see Section 2) and
assuming weak-progressiveness or obstruction freedom for update transactions.

In order to derive an implementation-independent proof, we use an innovative proof technique, which shows
an equivalence between the problem of detecting cycles containing exactly-one anti-dependence edges using a
SDAP TM, and determining causality in a distributed message passing system.

The intuition behind the proof is that whenever a read-only transaction executes a read operation, it needs
to detect whether that operation creates a cycle with one anti-dependence edge in the conflict graph associated
to the current history. This check has to be performed without indiscriminately access all the information asso-
ciated to the conflict graph due to the existence of the SDAP requirement, but only extracting this information
via the base objects associated with the objects that it accesses.

Theorem 3 Given a SDAP TM that guarantees WFIRO, Consistent View, WRTO and either obstruction free-
dom or weak-progressiveness for the update transactions, then the space complexity for each version of a datum
is Ω(m), where m = min(No, Np).

Proof. To guarantee Consistent View, the TM has to ensure that every accepted history H does not contain a
cycle C with exactly one anti-dependence edge in the DSG(H). We assume that an initial version of each data
item d exists in the TM, which we denote with d0. Now consider the history H whose DSG(H) is shown in
Figure 2, in which the first transaction to execute in absence of concurrency is Tq, which commits version xq.
As we are assuming obstruction-freedom or weak-progressiveness, the TM cannot refuse Tq’s commit.

Next in H a read-only transaction Tro issues a read on object x. As we are assuming WFRO, the read
operation of Tro must eventually return some value. Assume, with no loss of generality, that the value xq is
returned. Next, and before Tro takes any other step (e.g., because it was descheduled), transaction Tj starts,
writes xj and d1j (where we assume object d1 6= x) and commits (we will shortly prove that this commit cannot
be rejected by the TM). Following the commit of Tj , the set of update transactions T ={T1,. . .,Ti,. . .,Ts−1,Ts}
is executed sequentially. Each transaction Ti ∈ T issues the following operations inH: Ti starts, reads a object
di, writes a different object di+1, and requests to commit. We further assume that each transaction Ti runs solo,
i.e. Ti+1 starts only after Ti commits. As we are assuming that transaction T1 and the transactions in T run
solo, they must commit if we assume obstruction-freedom. If we assume weak-progressiveness, on the other
hand, Tj may abort due to the presence of anti-dependence from Tro. However, since we are assuming invisible
read-only transactions, Tj cannot detect the occurrence of this conflict, and, also in this case, it cannot abort.

Now assume that Tro issues a read operation on object ds+1. At this point, as Ts committed version
ds+1
s , Tro needs to decide whether to observe this version. Note that since Tro has already developed an

anti-dependence towards T1, if Tro observed ds+1
s , Consistent View would be violated, as a cycle with exactly

one anti-dependence would be created. Also, since we are assuming that the TM ensures WRTO, it cannot
deterministically return the initial version ds+1

0 . In fact, using such a deterministic policy, it is straightforward
to show that a read-only transaction T ′ may trivially miss the version committed by an update transaction that
commits before T ′ starts.
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Also, in the assumed history, Tro cannot be aware of having developed an anti-dependence towards Tj , as
we are assuming IRO. Hence, by no means, Tro could have transmitted any information to Tj on the execution
of its read on xq. Further, no other transaction could have notified Tro of the existence of such anti-dependence.

Note that if Tro ignored the possibility of having developed new anti-dependences when determining the
visibility of ds+1

s , it could miss cycle C, and violate Consistent View. It follows that Tro has to first validate its
current read-set, which comprises only xq. This allows Tro to detect the anti-dependence with Tj , and poses
Tro with the problem to determine whether there exists an oriented path from Tj to Ts (in which case ds+1

s

should not be observed). Note that since we are assuming a SDAP TM, Tro needs to detect the existence of a
path of direct dependencies from Tj to Ts, without however being able to query any of the base objects that the
transactions T1,. . .,Ts−1 accessed (as Tro accesses a disjoint data set with respect to these transactions).

