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Abstract—We present the first ever distributed transactional
memory (DTM) framework for distributed concurrency control in
C++, called HyflowCPP. HyflowCPP provides distributed atomic
sections, and pluggable support for policies for concurrency con-
trol, directory lookup, contention management, and networking.
While there exists other DTM frameworks, they mostly target
VM-based languages (e.g., Java, Scala). Additionally, HyflowCPP
provides uniquely distinguishing TM features including strong
atomicity, closed and open nesting, and checkpointing. Our
experimental studies revealed that HyflowCPP achieves up to
6x performance improvement over state-of-the-art DTM frame-
works.

I. INTRODUCTION

Transactional systems based on Software Transactional
Memory (STM) are increasingly becoming a promising tech-
nology for designing and implementing transactional applica-
tions. STM is a framework for managing concurrent operations
on a shared data set. With STM, programmers organize code
that read/write in memory elements (e.g., memory chunks or
object pointers) as memory transactions, and the framework
transparently ensures transactional properties such as atomic-
ity, consistency, and isolation [1]. The transactional abstrac-
tion thus allows programmers to easily implement concurrent
applications by simply enclosing parts of the code accessing
shared data in transactions, without being burdened with the
mechanisms needed to ensure transactional properties. More-
over, relying on STM means that, programmers do not have
to cope with deadlocks, livelocks, lock convoying, etc., which
are the typical pitfalls when synchronization mechanisms are
manually implemented. As a result, code reliability increases
and development time is shortened.

The nature of STM in memory transactions results in trans-
action execution times that are several orders of magnitude
smaller than that in conventional transactional systems [2].
This allows STM systems to simultaneously service a massive
number of concurrent requests. In fact, STM’s popularity has
grown with the widespread adoption of multi-core architec-
tures, simply because these architectures can naturally support
an increased level of application parallelism.

Distributed STM is a logical way to exploit STM’s ad-
vantages in distributed settings i.e., systems with nodes inter-
connected using message passing links. In particular, pitfalls
of manual, lock-based distributed synchronization (e.g., dis-
tributed deadlocks, distributed livelocks) are orders of magni-
tude harder to debug than those in a multiprocessor setting.
DTM’s (distributed) transactional abstraction is therefore a
compelling distributed synchronization abstraction. Addition-
ally, DTM protocols are increasingly becoming a way to target

scalability due to their superior performance in comparison
with manually implemented distributed locks [3], [4], [5].

Most existing DTM frameworks are prototyped on top of
VM-based programming languages (e.g., Java, Scala): Cluster-
STM [6], D2STM [7], DiSTM [8], GenRSTM [9], Hyflow-
Java [3], and HyflowScala [10]. Some DTM implementations
have been developed for C and C++: DMV [11], Cluster-
STM [6], and Sinfonia [12]. However, DMV and Cluster-
STM are implemented as proofs-of-concept and Sinfonia is
designed as a backup and restore service, rather than as DTM
frameworks.

C++ is one of the most popular programming languages
for high performance systems. In the last decade a number
of protocols for DTM have been proposed, and some of
them have been developed. The languages usually adopted
for their implementation are based on virtual machine (e.g.,
Java, Scala). The reason is typically related to the current
technological trend. In fact, in order to easily integrate such
systems with benchmarks, applications and other sub-systems
recently implemented, the designers adhere to the employment
of these programming languages. Even though the support for
a transparent integration with other systems is a critical feature
for several products, their performance still certainly represents
the core comparison point among different possible solutions.

Lower level programming languages, like C++, enable the
programmer to exploit architectural advantages that could bias
system performance. This is especially true in transactional
applications based on in memory operations like STM or DTM
in which the overhead for layering the framework, ensuring
information hiding and wrapping methods typically results in
more complex execution flow composed by several steps that
significantly impact the overall performance. This is the reason
many high-performance production systems are developed in
C++, instead of VM-based languages, usually, to overcome
performance issues inherent in VM-based languages [13].

In addition, memory management in C++ is manual. Even
though this results in a more complex implementation of trans-
actional framework, it potentially eliminates garbage collection
overheads of VM-based environments. Moreover, consider-
ing the absence of I/O interactions in the STM transactions
processing, having the direct control of memory manage-
ment allows specific optimization unfeasible with VM-based
languages. Therefore, a C++ framework for DTM is highly
desirable as that enables DTM support for a popular language,
and provides high-performance distributed concurrency control
for C++ applications with high programmability.

