
HiperTM: High Performance, Fault-Tolerant
Transactional Memory

Sachin Hirve, Roberto Palmieri, and Binoy Ravindran

Virginia Tech, Blacksburg VA 24060, USA,
{hsachin,robertop,binoy}@vt.edu

Abstract. We present HiperTM, a high performance active replication protocol
for fault-tolerant distributed transactional memory. The active replication paradigm
allows transactions to execute locally, costing them only a single network com-
munication step during transaction execution. Shared objects are replicated across
all sites, avoiding remote object accesses. Replica consistency is ensured by a)
OS-Paxos, an optimistic atomic broadcast layer that total-orders transactional re-
quests, and b) SCC, a local multi-version concurrency control protocol that en-
forces a commit order equivalent to transactions’ delivery order. SCC executes
write transactions serially without incurring any synchronization overhead, and
runs read-only transactions in parallel (to write transactions) with non-blocking
execution and abort-freedom. Our implementation reveals that HiperTM guaran-
tees 0% of out-of-order optimistic deliveries and performance up to 1.2× better
than atomic broadcast-based competitor (PaxosSTM).

1 Introduction

Software transactional memory (STM) [31] is a promising programming model for
managing concurrency of transactional requests. STM libraries offer APIs to program-
mers for reading and writing shared objects, ensuring atomicity, isolation, and consis-
tency in a completely transparent manner. STM transactions are characterized by only
in-memory operations. Thus, their performance is orders of magnitude better than that
of non in-memory processing systems (e.g., database settings), where interactions with
a stable storage often significantly degrade performance.

Besides performance, transactional applications usually require strong dependabil-
ity properties that centralized, in-memory processing systems cannot guarantee. Fault-
tolerant mechanisms often involve expensive synchronization with remote nodes. As
a result, directly incorporating them into in-memory transactional applications (dis-
tributed software transactional memory or DTM) will reduce the performance advan-
tage (of in-memory operations) due to network costs. For example, the partial repli-
cation paradigm allows transaction processing in the presence of node failures, but the
overhead paid by transactions for looking-up latest object copies at encounter time lim-
its performance. Current partial replication protocols [25, 28] report performance in
the range of hundreds to tens of thousands transactions committed per second, while
centralized STM systems have throughput in the range of tens of millions [8, 9]. Full
replication is a way to annul network interactions while reading/writing objects. In this



model, application’s entire shared data-set is replicated across all nodes. However, to
ensure replica consistency, a common serialization order (CSO) must be ensured.

State-machine replication (or active replication) [29] is a paradigm that exploits
full replication to avoid service interruption in case of node failures. In this approach,
whenever the application executes a transaction T , it is not directly processed in the
same application thread. Instead, a group communication system (GCS), which is re-
sponsible for ensuring the CSO, creates a transaction request from T and issues it to all
the nodes in the system. The CSO defines a total order among all transactional requests.
Therefore, when a sequence of messages is delivered by the GCS to one node, it guar-
antees that other nodes also receive the same sequence, ensuring replica consistency.

A CSO can be determined using a solution to the consensus (or atomic broad-
cast [7]) problem: i.e., how a group of processes can agree on a value in the presence
of faults in partially synchronous systems. Paxos [18] is one of the most widely studied
consensus algorithms. Though Paxos’s initial design was expensive (e.g., it required
three communication steps), significant research efforts have focused on alternative de-
signs for enhancing performance. A recent example is JPaxos [17, 27], built on top of
MultiPaxos [18], which extends Paxos to allow processes to agree on a sequence of val-
ues, instead of a single value. JPaxos incorporates optimizations such as batching and
pipelining, which significantly boost message throughput [27]. S-Paxos [3] further im-
proves JPaxos by balancing the load of the network protocol over all the nodes, instead
of concentrating that on the leader.

A deterministic concurrency control protocol is needed for processing transactions
according to the CSO. When transactions are delivered by the GCS, their commit order
must coincide with the CSO; otherwise replicas will end up in different states. With
deterministic concurrency control, each replica is aware of the existence of a new trans-
action to execute only after its delivery, significantly increasing transaction execution
time. An optimistic solution to this problem has been proposed in [15], where an addi-
tional delivery, called optimistic delivery, is sent by the GCS to the replicas prior to the
final CSO. This new delivery is used to start transaction execution speculatively, while
guessing the final commit order. If the guessed order matches the CSO, the transaction
is totally (or partially) executed and committed [19, 20]. However, guessing alternative
serialization orders has non-trivial overheads, which, sometimes, do not pay off.