In a SDAP TM in fact the only way for transactions to transmit information concerning the conflicts that
they develop is via the base objects associated with the transactional objects that they access. The transmission
of this information can be emulated considering a distributed message passing system (DS) comprising the
same number of processes considered in the TM, namely Np. Consider, in particular, the following simulation:
for each direct read-dependence edge Ti

wr−→ Ti+1 ∈DSG(H) developed by a pair of write/read operations on
version di+1

i of transactional object di+1, we can associate the events of send, resp. receive, of a message mi,i+1

in DS from pi, resp. to pi+1. Since the communication of any type of information on the ordering of events in
a SDAP TM can only take place via base objects, this can be simulated in the DS by assuming that mi,i+1 can
only be tagged with the information that Ti had stored in the base object associated with version di+1

i , at the
time in which Ti created it. Analogously for the direct anti-dependence edge Tro

rw
� Tj ∈DSG(H) developed

by the operations R(xq) and W (xj), we can associate the events of send, resp. receive, of a message mj,ro in
DS from pj , resp. to pro. What triggers the sending of this message in this history is the fact that Tro has to
access the base object of xj (and of all existing versions of x) in order to validate its read-set.

With this simulation we have transformed the problem of determining whether there exists a path from Tj to
Ts in DSG(H) based on the information available to Tro, to the problem of having the process pro (that executes
transaction Tro) in DS to determine whether the two messages mj,ro and ms,ro are causally ordered [21], namely
mj,ro ≺DS ms,ro. Thanks to the result in [14, 22], in a distributed system of Np processes such as DSTM ,
given two events e and e′, e ≺DS e′ iff Θ(e) < Θ(e′), where Θ(e) (respectively Θ(e′)) is the vector clock
of size Np associated to event e (respectively e′). Hence, the base objects, which represent the only way to
exchange information on the relative ordering of operations in a SDAP TM, need to have a space capacity
equals [11] to Ω(Np).

An alternative approach to encode the entire set of dependencies developed by a transaction T during its
execution is to store in the base objects associated to the versions created by T a vector containing a scalar for
each transactional object in the TM (hence vector clocks have size equal to No). A TM implementing such a
technique is for instance shown in Ardekani et al. [2], and is based on the idea of tracking in the d-th entry of a
base object associated with an object version created by transaction T , a scalar that identifies the version of d
that is visible to T .

To summarize, we have shown that a lower bound on the spatial cost for the base objects of a SDAP TM
that guarantees Consistent View, WFIRO, WRTO and obstruction-freedom (or weak-progressiveness), is Ω(m),
where m = min(No, Np).

ut

It should be noted that, whenever the number of processes is less than the number of shared objects (which
is normally the case), the algorithm presented in Section 4 meets this lower bound and is therefore optimal.

6 Relations with Existing Impossibility Results

The result of Theorem 1 enriches the result showed in [4] because the lower bound defined on the number of
write operations that have to be executed by read-only transactions in a Strict Serializable and WDAP TM with
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obstruction-free write transactions, is only a necessary condition to ensure wait-free read-only transactions.
In fact, our result is independent of the visibility of read-only transactions and states that such a TM does
not preserve the real-time order. Since Strict Serializability demands that the equivalent serialization order of
committed transactions also preserves real-time order among them [23, 16], by Theorem 1 no WDAP TM with
obstruction-free write transactions and wait-free read-only transactions can ever guarantee Strict Serializability
even by applying the number of non-trivial, i.e., write, operations in the read-only transactions according to the
lower bound in Attiya et al. [4].

In Perelman et al. [25], the authors prove that a WDAP TM cannot guarantee MV-permissiveness and Strict
Serializability. MV-permissiveness allows only write transactions to abort due to conflicts with other write
transactions, and therefore it guarantees that read-only transactions are not forcefully aborted. If we suppose
a parasitic-free system, this property defines liveness guarantees for both read-only and write transactions. In
particular, on one side by ensuring that a transaction eventually requests to commit, MV-permissiveness implies
wait-free read-only transactions; on the other side, since write transactions may be forcefully aborted due to a
conflict with other write transactions, the property entails weakly progressive write transactions. Furthermore
the authors suppose the invisibility of read-only transactions since they cannot either abort or block the exe-
cution of concurrent write transactions. Therefore the impossibility presented in Perelman et al. [25] use the
same assumptions of Theorem 2 and proves that such a TM cannot guarantee Strict Serializability. However the
result is weaker than the one of Theorem 2, because the latter states that the impossibility to combine WDAP,
wait-free invisible read-only transactions and weakly progressive write transactions is due to the real-time order,
and it is independent of the isolation level required, e.g. Serializability.