Motivated by these observations, we design and imple-
ment HyflowCPP, the first ever DTM framework for C++.



HyflowCPP has a modular architecture and provides pluggable
support for various DTM policies (e.g., concurrency control,
directory lookup, contention management, networking) and a
simple atomic section-based DTM interface. The distributed
concurrency control currently implemented in the framework
is TFA [14]. TFA uses Herlihy and Sun’s dataflow execution
model [15] (in which objects migrate and transactions are
immobile). The adoption of TFA as a baseline protocol for
managing concurrent requests allows a fair comparison of
HyflowCPP against the same TFA implementation in two VM-
based DTM frameworks such as HyflowJava [3] and HyflowS-
cala [16], highlighting the actual benefit of the lower level
programming language. Furthermore, HyflowCPP embeds sup-
port for using closed [17] and open [18] nested transactions
and checkpointing [19]. To the best of our knowledge, no past
DTM frameworks in C++ support all these features.

We evaluated HyflowCPP through a set of experimental
studies that measured transactional throughput on an array of
micro- and macro-benchmarks, and compared with past VM-
based DTM systems such as GenRSTM, DecentSTM, Hyflow-
Java, and HyflowScala. The key result from our experimental
studies is that, HyflowCPP outperforms its nearest competitor,
HyflowScala, by a factor of 6. Other competitors, including
GenRSTM, DecentSTM, and HyflowJava, perform even worse
in comparison to HyflowScala.

Additionally, we conducted an evaluation contrasting the
two typical approaches for implementing partial rollback of
transactions as a way to minimize the time to retry a transaction
after its abort, namely checkpointing and closed-nesting. The
experiments reveal that, unlike in [20] where closed-nesting is
always better than checkpointing due to the cost of saving and
restoring memory images, in HyflowCPP, exploiting the effi-
cient mechanism for saving execution states without incurring
significant overheads [21], the checkpointing technique ensures
better performance. Generally, we show that HyflowCPP’s
checkpointing outperforms flat nesting by as much as 100%
and closed nesting by as much as 50%. Open nesting-based
transactions outperform flat nesting by as much as 140%
and closed nesting by as much as 90%. These trends are
consistent with past DTM studies on nesting [17], [22], but our
relative improvements (i.e., checkpointing and open nesting
when compared to closed nesting) are higher, which can be
attributed to a more efficient design and the limited overheads
of various mechanisms in C++ [13].

The rest of the paper is organized as follows: Section II
describes TFA, transaction nesting and checkpointing, which
represent the background for this work. Section III details the
programming model of HyflowCPP and Section IV describes
HyflowCPP’s architecture. We report our experimental results
in Section V, and conclude in Section VI.

II. BACKGROUND

In this section we provide a brief introduction to TFA, the
base protocol implemented in HyflowCPP. We then proceed to
describe the different transaction nesting models and transac-
tion checkpointing.

A. TFA Protocol

Transactional Forwarding Algorithm (TFA) [14] is a lock-
based DTM algorithm with lazy lock acquisition and buffered

writes. All read objects are stored in a local read-set, so all
reads can later be revalidated. Written objects are also stored
in a local write-set.

TFA uses a variant of the Lamport clocks mechanism to
establish “happens before” relationships across nodes. Each
distributed node has a local clock lc and atomically increments
its local clock on the commit of every transaction that changes
the shared state (write transactions). All messages sent between
nodes piggyback the local clock value of the sender node.
Upon receiving such a message, each node compares the
remote clock value included in the message with its own local
clock. If the remote value is greater, the local clock is updated
to this greater value.

Each transaction records the local clock value lc at the time
it starts (i.e., starting clock, sc). Then, when it communicates
with remote nodes (for the purpose of accessing new objects),
it compares the clock value of the remote node (rc) to its
own start clock (sc). If rc > sc, the transaction undergoes
a Transactional Forwarding procedure: it validates its read-
set, and, should that be successful, updates its starting time to
sc = rc. If the validation fails the transaction aborts. Validation
is performed by comparing the object’s latest version with the
current transaction’s start clock.