In this paper, we present HiperTM, a high performance active replication protocol.
HiperTM is based on an extension of S-Paxos, called OS-Paxos that we propose. OS-
Paxos optimizes the S-Paxos architecture for efficiently supporting optimistic deliver-
ies, in order to minimize the likelihood of mismatches between the optimistic order and
the final delivery order. The protocol wraps transactions in transactional request mes-
sages and executes them on all the replicas in the same order. HiperTM uses a novel,
speculative concurrency control protocol called SCC, which processes write transac-
tions serially, minimizing code instrumentation (i.e., locks or CAS operations). When
a transaction is optimistically delivered by OS-Paxos, its execution speculatively starts,
assuming the optimistic order as the processing order. Avoiding atomic operations al-
lows transactions to reach maximum performance in the time available between the
optimistic and the corresponding final delivery. Conflict detection and any other more



complex mechanisms hamper the protocol’s ability to completely execute a sequence
of transactions within their final notifications – so those are avoided.

For each shared object, the SCC protocol stores a list of committed versions, which
is exploited by read-only transactions to execute in parallel to write transactions. As a
consequence, write transactions are broadcast using OS-Paxos. Read-only transactions
are directly delivered to one replica, without a CSO, because each replica has the same
state, and are processed locally.

We implemented HiperTM and conducted experimental studies using benchmarks
including TPC-C [5]. Our results reveal three important trends:
A) OS-Paxos provides a very limited number of out-of-order optimistic deliveries

(<1% when no failures happen and <5% in case of failures), allowing transactions
processed – according to the optimistic order – to more likely commit.

B) Serially processing optimistically delivered transactions guarantees a throughput
(transactions per second) that is higher than atomic broadcast service’s throughput
(messages per second), confirming optimistic delivery’s effectiveness for concur-
rency control in actively replicated transactional systems. Additionally, the reduced
number of CAS operations allows greater concurrency, which is exploited by read-
only transactions for executing faster.

C) HiperTM’s transactional throughput is up to 1.2× better than state-of-the-art atomic
broadcast-based competitor PaxosSTM [16], and up to 10× better than Score [25].
With HiperTM, we highlight the importance of making the right design choices for

fault-tolerant DTM systems. To the best of our knowledge, HiperTM is the first fully
implemented transaction processing system based on speculative processing, built in the
context of active replication. The complete implementation of HiperTM, source codes,
test-scripts, etc., is publicly available at https://bitbucket.org/hsachin/hipertm/.

2 System Model

We consider a classical distributed system model [12] consisting of a set of processes
Π = {p1, . . . , pn} that communicate via message passing. Process may fail according
to the fail-stop (crash) model. A non-faulty process is called correct. We assume a par-
tially synchronous system [18], where 2f + 1 nodes are correct and at most f nodes
are simultaneously faulty. We consider only non-byzantine faults, i.e., nodes cannot
perform actions that are not compliant with the replication algorithm.

We consider a full replication model, where the application’s entire shared data-
set is replicated across all nodes. Transactions are not executed on application threads.
Instead, application threads, referred to as clients, inject transactional requests into the
replicated system. Each request is composed of a key, identifying the transaction to
execute, and the values of all the parameters needed for running the transaction’s logic
(if any) (Section 3.2 details the programming model). Threads submit the transaction
request to a node, and wait until the node successfully commits that transaction.

OS-Paxos is the network service responsible for defining a total order among trans-
actional requests. The requests are considered as network messages by OS-Paxos; it is
not aware of the messages’ content, it only provides ordering. After the message is de-
livered to a replica, the transactional request is extracted and processed as a transaction.



OS-Paxos delivers each message twice. The first is called optimistic-delivery (or
opt-del) and the second is called final-delivery (or final-del). Opt-del notifies repli-
cas that a new message is currently involved in the agreement process, and therefore
opt-del’s order cannot be considered reliable for committing transactions. On the other
hand, final-del is responsible for delivering the message along with its order such that
all replicas receive that message in the same order (i.e., total order). The final-del order
corresponds to the transactions’ commit order.

