
On Preserving Data Integrity of Transactional
Applications on Multicore Architectures

Mohamed Mohamedin
Virginia Tech

mohamedin@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Abstract—Multicore architectures are increasingly becoming
prone to transient faults. In this paper we briefly present Shield, a
middleware to provide transactional applications with resiliency
to those faults that can happen anytime during the execution of
a processor but do not cause any hardware interruption. Shield
is inspired by the state machine replication approach, where
computational resources are partitioned, the shared state is fully
replicated, and requests are executed by all partitions in the same
order. Shield embeds a set of algorithmic and system innovations
to limit the overhead with respect to non-fault-tolerant solutions.
They include a fast total order layer that lets application threads
and computational nodes co-operate in order to fast deliver.

I. INTRODUCTION

The proliferation of multicore architectures defines the
current technological trend and, in such systems, the problem
of tolerating/detecting data corruption is complex due to the
nature of the underlying hardware [1]. As an example, soft-
errors [2] belong to the category of hardware-related errors
that are difficult to detect or predict. Specifically, they are
transient faults that may happen anytime during the application
execution. They are caused by physical phenomena [1], e.g.,
cosmic particle strikes or electric noise, which cannot be di-
rectly managed by application designers or administrators. As
a result, when a soft-error occurs, the hardware is not affected
by interruption, but applications may behave incorrectly.

In this paper we focus on those soft-errors that occur inside
the processor (which we name hereafter CPU-TFAULTs). That
is because CPU-TFAULTs are random, hard to detect, and can
corrupt data – e.g., a CPU-TFAULT can cause a single bit to
flip in a CPU register due to the residual charge of a transistor,
which inverts its state. Most of the time, such an event is
likely to be unnoticed by applications because they do not use
that value (e.g., an unused register). However, sometimes, the
register can contain a memory pointer or a meaningful value.
In those cases, the application behavior can be unexpected. An
easy solution for recovering from transient faults is a simple
application-restart, but for those applications with stringent
reliability requirements, which form the focus of this paper,
it cannot be acceptable.

Motivated by these observations, we propose Shield, a soft-
ware middleware for tolerating CPU-TFAULTs. Shield’s basic
scheme is inspired by the state machine replication approach
(SMR) [3], where computational resources are partitioned,
data are replicated across partitions, and application requests
are executed on all partitions following the same (previously
agreed) order. The goal of Shield is to prevent any data
stored in a processor register from being propagated to the

system’s main memory where the shared state is kept, without
being verified as free of corruption. Shield is designed for
applications where many threads act on the same shared state
and where the data integrity is fundamental

As in the SMR approach, Shield processes transactions in
the same order on all replicated states. This redundant execu-
tion isolates any possible propagation of incorrect transition
to the memory without being previously certified. The latter
operation is performed by a voter, a software module that
collects the outcome of transactions and delivers the common
response (i.e., the majority of replies) to the application.
The voting outcome is also used for identifying corrupted
computations, and, if so, other correct states are exploited
for overwriting the broken parts of the memory. As the other
software components of Shield, also the voter is not assumed
to be reliable.

II. IS BYZANTINE FAULT TOLERANCE THE SOLUTION?

CPU-TFAULTs are transient faults, and that class of faults
belongs by itself to the category of Byzantine Faults (BF) [4].
A BF is an arbitrary fault that can generate incorrect response
or corrupt the system state. BFs include commission and
omission faults. Solutions targeting BFs, named also Byzantine
Fault Tolerant (BFT) protocols (e.g., [5], [6]), are usually
designed for minimizing the assumptions on the correctness
and trustiness of components composing the execution envi-
ronment, as well as for being resilient to malicious behaviors.
Given that, the answer to the above question is clearly: yes,
BFT is a solution solving also CPU-TFAULTs but it is very
“pricy”.

In fact, deploying a BFT solution would have an impact on
the system’s performance much higher than what is actually
needed for solving the problem of CPU-TFAULT. In addition,
BTF solutions often require a physical multi-node distributed
system to isolate nodes from each other and therefore avoid
the propagation of faults. However, replicating centralized
systems for tolerating faults results in significantly degraded
performance (e.g., 10–100×). That is primarily due to the
costs for remote synchronization and communication that
are incurred to ensure node consistency. Also, a distributed
architecture comprising of multicore nodes may not often be
cost-effective. BFT systems handle malicious client behavior
and unreliable networks that can reorder, drop, or corrupt
messages. In addition, most BFT solutions require 3f + 1
nodes to reach agreement and 2f +1 nodes for the transaction
execution in order to tolerate up to f faulty nodes [7].



Shield is meant to be a software layer that can be plugged
into a classical centralized transactional system without de-
ploying a distributed infrastructure or substantially impacting
the performance of the original system. Its design assumes
trusted clients and a reliable network infrastructure. We believe
that adopting a BFT solution for solving the problem of
CPU-TFAULTs would be “inaccurate” because of the excessive
negative performance penalty that the application has to pay.