B. Nested Transactions and Checkpointing

Transactions are nested when they appear within another
transaction’s boundary. Transaction nesting makes code com-
posability easy: multiple operations inside a transaction will be
executed atomically, regardless of whether the said operations
contain transactions or not, and without breaking encapsula-
tion. This is an important advantage of transactional memory
when compared to traditional lock-based synchronization.

Three transactional nesting models were proposed in the
literature: Flat, Closed [23] and Open [24], [23].

Flat nesting is the simplest form of nesting, which simply
ignores the existence of transactions in inner code. All op-
erations are executed in the context of the parent transaction.
Aborting any inner-transaction causes the parent transaction to
abort. Clearly, flat nesting does not provide any performance
improvement over non-nested transactions.

Closed nesting allows inner-transactions to abort individ-
ually. Aborting an inner-transaction does not necessarily lead
to also aborting the parent transaction (i.e., partial rollback is
possible). However, inner-transactions’ commits are not visible
outside the parent transaction. An inner-transaction commits its
changes only into the private context of its parent transaction,
without exposing any intermediate results to other transactions.
Only when the parent transaction commits, the shared state is
modified.

Open nesting considers the operations performed by sub-
transactions at a higher level of abstraction, in an attempt
to avoid false conflicts occurring at the memory level. It
allows inner-transactions to commit or abort individually, and
their commits are globally visible immediately. In case an
enclosing transaction aborts, due to any fundamental conflicts
(i.e., not false) at the higher levels of abstraction, all the inner-
transactions are roll-backed by using compensating actions,
which are predefined for each abstract operation.



Checkpointing [25], [26] addresses this issue by allowing
execution to return to any previously saved state (checkpoint)
within the current transaction, regardless of whether the sub-
transaction encompassing that checkpoint is still active or not.
This allows developing a very fine grained partial rollback
mechanism, which can identify the exact operation to rollback
execution to, in order to resolve the current conflict. On abort, a
checkpoint that can resolve the conflict is located and activated,
effectively reverting transaction execution to the state it had at
the time the checkpoint was originally taken. The program
control flow is managed by saving and restoring the thread’s
execution state (i.e., CPU registers and activation stack) and
employs a mechanism called continuations [27].

III. PROGRAMMING INTERFACE

Since objects are dispersed over nodes in a distributed
setting and normal object references cannot be used, we
provide a base class called HyflowObject, which must be
inherited by each object. HyflowObject provides a getId()
method, which returns a unique key to access the object
from anywhere in the network. HyflowCPP serializes/de-
serializes objects using the Boost serialization library [28].
Each extended HyflowObject field is registered with the Boost
serialization function, for serialization/de-serialization over the
network. HyflowCPP provides two transactional interfaces:
macros and atomic classes.

A. Transaction Support using Macros

HYFLOW ATOMIC START, HYFLOW ATOMIC END.
These macros are provided to define atomic sections. Any
object can be opened in the Read or Write mode. Once an
object is requested, HyflowCPP fetches the object from its
current location and copies it to the transaction read-set or
write-set depending upon the access type. Objects are accessed
using the macro HYFLOW FETCH.
HYFLOW ON READ, HYFLOW ON WRITE. These
macros are used for reading or writing, respectively, the fetched
objects. HYFLOW ON READ returns a constant reference
pointer to HyflowObject. HYFLOW ON WRITE returns a
non constant object reference pointer. The constant reference
pointer can also be used in place of unique object key to
retrieve an object in write mode.
HYFLOW PUBLISH OBJECT. This macro is used for pub-
lishing a locally created object in the distributed directory.
HYFLOW PUBLISH DELETE This macro is used to pub-
lish a cancellation of an object in the distributed directory.
HYFLOW CHECKPOINT INIT. This macro is used for
initiating the checkpointing environment.
HYFLOW CHECKPOINT HERE. This is used for creating
a checkpoint of transactional execution.
HYFLOW STORE. The macro is used by the programmer
to save any primary data structure object on the stack or the
heap. For heap objects, the programmer is responsible for
creating object copies and managing memory; the macro only
saves the address value. The macro’s arguments include the
variable reference and value, and it automatically restores the
saved value when the transaction resumes from the selected
checkpoint.