We use a multi-versioned memory model, wherein an object version has two fields:
timestamp, which defines the time when the transaction that wrote the version commit-
ted; and value, which is the value of the object (either primitive value or set of fields).
Each shared object is composed of: the last committed version, the last written version
(not yet committed), and a list of previously committed versions. The last written ver-
sion is the version generated by an opt-del transaction that is still waiting for commit.
As a consequence, its timestamp is not specified. The timestamp is a monotonically
increasing integer, which is incremented when a transaction commits. Our concurrency
control ensures that only one writer can update the timestamp at a time. This is be-
cause, transactions are processed serially. Thus, there are no transactions validating and
committing concurrently (Section 3.4 describes the concurrency control mechanism).

We assume that the transaction logic is snapshot-deterministic [20], i.e., the se-
quence of operations executed depends on the return value of previous read operations.

3 HiperTM

3.1 Optimistic S-Paxos

Optimistic S-Paxos (or OS-Paxos) is an implementation of optimistic atomic broad-
cast [23] built on top of S-Paxos [3]. S-Paxos, as its predecessor JPaxos [17, 27], can be
defined in terms of two primitives (compliant with the atomic broadcast specification):

– ABcast(m): used by clients to broadcast a message m to all the nodes
– Adeliver(m): event notified to each replica for delivering message m

These primitives satisfy the following properties:
– Validity. If a correct process ABcast a message m, then it eventually Adeliver m.
– Uniform agreement. If a processAdelivers a messagem, then all correct processes

eventually Adeliver m.
– Uniform integrity. For any message m, every process Adelivers m at most once,

and only if m was previously ABcasted.
– Total order. If some processAdeliversm beforem′, then every processAdelivers
m and m′ in the same order.

OS-Paxos provides an additional primitive, calledOdeliver(m), which is used for early
delivering a previously broadcast message m before the Adeliver for m is issued. OS-
Paxos ensures that:

– If a process Odeliver(m), then every correct process eventually Odeliver(m).
– If a correct process Odeliver(m), then it eventually Adeliver(m).
– A process Adeliver(m) only after Odeliver(m).

OS-Paxos’s properties and primitives are compliant with the definition of optimistic
atomic broadcast [23]. The sequence of Odeliver notifications defines the so called



optimistic order (or opt-order). The sequence of Adeliver defines the so called final
order. We now describe the architecture of S-Paxos to elaborate the design choices we
made for implementing Odeliver and Adeliver.

S-Paxos improves upon JPaxos with optimizations such as distributing the leader’s
load across all replicas. Unlike JPaxos, where clients only connect to the leader, in S-
Paxos each replica accepts client requests and sends replies to connected clients after
the execution of the requests. S-Paxos extensively uses the batching technique [27]
for increasing throughput. A replica creates a batch of client requests and distributes
it to other replicas. The receiver replicas store the batch of requests and send an ack
to all other replicas. When the replicas observe a majority of acks for a batch, it is
considered as stable. The leader then proposes an order (containing only batch IDs) for
non-proposed stable batches, for which, the other replicas reply with their agreement
i.e., accept messages. When a majority of agreement for a proposed order is reached
(i.e., a consensus instance), each replica considers it as decided.

S-Paxos is based on the MultiPaxos protocol where, if the leader remains stable
(i.e., does not crash), its proposed order is likely to be accepted by the other replicas.
Also, there exists a non-negligible delay between the time when an order is proposed
and its consensus is reached. As the number of replicas taking part in the consensus
agreement increases, the time required to reach consensus becomes substantial. Since
the likelihood of a proposed order to get accepted is high with a stable leader, we exploit
the time to reach consensus and execute client requests speculatively without commit.
When the leader sends the proposed order for a batch, replicas use it for triggering
Odeliver. On reaching consensus agreement, replicas fire the Adeliver event, which
commits all speculatively executed transactions corresponding to the agreed consensus.

0! 0!

4.26!

0.08!

2.48!

0!0!0!0!0! 0.04!
 0

 1

 2

 3

 4

 5

3 4 5 6 7 8

O
de

liv
er

 o
ut

-o
f-o

rd
er

 %

Replicas

Failure-free
Faulty

0.32!