The impossibility result by Guerraoui and Kapalka [15] rules out any possibility to combine a SDAP TM
and obstruction-free transactions if the target isolation level is Serializability. This is because, besides the formal
proof, the paper shows an execution as a counterexample to support the proof that we can use as is to extend
the result to EUS as well. The authors consider an execution admitted by obstruction-free TM implementations
with 3 write transactions T1, T2, T3 such that: (i) T2 and T3 must commit because of the obstruction-freedom
condition, (ii) the commit of T1 would violate Serializability of the resulting history and (iii) the abort of T1

would violate the SDAP condition. Since the example only considers write transactions and proves that is
impossible to combine Serializability of write transactions with obstruction-freedom in a SDAP TM, we could
not consider obstruction-free as target liveness property for write transactions in the TM presented in Section 4,
because EUS demands committed write transactions to be Serializable.

This same impossibility result [15] has been recently superseded by the results of the PCL theorem [8].
The theorem proves that transactions cannot be parallel, consistent and live even by assuming obstruction-
freedom and Weak Adaptive Consistency — a consistency criterion even weaker than Processor Consistency
and Snapshot Isolation. The proposed SDAP implementation of TM overcomes this impossibility result by
assuming a different liveness property. In particular, by changing the liveness from obstruction-freedom to
strong progressiveness of only write transactions we are able to ensure: (i) the maximum level of liveness for
read-only transactions without enforcing their visibility; (ii) a consistency criterion that is close to Opacity and
combines EUS and WRTO.

7 Conclusion

We presented a possibility, as well as two impossibility results about implementing DAP TMs that ensure ef-
ficient (i.e., wait-free and invisible) read-only transactions. On one side, we presented a protocol proving the
feasibility of building a SDAP TM, combined with invisible and wait-free read-only transactions, and preserv-
ing EUS (a consistency criterion that provides guarantees very close to Opacity and Virtual World Consistency)
and WRTO (a variant of classic real-time order restricted to conflicting transactions). In addition, we derived
a lower bound on the space complexity of implementing a SDAP TM that guarantees EUS, WRTO, WFIRO
and obstruction freedom (or weak progressiveness). We also proved that ensuring real-time order and DAP is
impossible independently of the assumed isolation criterion and considering different liveness criteria.
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Appendix

Theorem 2 Given a WDAP, weakly-progressive TM, that guarantees WFIRO, ∃H accepted by the TM such that
H does not preserve RTO.

Proof. The proof follows by contradiction and throughout the proof we assume that two different transactions
are executed by two distinct processes. We assume by contradiction that ∀H accepted by the TM H preserves
RTO. Hence, the TM must at least preserve WRTO. As showed in the proof of Theorem 1, this is possible
only if the read policy implemented in the WDAP TM ensures that transactions always read the last available
version of an object. But if this is the case, the TM can accept history HWRTO depicted in Figure 1, where T4

is a read-only transaction and y0 is the initial version of y. History HWRTO does not preserve RTO because i)
T3 ≺RTO

HWRTO
T2 and ii) there exists the oriented path T2

wr−→ T4
rw

� T3 from T2 to T3 in DSG(HWRTO).
Note that, even if the TM guarantees weakly progressive write transactions, Tq and Tk cannot abort in

HWRTO because they cannot detect their conflict with Th, as read-only transaction Th is invisible according to
the hypothesis.

Therefore we have showed that a WDAP, weakly progressive TM, that guarantees WFIRO and at least
WRTO, can always generate a history like HWRTO that violates RTO. As a consequence a WDAP, weakly
progressive TM, that guarantees WFIRO, does not preserve RTO, namely ∃H accepted by the TM such thatH
does not preserve RTO. ut
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Figure 3: Write and read operations a transaction on process pi simulated by DSTM .