Figure 1 reports the implementation of add and remove
operations on a Linked List using the presented HyflowCPP
macros. Figure 2 shows how checkpointing can be imple-
mented in a transaction (part of Bank benchmark). Note that

c l a s s Lis tNode : : Hyf lowObjec t {
. . .
void Lis tNode : : addNode ( i n t v a l u e ) {

HYFLOW ATOMIC START{
s t d : : s t r i n g head=”HEAD” ;
HYFLOW FETCH( head , f a l s e ) ;
L i s tNode∗ headNRead =( L i s tNode ∗ )

HYFLOW ON READ( head ) ;
s t d : : s t r i n g o ldNex t =headNRead−>g e t N e x t I d ( ) ;
L i s tNode∗ newNode=new Lis tNode ( va lue ,

L i s tBenchmark : : g e t I d ( ) ) ;
newNode−>s e t N e x t I d ( o ldNex t ) ;
HYFLOW PUBLISH OBJECT( newNode ) ;
L i s tNode∗ headNodeWri te =( L i s tNode ∗ )

HYFLOW ON WRITE( head ) ;
headNodeWrite−>s e t N e x t I d ( newNode−>g e t I d ( ) ) ;

} HYFLOW ATOMIC END;
}
void Lis tNode : : d e l e t e N o d e ( i n t v a l u e ) {

HYFLOW ATOMIC START{
s t d : : s t r i n g head ( ”HEAD” ) ;
s t d : : s t r i n g p rev =head , n e x t ;
HYFLOW FETCH( head , t rue ) ;
t a r g e t N =( Li s tNode ∗ )HYFLOW ON READ( head ) ;
n e x t = t a r g e t N−>g e t N e x t I d ( ) ;
whi le ( n e x t . compare ( ”NULL” ) != 0){

HYFLOW FETCH( next , t rue ) ;
t a r g e t N =( Li s tNode ∗ )HYFLOW ON READ( n e x t ) ;
i n t nodeValue= t a r g e t N−>g e t V a l u e ( ) ;
i f ( nodeValue == v a l u e ) {

Lis tNode∗ prevNode =( Li s tNode ∗ )
HYFLOW ON WRITE( p rev ) ;

L i s tNode∗ c u r r e n t N o d e =( L i s tNode ∗ )
HYFLOW ON WRITE( n e x t ) ;

prevNode−>s e t N e x t I d ( cu r r en tNode−>
g e t N e x t I d ( ) ) ;

HYFLOW DELETE OBJECT( c u r r e n t N o d e ) ;
break ;

}
p rev = n e x t ;
n e x t = t a r g e t N−>g e t N e x t I d ( ) ;

}
} HYFLOW ATOMIC END;

}
}

Fig. 1. The implementation of add and remove operations in HyflowCPP.

void BankAccount : : t r a n s f e r ( Acc1 , Acc2 , Money ) {
HYFLOW ATOMIC START{

HYFLOW CHECKPOINT INIT ;
wi thdraw ( Acc1 , Money , c o n t e x t ) ;
HYFLOW CHECKPOINT HERE;
d e p o s i t ( Acc2 , Money , c o n t e x t ) ;

}HYFLOW ATOMIC END;
}

Fig. 2. Checkpointing in a Bank transfer function

the current context instance must be passed to the withdraw
function. This requirement exists for all functions which are
called within the atomic block and are required to be executed
atomically.

B. Transaction Support using Atomic class

Using the Atomic class interface, the transaction context
can be directly manipulated and any function can be executed
atomically. The programmer can assign a desired function
pointer value to the atomically function pointer of the
Atomic class instance. Later, the execute method in the



Atomic class instance can be called to execute the desired
function atomically. The Atomic class also provides function
pointers to support nesting features like open nesting. Specif-
ically, the onCommit and onAbort functions are specified
for the HyflowObject requiring open nesting support.

IV. SYSTEM ARCHITECTURE

Figure 3 shows HyflowCPP’s architecture of a transactional
node. It is made of six modules. The transaction interface
module is summarized in Section III. Here, we will focus on
a subset of the rest of the modules.

  

Fig. 3. HyflowCPP’s node’s architecture

Transaction Validation Module.