(a) % of out-of-order Odeliver w.r.t. Adeliver

 0

 100

 200

 300

 400

 500

 600

 700

 800

3 4 5 6 7 8

D
el

ay
 fr

om
 O

de
liv

er
 to

 A
de

liv
er

 (µ
se

c)

Replicas

Failure-free
Faulty

(b) Time between Odeliver and Adeliver

Fig. 1. OS-Paxos performance.

Network non-determinism presents some challenges for the implementation ofOdeliver
and Adeliver in S-Paxos. First, S-Paxos can be configured to run multiple consensus
instances (i.e., pipelining) to increase throughput. This can cause out-of-order consen-
sus agreement e.g., though an instance a precedes instance b, b may be agreed before a.
Second, the client’s request batch is distributed by the replicas before the leader could
propose the order for them. However, a replica may receive a request batch after the
delivery of a proposal that contains it (due to network non-determinism). Lastly, a pro-
posal message may be delivered after the instance is decided.



We made the following design choices to overcome these challenges. We trigger
an Odeliver event for a proposal only when the following conditions are met: 1) the
replica receives a propose message; 2) all request batches of the propose message have
been received; and 3) Odeliver for all previous instances have been triggered i.e., there
is no “gap” for Odelivered instances. A proposal can be Odelivered either when a
missing batch from another replica is received for a previously proposed instance, or
when a proposal is received for the previously received batches. We delay theOdeliver
until we receive the proposal for previously received batches to avoid out-of-order spec-
ulative execution and to minimize the cost of aborts and retries.

The triggering of the Adeliver event also depends on the arrival of request batches
and the majority of accept messages from other replicas. An instance may be decided
either after the receipt of all request batches or before the receipt of a delayed batch
corresponding to the instance. It is also possible that the arrival of the propose message
and reaching consensus is the same event (e.g., for a system of 2 replicas). In such cases,
Adeliver events immediately follow Odeliver. Due to these possibilities, we fire the
Adeliver event when 1) consensus is reached for a proposed message, and 2) a missing
request batch for a decided instance is received. If there is any out-of-order instance
agreement, Adeliver is delayed until all previous instances are Adelivered.

In order to assess the effectiveness of our design choices, we conducted experi-
ments measuring the percentage of reordering between OS-Paxos’s optimistic and final
deliveries, and the average time between an Odeliver and its subsequent Adeliver.
We balanced the clients injecting requests on all the nodes and we reproduced execu-
tions without failures (Failure-free) and manually crashing the actual leader (Faulty).
Figure 1 shows the results. Reorderings (Figure 1(a)) are absent for failure-free exper-
iments. This is because, if the leader does not fail, then the proposing order is always
confirmed by the final order in OS-Paxos. Inducing leader to crash, some reorder ap-
pears starting from 6 nodes. However, the impact on the overall performance is limited
because the maximum number of reordering observed is lower than 5% with 8 replicas.
This confirms that the optimistic delivery order is an effective candidate for the final
execution order. Figure 1(b) shows the average delay between Odeliver and Adeliver.
It is ≈500 microseconds in case of failure-free runs and it increases up to ≈750 mi-
croseconds when leader crashes. The reason is related to the possibility that the process
of sending the proposal message is interrupted by a fault, forcing the next elected leader
to start a new agreement on previous messages.

The results highlight the trade-off between a more reliable optimistic delivery order
and the time available for speculation. On one hand, anticipating the optimistic delivery
results in additional time available for speculative processing transactions, at the cost of
having an optimistic delivery less reliable. On the other hand, postponing the optimistic
delivery brings an optimistic order that likely matches the final order, restricting the
time for processing. In HiperTM we preferred this last configuration and we designed
a lightweight protocol for maximizing the exploitation of the time between Odeliver
and Adeliver.



3.2 Programming model

Classical transactional applications based on STM/DTM delimit portions of source
code containing operations which must be executed transactionally, according to the
application’s logic (all or nothing). Those blocks are managed by the STM/DTM library
and executed according to the concurrency control rules at hand. Some programming
languages use annotations for marking transactional code (e.g., annotation), while oth-
ers explicitly invoke APIs offered by the STM/DTM library in order to open and commit
a transactional context (e.g., store-procedure).