Lemma 1 Given a SDAP, multi-version TM that guarantees PL-2 isolation level, wait-free and invisible read-
only transactions and has Np processes that execute transactions, we can build a message-passing distributed
system DSTM with Np processes, such that:
th1. ∀i, q and object x, the DSTM has a sequence of events that simulate the operations Ri(xq) and Wi(xi).
th2. Given pi and pj , two processes executing respectively transactions Tq and Th and historyH executed by

TM such that Tq ∈ H and Th ∈ H, if Tq
ww−−→ Th ∈ DSG(H) ∨ Tq

wr−→ Th ∈ DSG(H) then for each
pair of objects x, y (with possibly x equals to y),
if Wq(xq) ∈ H and Wh(yh) ∈ H⇒ eiWq(xq)

≺DS ejWh(yh)
.

The events eiWq(xq)
, ejWh(yh)

are the events that simulate the finalization respectively of the write operation
Wq(xq) of Tq on the process pi in DSTM and of the write operation Wh(yh) of Th on the process pj in DSTM .
The ≺DS is the happened-before relation in DSTM as defined in [21].

Proof. We can build the distributed system DSTM as follows: for each process pi running transactions, we
have a process pi in DSTM . Processes in DSTM can communicate only by exchanging messages. Since
the TM is SDAP we allow two processes in DSTM to exchange messages only if the associated processes
in the TM execute conflicting transactions. To do so, we associate with process pi, a version xk of object x
if the corresponding process in TM runs a transaction Tk that executes a write operation Wk(xk). Note that
the DSTM does not simulate read operations of read-only transactions since those are invisible. Operations
executed by write transactions in TM are simulated in DSTM as listed below.
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Write operation Wh(xh). Process pi in TM runs transaction Th that writes version xh of object x. We suppose
that the last version of x before this write operation is xq. In addition xq has been previously written by
transaction Tq in execution on process pj . Then DSTM executes the following steps as in Figure 3(a): i) pi
sends a message m to pj by means of the event eisend(W,x) in order to simulate that Th writes after Tq on x; ii)

pj sends a message m′ to pi by means of the event ejsend(W,xq)
after the event ejreceive(W,x) on the reception of

message m; iii) pi generates the event eiWh(xh)
after the event eireceive(W,xq)

on the reception of message m′.

Since the previous write operation Wq(xq) is completed in DSTM by means of the event ejWq(xq)
and before

the event ejreceive(W,x), it follows that ejWq(xq)
≺DS eiWh(xh)

.
Read operation Rh(xq). Process pi in TM runs transaction Th that reads version xq of object x. We suppose that
transaction Tq writes xq and process pj runs Tq. Then DSTM executes the following steps as in Figure 3(b): i)
pi sends a message m to pj by means of the event eisend(R,x); ii) pj sends a message m′ to pi by means of the

event ejsend(R,xq)
after the event ejreceive(R,x) on the reception of message m; iii) pi generates the event eiRh(xq)

after the event eireceive(R,xq)
on the reception of message m′. Since the write operation Wq(xq) is completed in

DSTM by means of the event ejWq(xq)
and before the event ejreceive(R,x), it follows that ejWq(xq)

≺DS eiRh(xq)
.

Following the above rules, we have showed (th1) how to build DSTM on a SDAP TM with invisible read-
only transactions.

Now we prove th2 by contradiction. We assume by a way of contradiction that, given a SDAP, multi-
version TM that guarantees wait-free and invisible read-only transactions, for each history H if Tq

ww−−→ Th ∈
DSG(H) ∨ Tq

wr−→ Th ∈ DSG(H) and there exist two write operations Wq(xq) ∈ H and Wh(yh) ∈ H
such that ejWh(yh)

≺DS eiWq(xq)
∨ eiWq(xq)

‖ ejWh(yh)
, then H may violate the PL-2 isolation level. We use

eiWq(xq)
‖ ejWh(yh)

to state that neither ejWh(yh)
≺DS eiWq(xq)

nor eiWq(xq)
≺DS ejWh(yh)

hold.
In particular we distinguish two cases:

- ejWh(yh)
≺DS eiWq(xq)

. Then there may exist a transaction Tk such that Wk(yk) ∈ H, where yh � yk, and
Wk(xk) ∈ H, where xk � xq, and Tk executes Wk(yk) before Wk(xk). This is admissible because there
exists a process pl in DSTM that generates two events elWk(yk)

and elWk(xk)
such that ejWh(yh)

≺DS elWk(yk)
,

elWk(yk)
≺DS elWk(xk)

, elWk(xk)
≺DS eiWq(xq)

.