The entire concurrency control logic is performed in the Trans-
action Validation Module (TVM) by extending the base class
HyflowContext. By default, HyflowContext is extended as DTL-
Context, which is responsible for providing the implementation
of the concurrency control algorithm (i.e., TFA). DTLContext
is an interface offering all the calls needed for implementing
its own concurrency control protocols. Extending this class, the
programmer can easily integrate a new contention manager in
the FyFlowCpp. TVM validates memory locations and retries
the transactional code if needed upon commit or abort. The
module can also be configured for supporting checkpointing,
closed and open nesting.

This module also provides the data structures needed for
managing all the transactional contexts (i.e., the meta-data
associated to the on-going transactions). The most relevant
structures are: the lock-table, used for object-level or word-
level locking (implemented using the concurrent hash-map
of TBB library [29]); the context-map, a concurrent hash
table providing access to transactional contexts indexed by
transaction ID. The latter structure enables the contention
manager to manage meta-data and to make updates to different
transactional contexts.

Object Access Module

The Object Access Module (OAM) provides facilities to
manage distributed shared objects and to interact with the
distributed objects directory for changing the object ownership,
performing remote validation and updating the directory itself.

Objects are located using the unique object ID. The module
encapsulates a directory lookup protocol to access distributed
objects.

The OAM contains two efficient concurrent hash-maps: lo-
cal cache and object directory. The local cache maintains
authoritative copies of objects owned by the current node, and
the object directory maintains the meta data information (e.g.,
object owner information in the case of tracker directory).
Similar to the TVM, the programmer can rely on one or
both of these structures for implementing the object location
service. By default, it implements the efficient tracker directory
protocol, which moves an object across nodes and maintains
the current owner information on a specific tracker node. This
is because TFA requires an object directory for changing the
object ownership when transactions commit.

OAM closely interacts with the TVM. In fact, to provide
strong atomicity, HyflowCPP directs all accesses to objects
through the context-map managed by TVM. Therefore, all
object requests to the OAM go through the TVM. Object
deletion or publication requests made by the TVM are served
in the OAM. This module also handles object validation
requests.

Object Serialization Module

To free programmers from message serialization and de-
serialization, HyflowCPP provides two classes: HyflowMes-
sage and BaseMessage. BaseMessage acts as a parent class
for any message in HyflowCPP; it can be extended to create
any new message type to perform a protocol-specific operation.
HyflowMessage provides a standard interface for networking.
All HyflowMessage objects are converted in a binary blob,
before forwarding to the network library, to communicate
over the network. In this way, network implementation is
independent of the transaction validation module and the object
access module. Serialization and de-serialization of messages
is done using Boost [28].

Network Module

This module (NM) provides pluggable support for a net-
work library. Providing efficient network interactions is a
fundamental for distributed protocol managing transactions
executed directly in memory. This is because the transaction
execution time is dominated by network time. Relying on an
high performance communication layer significant reduces the
transaction response time.

HyFlowCPP provides two networking libraries: MsgCon-
nect [30] and ZeroMQ [31]. In the current release, in order
to design a fast and scalable networking solution, we use
industry standard ZeroMQ library. It is a socket level library,
providing very efficient solutions for in-process communi-
cation between threads, which makes it suitable for any
multi-threaded networking requirement. Figure 4 illustrates
our networking architecture designed using the ZeroMQ li-
brary. Any two transactional nodes A and B communicate
with each other using the forwarder and catcher networking
threads. These threads are responsible for connecting with
different nodes using the ZeroMQ router socket. Forwarder
threads receive message requests from transactional threads
and forward them to catcher threads of the target nodes,
which assign them to available worker threads. Worker threads
process the message and send back reply to catcher threads



Fig. 4. HyflowCPP’s (ZeroMQ-based) network architecture

if required. Catcher threads return the messages back to the
forwarder threads, which route them to the original requester
transactional threads.

Our studies revealed that ZeroMQ provides 4 to 5 times
better performance over MsgConnect. In addition, using multi-
part messaging of ZeroMQ, we are able to reduce the amount
of polling between threads to a bare minimum at two sockets.