III. ASSUMPTIONS

We consider a system based on the message-passing ab-
straction where a set of nodes, installed on the same physical
hardware, communicate with each other through a reliable
FIFO channel (e.g., the bus). We consider each node as a
group of computing cores on a multicore board. We assume
the presence of a service providing a single monotonically
increasing clock, which we name clock-service. In practice,
some message-passing boards are already equipped with such
a service through special hardware extensions; and on x86
architectures, there are techniques (as [8]) that exploit the
non-synchronized hardware register that stores the CPU-cycle
counter to provide the clock-service as defined above.

Application’s shared state is replicated such that each node
accesses its own copy. This way, storing a value from a
CPU register to a memory location does not interfere with
the work of other nodes, which prevents the propagation of
a possible fault to other nodes. To tolerate f CPU-TFAULTs,
Shield requires 2f +1 nodes so that a majority can be formed
and the voting procedure can take place.

IV. SHIELD OVERVIEW

At a glance, our ordering protocol involves application
threads (because they are physically located together with all
other nodes) and it does not rely on a single component to
order (e.g., the sequencer). When a transaction is requested to
execute by an application thread, it is sent to all nodes and
other application threads, together with the current timestamp
taken from the clock-service. This timestamp represents a
tentative order for executing the transaction (which we name
tn-order) [9]. To determine its total order, a node must ensure
that it receives a request from each application thread with
a timestamp that is higher than the one just received. (For
this reason we said above that our ordering layer involves
application threads.) When a node receives a message from
all application threads, it can now safely determine the next
transaction to deliver and its total order.

An ordering-based concurrency control (ObCC) protocol,
running locally at each node, is responsible for processing
and committing transactions on the node’s private memory.
At this stage, the application thread is still not informed about
the transaction outcome because an additional voting phase
(see below) is required. A subset of cores in each node is
dedicated for the execution of ObCC. ObCC leverages the
tn-order for anticipating the transaction processing. We name
this execution as “speculative” because the tn-order is tentative
and can be contradicted by the total order. Also, in order to
maximize the overlapping of the transaction processing with
the establishment of the total order, transactions are processed
in parallel (using the tn-order for solving conflicts).

A voter is in charge of collecting transaction outcomes
from all nodes and returning the majority of them to the
application. Even though this approach potentially increases
the end-to-end transaction latency because the voter has to
wait for a majority of outcomes, nodes are part of the same
architecture thus their progress is likely not skewed. Using a
lazy concurrency control, where operations are buffered until
reaching the commit phase (as in our ObCC), simplifies the
comparison procedure of the voter because each transaction
records all its accessed objects into private memory spaces.

When the voter restarts a faulty node, Shield enters into
recovery mode and starts overwriting the state from a correct
node. The copy is incremental: the non-faulty node keeps track
of all objects modified during the copying process so that it
can still serve new transactions. This incremental state is then
pushed to the faulty node for finalizing the copy.

V. VOTER

The voter component consists of 2f+1 voter threads so that
even if a CPU-TFAULT occurs during the verification process,
no wrong decision can be made. Each thread independently
compares the outcomes of the next-to-commit transaction,
according to the total order, by matching the gathered read-
sets and write-sets from all nodes. When an error is detected
(i.e., there is no matching), a voter thread sends to the faulty
node a recovering signal. A faulty node starts the recovery
process only upon receiving f + 1 recovery requests, which
guarantees that the error actually happened on the node and
not on the voter thread. Following the same policy, each voter
thread compares the decisions of all other voter threads to
confirm its decision matches the majority. Finally, one non-
faulty voter thread sends the result to the application thread
that originated the request.

ACKNOWLEDGMENT

This work is supported in part by US National Science
Foundation under grant CNS 1217385 and by AFOSR grant
FA9550-14-1-0163.

REFERENCES

[1] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” Device and Materials Reliability, IEEE Transactions on,
vol. 5, no. 3, pp. 305–316, 2005.

[2] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” Micro, IEEE, 2005.

[3] F. Pedone, R. Guerraoui, and A. Schiper, “The database state machine
approach,” Distrib. Parallel Databases, vol. 14, no. 1, pp. 71–98, 2003.

[4] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, pp. 382–401, 1982.

[5] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OSDI,
1999.

[6] B.-G. Chun, P. Maniatis, and S. Shenker, “Diverse replication for single-
machine byzantine-fault tolerance,” ser. ATC, 2008.

[7] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement from execution for byzantine fault tolerant services,”
ser. SOSP, 2003.

[8] W. Ruan, Y. Liu, and M. Spear, “Boosting timestamp-based transactional
memory by exploiting hardware cycle counters,” ACM Trans. Archit.
Code Optim., vol. 10, no. 4, pp. 40:1–40:21, Dec. 2013.

[9] B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann, “Using
optimistic atomic broadcast in transaction processing systems,” IEEE
TKDE, vol. 15, no. 4, 2003.