HiperTM’s programming model follows the latter approach. Since transactions must
be ordered through the total order layer (i.e., OS-Paxos), the concurrency control mech-
anism cannot process transactions in the same application thread (this is the only differ-
ence with the traditional, API-based transactional programming model). In HiperTM,
programmers can either: (a) wrap transactions in a method with the necessary parame-
ters and call a library API (i.e., invoke(type par1, type par2, ...)) to invoke that transac-
tion; (b) or adopt a byte-code rewriting tool for transparently generating methods with
the needed parameters from atomic blocks.
class Client{
void submitTransfer{
...
byte[] request;
request.put(TRANSFER);
request.putInt(sourceAccount);
request.putInt(destAccount);
request.putFloat(amount);
byte[] response;
response = client.invoke(request);

...
}
}
class Server{
...
transfer(ClientRequest, srcAcc, dstAcc,

amount)
...
}

Fig. 2. Transfer transaction profile of Bank benchmark on HiperTM.

Figure 2 shows how the transaction profile of the transfer operation of Bank bench-
mark is managed by HiperTM. Transfer requires three parameters: the source account,
the destination account, and the amount to be transferred. These parameters are stored
in the request and sent for execution using invoke.

3.3 The Protocol

Application threads (clients), after invoking a transaction using the invoke API, wait
until the transaction is successfully processed by the replicated system and its outcome
becomes available. Each client has a reference replica for issuing requests. When that
replica becomes unreachable or a timeout expires after the request’s submission, the
reference replica is changed and the request is submitted to another replica.

Replicas know about the existence of a new transaction to process only after the
transaction’sOdeliver. The opt-order represents a possible, non definitive, serialization
order for transactions. Only the series of Adelivers determines the final commit order.
HiperTM overlaps the execution of optimistically delivered transactions with their co-
ordination phase (i.e., defining the total order among all replicas) to avoid processing
those transactions from scratch after their Adeliver. Clearly, the effectiveness of this
approach depends on the likelihood that the opt-order is consistent with the final order.
In the positive case, transactions are probably executed and there is no need for further



execution. Conversely, if the final order contradicts the optimistic one, then the executed
transactions can be in one of two scenarios: i) their serialization order is “equivalent” to
the serialization order defined by the final order, or ii) the two serialization orders are
not “equivalent”. The notion of equivalence here is related to transactional conflicts:
when two transactions are non-conflicting, their processing order is equivalent.

Consider four transactions. Suppose {T1,T2,T3,T4} is their opt-order and {T1,T4,T3,T2}
is their final order. Assume that the transactions are completely executed when the re-
spective Adelivers are issued. When Adeliver(T4) is triggered, T4’s optimistic order
is different from its final order. However, if T4 does not conflict with T3 and T2, then
its serialization order, realized during execution, is equivalent to the final order, and the
transaction can be committed without re-execution (case i)). On the contrary, if T4 con-
flicts with T3 and/or T2, then T4 must be aborted and restarted in order to ensure replica
consistency (case ii)). If conflicting transactions are not committed in the same order on
all replicas, then replicas could end up with different states of the shared data-set.

We use the speculative processing technique for executing optimistically (but not
yet finally) delivered transactions. This approach has been proposed in [15] in the con-
text of traditional DBMS. In addition to [15], we do not limit the number of speculative
transactions executed in parallel with their coordination phase, and we do not assume a-
priori knowledge on transactions’ access patterns. Write transactions are processed seri-
ally, without parallel activation (see Section 3.4 for complete discussion). Even though
this approach appears inconsistent with the nature of speculative processing, it has sev-
eral benefits for in-order processing, which increase the likelihood that a transaction
will reach its final stage before its Adeliver is issued.

In order to allow next conflicting transaction to process speculatively, we define a
complete buffer for each shared object. In addition to the last committed version, shared
objects also maintain a single memory slot (i.e., the complete buffer), which stores the
version of the object written by the last completely executed optimistic transaction. We
do not store multiple completed versions because, executing transactions serially needs
only one uncommitted version per object. When an Odelivered transaction performs
a read operation, it checks the complete buffer for the presence of a version. If the
buffer is empty, the last committed version is considered; otherwise, the version in the
complete buffer is accessed. When a write operation is executed, the complete buffer is
immediately overwritten with the new version. This early publication of written data in
memory is safe because of serial execution. In fact, there are no other write transactions
that can access this version before the transaction’s completion.