Message Processing Module

This module (MPM) provides message handling capability to
the NM. When a programmer creates a new message type, a
message handler is also created for that message and registered
using the message handler interface. Later, when the NM
receives a request message, MPM creates a proper response
using the message handler, and replies back as required.

The module also enables asynchronous messaging using
a class HyflowMessageFuture, which allows a transactional
thread to send a message asynchronously, proceed with other
tasks, and later wait for the message response.

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

A. Implementation

HyflowCPP has been implemented from scratch adopting
technologies and design choices for making the framework
general and optimized for in memory transactions. The im-
plementation of flat nesting execution model (i.e., plain trans-
actions without nesting) follows by the TFA protocol rules.
Additional mechanisms are needed for implementing nesting
supports.

Regarding the closed-nesting supports, for each transac-
tional context, we maintain a reference to its parent transaction
context. In the commit phase, we directly merge the context
objects with the parent context objects for inner-transactions.
The commit procedure of outermost transactions is the same
as that in flat nesting.

To support the open open-nesting model, we use abstract
locks as higher-level locks for inner-transactions. Further, we
allow programmers to define onAbort and onCommit functions,
which are to be performed in case of abort or commit of
the parent transaction. Abstract locks are acquired in inner-
transactions and released in the parent transaction, on com-

mit or abort. Each inner-transaction commits as a pure flat-
transaction, releasing its transactional context, included read-
set and write-set.

The implementation of checkpointing model is the one that
takes more advantages from the manual memory management
allowed by C++ language. We partition the read-set, write-
set, publish-set and the delete-set objects on the basis of
the first access checkpoint. This allows us to identify the
conflicting objects and calculate the dependency to determine
the valid checkpoint. To save the transaction execution stack
state, we use the setContext and getContext functions. Heap
objects are maintained in the context read-set, write-set, and
publish-set. HyflowCPP provides a helper class CheckPoint-
Provider to create, iterate and maintain transaction check-
points. HYFLOW STORE macro is provided to store any
stack or heap object values just before creating a checkpoint
(see Section III). The values are automatically restored upon
continuing from a checkpoint after partial abort. On commit
failure, instead of restarting the transaction, we resume from an
available valid checkpoint. Also, all acquired locks are released
before resuming.

B. Experimental Evaluation

In this section we describe the evaluation results of
HyflowCPP compared with the other state of the art JVM-
based DTM systems. Being the first ever DTM framework in
C++, we cannot compare it with other C++ based DTMs, there-
fore we evaluated HyflowCPP by comparing with other JVM-
based DTM frameworks. We firstly contrasted our HyflowCPP
with two state of the art DTM frameworks: GenRSTM [9] and
DecentSTM [32]. Subsequently, for the rest of the evaluation,
we directly compared HyflowCPP with its JVM-based coun-
terparts: HyflowJava [3] and HyflowScala [10]. We excluded
the initial competitors from the comparison because an ex-
tensive evaluation has already been presented in [14] where
HyflowJava has been shown to outperform both GenRSTM
and DecentSTM.

Our experiments were conducted using up to 48 nodes
located in a private cluster and interconnected by a Gigabit
connection, running two application threads per node. We use
the Ubuntu Linux 10.04 server OS. Our evaluation workloads
included both micro-benchmarks and macro-benchmarks. Re-
garding the former, we used the distributed version of: Linked
List, Skip List, Binary Search Tree and Hash Table. Regarding
the latter we used Bank, Loan and a distributed version of
the STAMP’s Vacation [33]. For the micro-benchmarks, each
transaction consists of several operations on the shared data-
structure. For the macro-benchmarks: Bank simulates a bank-
ing system; Loan simulates a mortgage lending setting; Vaca-
tion simulates an itinerary planning and reservation system. We
divided the evaluation in three subsections corresponding to the
three transaction execution models supported by HyflowCPP:
flat nesting, closed-nesting/checkpointing, open-nesting. Each
data-point in the plots is the average of 3 repeated experiments.
Due to space constraints we cannot present all the plots. The
complete evaluation study can be found in [34].

Flat Nesting

Experiments with flat transactions allow us to understand the
raw performance of different DTM frameworks. In Figure 5
the comparison between HyflowCPP and other JVM-based
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Fig. 5. Comparison between HyflowCPP and GenRSTM, DecentSTM,
HyflowJava, HyflowScala (20% and 80% read workload)

DTM frameworks is presented. The plots clearly show the
performance gap between HyflowCPP and other competitors.
As mentioned at the begin of this section, in the rest of the
evaluation HyflowJava and HyflowScala have been used as
competitors.