- eiWq(xq)
‖ ejWh(yh)

. Then there may exist a transaction Tk such that Wk(yk) ∈ H, where yh � yk, and
Wk(xk) ∈ H, where xk � xq, and Tk executes Wk(xk) before Wk(yk). This is admissible because
eiWq(xq)

||ejWh(yh)
and therefore there exists a process pl in DSTM that generates two events elWk(yk)

and

elWk(xk)
such that ejWh(yh)

≺DS elWk(yk)
, elWk(xk)

≺DS elWk(yk)
, elWk(xk)

≺DS eiWq(xq)
.

However in both cases transactions Th, Tq and Tk generate a cycle of dependencies in DSG(H),i.e.

Tq
ww/wr−−−−→ Th

ww−−→ Tk
ww−−→ Tq, and this contradicts the hypothesis of an TM that guarantees PL-2 isola-

tion level [1]. ut

Algorithm Correctness proof

In this Section we prove the correctness of the algorithm presented in Section 4 and therefore we prove that
every history H accepted by the algorithm does not violate EUS. For the sake of clarity, throughout the proof
we refer to the algorithm as A. In addition we prove that every history H accepted by the algorithm does not
violate WRTO.

We recall that a historyH does not violate EUS if the following anomalies are prevented (as defined in [1]):
- G1a. H contains the operations Wq(xq), Rk(xq) and aq. This means that transactions Tk has read a

version written by an aborted transaction Tq.
- G1b. H contains the operations Wq(xq), Rk(xq) and Wq(xq) is not the last write of Tq on x. This means

that transaction Tk has read an intermediate non-committed value of x.
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- G1c. The DSG(Hc) graph built on the history Hc derived from H by removing aborted and executing
(i.e. ongoing) transactions contains an oriented cycle of all dependence edges.

- Extended G-update. The DSG(Hupc
Tk

) graph built on the committed write transactions inH plus transac-
tion Tk inH contains an oriented cycle with one or more anti-dependence edges.

We use the prefix Extended for the G-update anomaly because Tk is allowed to be either completed, thus
aborted or committed, or ongoing. Note that EUS includes PL-2 isolation level, which prevents anomalies G1a,
G1b and G1c, and Consistent View (PL-2+) isolation level because the G-update anomaly is more restrictive
than the one characterizing Consistent View, i.e. the DSG(Hc) graph contains an oriented cycle with exactly
one anti-dependence edge.

We do not formally prove thatA avoids anomalies G1a and G1b because this is trivially guaranteed since i)
for each object x and transaction Tk, Tk’s write-set always contains only the outcome of the last write operation
executed on x by Tk and ii) the Tk’s write-set is made available to read operations at commit time and only if
Tk commits.

The formal prove is organized as follows: we first prove that the historyHupc derived fromH by removing
aborted, executing (i.e. ongoing) and read-only transactions does not contain any oriented cycle, thus showing
that A prevents anomaly G1c and the anomaly Extended G-update where Tk is a committed write transaction
(Lemma 2); then we prove that the DSG(Hupc

Tk
) graph does not contain any oriented cycle, where Tk is a

committed read-only transaction inH, thus showing thatA prevents anomaly Extended G-update where Tk is a
committed read-only transaction (Lemma 3). Finally the Theorem 4 concludes the formal proof by taking into
account that an aborted or ongoing transaction at time t can be considered as a committed read-only transaction
constituted by its prefix at time t that contains all its read operations performed until time t, except the read
operation which has triggered an abort (if any).

Lemma 2 For each historyH accepted byA, the DSG(Hupc) graph built on the historyHupc derived fromH
by removing aborted, executing (i.e. ongoing) and read-only transactions does not contain any oriented cycle.

Proof. The proof follows by contradiction. In particular we prove that if such a cycle exists, this violates the
total order property on natural numbers. Therefore we suppose that the DSG(Hupc) contains an oriented cycle
C. In addition, for each vertex Tq in C, we associate: i) the vector clock Tq.commitV C that is the newS
vector clock used by Tq to commit new versions; ii) the vector clock Tq.readV C that is the Tq’s maxS vector
clock at the time Tq starts the commit phase.