After executing all its operations, an optimistically delivered transaction waits un-
til Adeliver is received. In the meanwhile, the next Odelivered transaction starts to
execute. When an Adeliver is notified by OS-Paxos, a handler is executed by the
same thread that is responsible for speculatively processing transactions. This approach
avoids interleaving with transaction execution (which causes additional synchroniza-
tion overhead). When a transaction is Adelivered, if it is completely executed, then it
is validated for detecting the equivalence between its actual serialization order and the
final order. The validation consists of comparing the versions read during the execu-
tion. If they correspond with the actual committed version of the objects accessed, then
the transaction is valid, certifying that the serialization order is equivalent to the final



order. If the versions do not match, the transaction is aborted and restarted. A transac-
tion Adelivered and aborted during its validation can re-execute and commit without
validation due to the advantage of having only one thread executing write transactions.

The commit of write transactions involves moving the written objects from trans-
action local buffer to the objects’ last committed version. Although complete buffers
can be managed without synchronization because only one writing transaction is active
at a time, installing a new version as committed requires synchronization. Therefore,
each object maintains also a list of previously committed versions. This is exploited by
read-only transactions to execute independently from the write transactions.

Read-only transactions are marked by programmers and are not broadcast using OS-
Paxos, because they do not need to be totally ordered. When a client invokes a read-
only transaction, it is locally delivered and executed in parallel to write transactions
by a separate pool of threads. In order to support this parallel processing, we define a
timestamp for each replica, called replica-timestamp, which represents a monotonically
increasing integer, incremented each time a write transaction commits. When a write
transaction enters its commit phase, it assigns the replica-timestamp to a local variable,
called c-timestamp, representing the committing timestamp, increases the c-timestamp,
and tags the newly committed versions with this number. Finally, it updates the replica-
timestamp with the c-timestamp.

When a read-only transaction performs its first operation, the replica-timestamp
becomes the transaction’s timestamp (or r-timestamp). Subsequent operations are pro-
cessed according to the r-timestamp: when an object is accessed, its list of commit-
ted versions is traversed in order to find the most recent version with a timestamp
lower or equal to the r-timestamp. After completing execution, a read-only transac-
tion is committed without validation. The rationale for doing so is as follows. Suppose
TR is the committing read-only transaction and TW is the parallel write transaction.
TR’s r-timestamp allows TR to be serialized a) after all the write transactions with a c-
timestamp lower or equal to TR’s r-timestamp and b) before TW ’s c-timestamp and all
the write transactions committed after TW . TR’s operations access versions consistent
with TR’s r-timestamp. This subset of versions cannot change during TR’s execution,
and therefore TR can commit safely without validation.

Whenever a transaction commits, the thread managing the commit wakes-up the
client that previously submitted the request and provides the appropriate response.

3.4 Speculative Concurrency Control

In HiperTM, each replica is equipped with a local speculative concurrency control,
called SCC, for executing and committing transactions enforcing the order notified by
OS-Paxos. In order to overlap the transaction coordination phase with transaction exe-
cution, write transactions are processed speculatively as soon as they are optimistically
delivered. The main purpose of the SCC is to completely execute a transaction, accord-
ing to the opt-order, before its Adeliver is issued. As shown in Figure 1(b), the time
available for this execution is limited.

Motivated by this observation, we designed SCC. SCC exploits multi-versioned
memory for activating read-only transactions in parallel to write transactions that are,
on the contrary, executed on a single thread. The reason for single-thread processing



is to avoid the overhead for detecting and resolving conflicts according to the opt-
order while transactions are executing. SCC is able to process ≈95K write transactions
per second, in-order, while ≈250K read-only transactions are executing in parallel on
different cores (Bank benchmark on experimental test-bed). This throughput is higher
than HiperTM’s total number of optimistically delivered transactions speculatively pro-
cessed per second, illustrating the effectiveness of single-thread processing.

Single-thread processing ensures that when a transaction completes its execution,
all the previous transactions are executed in a known order. Additionally, no atomic
operations are needed for managing locks or critical sections. As a result, write transac-
tions are processed faster and read-only transactions (executed in parallel) do not suffer
from otherwise overloaded hardware bus (due to CAS operations and cache invalida-
tions caused by spinning on locks).