Micro-benchmarks. For Linked List, Skip List, and BST, 50
objects are deployed; for Hash Table, 2000 distributed buckets
were used. Objects and buckets are uniformly distributed over
nodes. Each benchmark has been configured producing two
different workloads, one read intensive, characterized by 80%
of read-only transactions, and the second with 20% of read-
only transaction, therefore mostly write intensive.

Figure 6 shows the performance of HyflowCPP against
HyflowJava/Scala. Linked List and Skip List are affected by a
number of conflicts due to the reduced number of objects avail-
able in the system. This scenario mainly stresses the mech-
anisms needed for implementing the distributed concurrency
control. Due to the smaller read-write set size, Hash Table’s
throughput is highest among all the benchmarks. Linked List’s
throughput is lower than Hash Table’s due to the high abort
rate caused by the large read-set. Conversely, the Skip List’s
performance are better than Linked List due to smaller read set
size. BST exhibits high level of concurrency; its performance
is up to 2× better in comparison to Linked List.

The plots reveal that HyflowCPP performs up to 3 to 5×
better than its nearest competitor HyflowScala. HyflowJava is
worse than HyflowScala. We recall that all the DTMs tested
implement TFA. Here the HyflowCPP’s high throughput can
be mainly attributed to the fast network layer, obtained from
the higher quality implementation with optimized load balanc-
ing, synchronization and packet handling, which yields lower
queuing delays, response times, and smaller TCP connection
re-initiations. In addition, we observed average CPU time
utilization for HyflowScala to be around 20%-30%, whereas
HyflowCPP utilized 50%-60%, which supports our argument
regarding the minimized CPU idle time due to the optimized
network management layer.

Macro-benchmarks. The analysis with macro-benchmarks
are useful for understanding DTM performance in a more “real
world” settings. Their transactions are composed by several
operations leading to high messaging and transaction execution
time. Due to their characteristics, such benchmarks are appro-
priate to analyze possible bottlenecks in terms of messaging,
synchronization or memory usages in the framework. Unfor-
tunately, HyflowScala does not provide the implementation of
Vacation and Loan, therefore HyflowCPP has been contrasted
with the HyflowJava for Vacation and Loan. We configured
the benchmarks with a total of 10,000 accounts/objects.
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Fig. 6. Performance of micro-benchmarks with (20% and 80% read workload)

Figures 7 and 5 show results for 20% and 80% read ratio.
HyflowCPP, in general, performs up to 3 to 5× better than
competitors (5 to 10× better for Loan). It is relevant to notice
the scalability trend of HyflowCPP, which can be approximated
as linear. Conversely, the others performance after 20 or 30
nodes (depending on the benchmark) stall, showing a very
limited scalability compared to our proposal.

The plots clear reveal the positive impact of the optimiza-
tion allowed by the manual memory and network management
of C++ instead of JVM-based implementation.

Checkpointing and Closed Nesting

Closed nesting and checkpointing are two techniques for
implementing partial rollback after an abort is issued. A per-
formance comparison between these two models also appeared
in [20].This paper assesses that supporting saving and restoring
of large memory chunks is more costly than running closed-
nested transactions, electing closed-nesting as reference model
for implementing partial abort. The goal of this study is to
show how HyflowCPP can subvert the latter decision rein-
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Fig. 7. Transactional throughput of macro-benchmarks

forcing checkpointing as the better way to restore transaction
execution from a safe point. Indeed, no JVM-based competitors
are included.

To understand checkpointing and closed nesting’s bene-
fits over flat nesting, we conducted experiments on micro-
benchmarks and Bank, because other macro-benchmarks do
not define rules for splitting transactions in sub-transactions.
For the checkpointing experiments, we inserted a checkpoint
just before accessing an object (or a subset of objects according
to the selected checkpointing granularity). For the closed
nesting experiments, we performed each operation as an inner-
transaction. In order to do a fair comparison, we configured
the benchmarks to perform 20% of read-only transactions.
In this way we increase the conflict probability, therefore
the likelihood to incur an abort. In the plots we varied the
node count (2− 16) and the inner-transactions/checkpoints
count (2, 5, 10) to understand the impact of transactional length
and partial rollback points on the performance. Increasing
the number or inner-transactions/checkpoints allows a more
accurate conflict resolution and an efficient transaction restart.

