
On High Performance Distributed Transactional Data Structures
Technical Report

Aditya Dhoke
Virginia Tech
adityad@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Abstract
We present three protocols for developing high performance
distributed transactional data structures. Our first protocol,
QR-ON, incorporates the open nesting transactional model
into QR, a quorum-based protocol for managing concur-
rency on distributed transactions. The open nesting model
allows nested transactions to commit independently of their
parent transaction. This releases objects in the transac-
tion read-set and write-set early, minimizing aborts due to
false conflicts and improving concurrency. We then intro-
duce Optimistic Open Nesting, QR-OON, in which open-
nested transactions commit asynchronously so that subse-
quent transactions can proceed without waiting for the com-
mit of previous transactions. Finally, we propose an early
release methodology, QR-ER, in which objects that do not
affect the final state of the shared data are dropped from the
transaction read-set, avoiding false conflicts and improving
performance.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; H.2.4 [Systems]:
Transaction processing

Keywords Data Structures, Distribution, Transactions, Per-
formance, Nesting

1. Introduction
The growing promise of Software Transactional Memory
has led to the extension of well-known concurrent data struc-
tures with transactional support, in both multiprocessor and
distributed contexts. While the benefits of transactional data
structures under multiprocessor settings are well-known,
they can be equally useful in distributed systems.

[Copyright notice will appear here once ’preprint’ option is removed.]

A transactional conflict occurs among transactions when
at least one of them is writing to the same object. One of
the transactions must be aborted to resolve the conflict. In
addition, systems based on transactional data structures also
suffer from another type of conflict, called false conflict [2],
which occurs among transactions performing seemingly in-
dependent operations. Consider an example of a set imple-
mented using a sorted list. Here, insertion of an element in
the set can be viewed as a high level operation, while inser-
tion of an object in the sorted list can be viewed as a low
level operation. To insert an object O1 between objects O2

(lower) and O3 (greater), a transaction T must traverse from
the head of the list, and read all objects prior to O1. Ideally,
any invalidation due to concurrent writes on objects prior to
O1 would not compromise T ’s correctness and should not
create any conflicts. However, high level operations, even
though semantically independent, traverse the same set of
objects during their execution, causing false conflicts. False
conflicts can degrade performance, especially in distributed
data structures, where repeated aborts can significantly in-
crease transaction execution time, as transaction execution
in this setting includes expensive network communication.

Past research has proposed solutions to the problem of
false conflicts [1, 2]. However, all these works focus on
centralized systems (i.e., shared memory multicores/ multi-
processors), but not distributed. Transaction execution char-
acteristics in distributed settings are significantly different
from multiprocessor settings. Unlike centralized systems, in
distributed systems, the cost of communication dominates
overall transaction execution time.

Motivated by these observations, with the goal of reduc-
ing false conflicts, we propose three protocols: QR-ON (Sec-
tion 2), QR-OON (Section 3), and QR-ER (Section 4). The
protocols use QR [3], an efficient quorum-based distributed
concurrency control protocol guaranteeing fault-tolerance,
as the baseline transactional protocol. In QR, objects are
fully replicated across all nodes, and transaction execution
is divided into two independent phases with orthogonal re-
sponsibilities: 1) read/write phase, in which a transaction ob-
tains the latest copies of objects, and 2) commit phase, in
which objects are validated and updates are committed. QR

1 2013/12/12

uses the quorum intersection property for obtaining the latest
copy of objects and for detecting conflicts.

We implemented the protocols, and report preliminary
experimental results obtained on three (distributed) data
structures (linked-list, hashmap, and BST). The experiments
were conducted on a 13 node cluster, where each is an 8-core
AMD machine, interconnected using a 1Gbps network.

2. QR-ON

-100

 0

 100

 200

 300

 400

 500

Linked-List Hashmap BST

% Improvement

Figure 1. QR-ON vs QR.

QR-ON incorporates the open nesting model [2] into QR.
In open nesting, only the objects accessed within the (open)
nested transactions are validated and (globally) released af-
ter successful commit. This early release increases the po-
tential for improving concurrency: two parent transactions
that have read or written the same set of objects in their
inner transactions will not detect any conflict during their
commit. Since each nested transaction directly commits to
the shared (or possibly distributed) state, other transactions
can also immediately access the just committed data. Fig-
ure 1 shows QR-ON’s throughput improvement over QR
of 4.2× for linked-list and 1.95× for hashmap. Conversely,
BST’s transactions access a small subset of shared objects,
and therefore does not suffer from false conflicts.

3. QR-OON

 0

 10

 20

 30

 40

 50

50 60 70 80 90 100

T
h
ro

u
g

h
p

u
t

Read %

% Improvement

Figure 2. QR-OON’s speed-up over QR-ON for linked-list.

Exploiting open nesting for speeding up the validation
of parent transactions, as done in QR-ON, has a drawback.
For a distributed transactional data structure whose commit
phase is inherently slower than rest of the transactional ex-
ecution due to remote validation and locking, repeating the
commit as many times as there are (open) nested transac-
tions can negate open nesting’s potential for increased con-
currency (due to early object release). Motivated by this
observation, QR-OON makes QR-ON’s commit phase non-
blocking: when an open-nested transaction commits, it starts

the classical open-nested commit phase. Besides, the trans-
action is also locally committed, allowing subsequent trans-
actions to start their execution without waiting for its com-
mit. This causes an overlap between the commit of an open-
nested transaction and the read/write phase of subsequent
transactions. The approach pays off when subsequent open-
nested transactions are likely to access the data written by the
previous, still committing, transaction. Figure 2 shows QR-
OON’s throughput improvement over QR-ON (up to 43%)
for linked-list, with 5 nested transactions and 500 objects.

4. QR-ER

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 40 60 80 100 120 140 160 180 200

T
h
ro

u
g

h
p

u
t

Objects

Open Nesting
Early Release

Figure 3. QR-ER vs QR-ON with linked-list.

Both QR-ON and QR-OON exploit open-nested transac-
tions for reducing the size of the read-set when the parent
transaction commits. Even though in QR-OON, the expen-
sive cost of a commit is alleviated by the asynchronous im-
plementation, distributed protocols extensively use the net-
work during transaction execution. In such cases, the over-
lapping time may be limited, because, few nested transac-
tions may optimistically execute concurrently with the com-
mit phase. Motivated by this observation, our third proto-
col, QR-ER, does not rely on open nesting, but instead, use
an early release mechanism to resolve false conflicts. QR-
ER drops those objects from the transaction read-set that
do not need to be validated because, even in case of inval-
idation, they do not compromise correctness of the execu-
tion. Figure 3 compares QR-ER’s throughput with QR-ON’s
for linked-list, by varying the number of objects in the data
structure, for 3 nested transactions (for QR-ON) and 50%
write transactions. Results reveal an improvement over QR-
ON up to 7×. We selected linked-list and excluded QR-OON
in this comparison because we already reported a compari-
son between QR-ON and QR-OON in Figure 2.

Acknowledgements
This work is supported in part by US National Science Foun-
dation under grants CNS 0915895, CNS 1116190, CNS
1130180, and CNS 1217385.

References
[1] M. Herlihy and E. Koskinen. Transactional boosting: a method-

ology for highly-concurrent transactional objects. In PPoPP
’08.

[2] J. E. B. Moss. Open nested transactions: Semantics and sup-
port. In WMPI ’06.

2 2013/12/12

[3] B. Zhang and B. Ravindran. A quorum-based replication
framework for distributed software transactional memory. In
OPODIS ’11.

3 2013/12/12