Now we show that for each edge Tq −→ Tk ∈ C, where Tq and Tk are committed update transactions
in Hupc, Tq.commitV C < Tk.commitV C. Therefore we distinguish three cases depending on the type of
dependence between Tq and Tk:

- Tq
ww−−→ Tk. In this case there exists an object x such that Wq(xq) ∈ Hupc, Wk(xk) ∈ Hupc and xq � xk.

Due to the lock acquisition on the objects in the write-sets, Tq already committed when Tk starts the
commit. Therefore Tq.commitV C < Tk.commitV C because: i) Tk.commitV C ≥ Tq.commitV C
since Tk builds Tk.commitV C starting from Tk.readV C and by means of a maximum operation among
the vector clocks associated to the newest versions of the objects to be written; ii) there exists an index j
such that the Tk.commitV C[j] > Tq.commitV C[j], where pj is the process executing Tk. The latter is
true because Tk increments by 1 the j-th entry of Tk.commitV C before writing the new versions.

- Tq
wr−→ Tk. In this case there exists an object x such that Wq(xq) ∈ Hupc, Rk(xq) ∈ Hupc. Therefore

the status of Tk.readV C right after the execution of Rk(xq) is at least equals to Tq.commitV C because
Tk.readV C is updated by means of max(Tk.readV C, Tq.commitV C).
In addition Tk.commitV C > Tk.readV C because: i) Tk builds Tk.commitV C starting from Tk.readV C
and by means of a maximum operation among the vector clocks associated to the newest versions of the
objects to be written; ii) there exists an index j such that the Tk.commitV C[j] > Tk.readV C[j], where
pj is the process executing Tk, as proved for the previous case.
As a consequence Tq.commitV C < Tk.commitV C.

- Tq
rw

� Tk. In this case there exists an object x such that Wk(xk) ∈ Hupc, Rq(xh) ∈ Hupc and
xh � xk. Tq has completed its commit before the finalization of the commit of Tk otherwise we would
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have that: i) either Tq aborts due to a failed shared lock acquisition on x or validation of x, or ii) Tk

aborts due to a failed exclusive lock acquisition on x. As in the first case, Tq and Tk are two conflicting
update transactions where the commit of Tk follows the commit of Tq. Therefore Tq.commitV C <
Tk.commitV C.

As a consequence if the cycle C exists we would have Tq.commitV C < Tq.commitV C, where Tq is a
vertex in C, that is clearly impossible. Therefore the DSG(Hupc) graph does not contain any oriented cycle. ut

Lemma 3 For each historyH accepted byA, the DSG(Hupc
Tk

) graph built on the committed write transactions
inH plus committed read-only transaction Tk inH does not contain any oriented cycle.

Proof. The proof follows by contradiction. In particular we prove that if such a cycle exists, this violates
the total order property on natural numbers. Therefore we suppose that the DSG(Hupc

Tk
) graph built on the

committed transactions inH plus committed read-only transaction Tk inH contains an oriented cycle C.
By the result of Lemma 2, C must involve the read-only transaction Tk because the DSG(Hupc) is acyclic.

In addition, following the proof of Lemma 2, for each vertex Tq in C, we associate: i) the vector clock
Tq.commitV C that is the newS vector clock used by Tq to commit new versions (if any); ii) the vector clock
Tq.readV C that is the Tq’s maxS vector clock at the time Tq starts the commit phase.

As a consequence we prove that:
- for each committed update transaction Tq such that Tq

wr−→ Tk is in C, Tq.commitV C ≤ Tk.readV C;
- for each committed update transaction Tq such that Tk

rw
� Tq is in C, there exists an index j such that

Tk.readV C[j] < Tq.commitV C[j].
The former is verified because there exists an object x such that Wq(xq) ∈ Hupc

Tk
, Rk(xq) ∈ Hupc

Tk
and the

status of Tk.readV C right after the execution of Rk(xq) is at least equals to Tq.commitV C since Tk.readV C
is updated by means of max(Tk.readV C, Tq.commitV C).

The latter is verified because there exists an object x such that Wq(xq) ∈ Hupc, and Tk skips version xq
when it executes Rk(xh) ∈ Hupc, where xh � xq.