Figure 8 shows checkpointing and closed nesting’s
throughput relative to flat nesting. Both outperform flat nest-
ing by up to 100%. Also, as the inner-transactions count
increases, checkpointing and closed nesting’s performance
improve, due to increase in partial rollback points. In all
the experiments, checkpointing guarantees better performance
than closed-nesting. The efficient mechanism for saving and
restoring the transaction’s context allows HyflowCPP to catch
the exact operation that caused the abort, minimizing the
time spent by the transaction to re-execute code that is still
consistent, and quickly restore the valid memory image. This
result has been obtained relying on C++ features not available
in other JVM-based languages in which, closed-nesting is
unquestionably preferred to checkpointing due to the resulting
worse performance of the latter.

Open Nesting

To understand open nesting’s benefits, we conducted experi-
ments on Hash Table, Skip List and BST. Open-nested trans-
actions were created similar to closed-nested using multiple
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Fig. 8. HyflowCPP’s performance of closed-nesting and checkpointing

read/write operations performed as inner-transactions, but with
an additional abstract lock mechanism. In the evaluation we
contrasted the performance of open-nesting against closed-
nesting, reporting their throughput improvement with respect
to flat nesting. For each benchmark two plots are reported. In
both we fixed the number of shared objects in the system and
we varied the number of processing nodes (2− 48). Then, in
the first plot we set the percentage of read-only transactions to
20%, generating an high conflict scenario, and we varied the
number of inner-transactions (2, 3, 4, 8). In the second plot we
fixed the number of nested transactions to 3, and we varied
the workload moving the read ratios (20%, 50%, 80%).

Figure 9(a) shows open and closed nesting’s throughput
relative to flat nesting configuring the shared hash table with
300 buckets. Initially, at small node count, contention is low,
and flat and open nesting have similar performance. How-
ever, as the node count and inner-transaction count begin to
increase, enough partial aborts occur, degrading flat nesting’s
performance, while open nesting’s performance remains steady
due to reduced false conflicts. At very high contention, with
8 inner-transactions, open nesting’s performance drops due
to increased abstract lock contention. Figure 9(b) shows the
performance with 3 inner-transactions per parent-transaction.
Open nesting’s throughput increases with increase in read
ratio due to decreased contention. We recall that the cost for
committing an open-nested transaction is comparable to the
cost for committing a parent-transaction, therefore decreasing
the data contention allows the framework to successfully
commit more inner-transactions, and maximize the usefulness
of adopting the open nesting model.

In Figures 9(c) and 9(d) we present the results of Skip
List benchmark configured with 100 share objects. We can
observe that as we increase the number of inner-transactions,
open nesting performance decreases. It can be explained based
on read-set object caching in a scenario characterized by
high contention. For flat nesting and closed nesting objects
accessed by previous inner-transaction are cached in read-
set. For higher inner-transaction count, almost all objects are
locally cached after the first few inner-transactions executed.
Meanwhile, open-nested transactions are required to fetch the
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Fig. 9. HyflowCPP performance using open-nesting transaction model.

objects accessed over network, without exploiting the read-
set of previous committed open-nested transactions, which
increases the execution time significantly. It is also worth men-
tioning that open nesting has additional messaging overhead
for maintaining distributed abstract-locks. BST results confirm
the same trend of Skip List and are presented in Figure 9(e)
and 9(f).

VI. CONCLUSIONS, FUTURE WORK

HyflowCPP provides a generic programming interface-
based DTM abstraction for C++, with pluggable support for
various DTM policies, and support for closed nesting, open
nesting, and checkpointing. Our experimental studies revealed
that, HyflowCPP’s throughput scales robustly with increase in
read/write ratio, and nodes, and that it outperforms its nearest
JAVA-based competitors by up to 6x.

HyflowCPP is freely available as open-source software at
http://www.hyflow.org/hyflow/wiki/HyflowCPP.
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