Afterwards by following the proof of Lemma 2, for each dependence or anti-dependence Tq −→ Th, we have
Tq.commitV C < Th.commitV C if both Tq and Th are committed write transactions.

As a consequence there exists an index j such that Tq.commitV C[j] < Tq.commitV C[j], for each com-
mitted write transaction in C, and Tk.readV C[j] < Tk.readV C[j], which are both impossible.

Therefore we have proved that the DSG(Hupc
Tk

) does not contain any oriented cycle. ut

Theorem 4 For each historyH accepted by A,H does not violate EUS.

Proof. By Lemma 2 the history Hupc derived from H by removing aborted, executing and read-only trans-
actions does not contain any oriented cycle. Since a cycle of all dependence edges cannot involve a read-only
transaction, then the DSG(Hc) on Hc derived from H by removing aborted and executing transactions does
not contain any oriented cycle of all dependence edges. In this way we have proved that H cannot generates
anomaly G1c.

On the other sideH cannot generates anomaly Extended G-update for the following reasons:
- The DSG(Hupc

Tk
) graph built on the committed write transactions inH plus transaction Tk inH does not

contain any oriented cycle with one or more anti-dependence edges if Tk is a committed write transaction.
This follows by the Lemma 2, because in this case Hupc

Tk
= Hupc and the DSG(Hupc) graph does not

contain any oriented cycle.
- The DSG(Hupc

Tk
) graph built on the committed transactions inH plus a committed read-only transaction

Tk does not contain any oriented cycle by the result of Lemma 3 and therefore it does not contain any
oriented cycle with one or more anti-dependence edges.

- The DSG(Hupc
Tk

) graph built on the committed transactions in H plus an aborted or executing Tk does
not contain any oriented cycle by the result of Lemma 3 and by considering that an executing or an
aborted transaction at time t can be treated as a committed read-only transaction constituted by its prefix
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at time t that contains all its read operations performed until time t, except the read operation which has
triggered an abort (if any). This is an admissible reduction since write operations are buffered during the
execution of a transaction and they are externalized (i.e. the updates are applied) only upon a successfully
completed commit phase.
Therefore the DSG(Hupc

Tk
) graph does not contain any oriented cycle with one or more anti-dependence

edges.
As a consequence we have proved that for each historyH accepted by A,H does not violate EUS. ut

Theorem 5 ∀H accepted by A,H preserves WRTO.

Proof.
We suppose that ∃H accepted by A such that H does not preserve the real-time order among conflicting

transactions in H. Therefore there are two conflicting transactions Tq and Tk such that Tq ≺H Tk and at least
one of the following condition is verified:

1. ∃x such that both Wq(xq) and Wk(xk) are inH and xk � xq.

2. ∃x such that both Wq(xq) and Rk(xh) are inH and xh � xq.

Condition 1. is impossible because:
- By nature of transactions if Tq ≺H Tk then cq ≺H ck.
- A applies write operations at commit time and only if a transaction successfully commits.
- InA the total order on the versions of an object is defined by the total order of the commits on that object.

Therefore xq � xk inH that contradicts condition 1.
Condition 2. is impossible because:

- A has forced the read of xh because Tk could not read xq in H. This happens if there exists a version yr
in Tk’s read-set and a version yt, where yr � yt, such that the snapshot vector clock of yt is less than or
equals to the snapshot vector clock of xq, i.e. yt.snapshot ≤ xq.snapshot. Without loss of generality
we suppose that the read of yr, i.e. Rk(yr), is the first read of Tk and the read of xh, i.e. Rk(xh) is the
second one.
If that is the case the write operation on yt is executed after the write operation on xq because at the
time Tk executed its first read operation Rk(yr) it returned the most recent version of y and it didn’t find
version yt. In addition, at that time transaction Tq had already committed since Tq ≺H Tk. Therefore
we have the contradiction such that the write on yt is executed after the write on xq and yt.snapshot ≤
xq.snapshot. In fact, since A can be simulated by the distributed system DSA (Lemma 1), we have that
eqWq(xq)

≺DS etWt(yt)
and yt.snapshot > xq.snapshot.

Since we have proved that both conditions are impossible it must be that ∀H accepted by A, H preserves
WRTO.

ut
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