Transactions log the return values of their read operations and written versions in
private read- and write-set, respectively. The write-set is used when a transaction is
Adelivered for committing its written versions in memory. However, for each object,
there is only one uncommitted version available in memory at a time, and it corresponds
to the version written by the last optimistically delivered and executed transaction. If
more than one speculative transaction wrote to the same object, both are logged in their
write-sets, but only the last one is stored in memory in the object’s complete buffer. We
do not need to record a list of speculative versions, because transactions are processed
serially and only the last can be accessed by the current executing transaction.

upon Read(Transaction Ti, Object X) do
if (Ti.readOnly == FALSE)

if (∃ version ∈X.completeBuffer
Ti.ReadSet.add(X.completeBuffer);
return X.completeBuffer.value;

else
Ti.ReadSet.add(X.lastCommittedVersion);
return X.lastCommittedVersion.value;

else
if (r-timestamp == 0)

r-timestamp = X.lastCommittedVersion.timestamp;
return X.lastCommittedVersion.value;

P= {all versions V ∈X.committedVersions s.t.
V .timestamp ≤ r-timestamp}
if (∃ version Vcx ∈ P )

Vcx = maximum-timestamp(P )
return Vcx.value;

else
return X.lastCommittedVersion.value;

upon Write(Transaction Ti, Object X , Value v) do
Version Vx = createNewVersion(X,v);
X.completeBuffer = Vx;
Ti.WriteSet.add(Vx);

upon Commit(Transaction Ti) do
if (Validation(Ti) == FALSE)

return Ti.abort&restart();
c-timesamp = replica-timestamp;
c-timesamp++;
∀ Vx ∈ Ti.WriteSet do

Vx.timestamp = c-timestamp;
X.lastCommittedVersion = Vx;

replica-timestamp = c-timesamp;
boolean Validation(Transaction Ti)
∀ Vx ∈ Ti.ReadSet do

if (Vx 6= X.lastCommittedVersion)
return FALSE;

return TRUE;

Fig. 3. SCC’s pseudo code.

The read-set is used for validation. Validation is performed by simply verifying that
all the objects accessed correspond to the last committed versions in memory. When
the optimistic order matches the final order, validation is redundant, because serially
executing write transactions ensures that all the objects accessed are the last committed
versions in memory. Conversely, if an out-of-order occurs, validation detects the wrong
speculative serialization order.

Consider three transactions, and let {T1,T2, T3} be their opt-order and {T2,T1, T3}
be their final order. Let T1 and T2 write a new version of object X and let T3 reads



X . When T3 is speculatively executed, it accesses the version generated by T2. But this
version does not correspond to the last committed version ofX when T3 isAdelivered.
Even though T3’s optimistic and final orders are the same, it must be validated to detect
the wrong read version. When a transaction TA is aborted, we do not abort transactions
that read from TA (cascading abort), because doing so will entail tracking transaction
dependencies, which has a non-trivial overhead. Moreover, a restarted transaction is still
executed on the same processing thread. That is equivalent to SCC’s behavior, which
aborts and restarts a transaction when its commit validation fails.

A task queue is responsible for scheduling jobs executed by the main thread (pro-
cessing write transactions). Whenever an event such as Odeliver or Adeliver occurs,
a new task is appended to the queue and is executed by the thread after the completion
of the previous tasks. This allows the events’ handlers to execute in parallel without
slowing down the executor thread, which is the SCC’s performance-critical path.

As mentioned, read-only transactions are processed in parallel to write transactions,
exploiting the list of committed versions available for each object to build a consistent
serialization order. The growing core count of current and emerging multicore architec-
tures allows such transactions to execute on different cores, without interfering with the
write transactions. One synchronization point is present between write and read trans-
actions, i.e., the list of committed versions is updated when a transaction commits. In
order to minimize its impact on performance, we use a concurrent sorted Skip-List for
storing the committed versions.

The pseudo code of SCC is shown in Figure 3. We show the core steps of the con-
currency control protocol such as reading/writing a shared object and validating/com-
mitting a write transaction.

3.5 Properties

HiperTM ensures 1-copy serializability, opacity, lock-freedom and abort-freedom for
read-only transactions. We avoid formal proofs due to space constraints, but sketch the
basic arguments as follows:

Opacity [11]. A protocol ensures opacity if it guarantees three properties: (Op.1)
committed transactions appear as if they are executed serially, in an order equivalent
to their real-time order; (Op.2) no transaction accesses a snapshot generated by a live
(i.e., still executing) or aborted transaction; and (Op.3) all live and aborted transactions
observe a consistent system state.

HiperTM ensures opacity for each replica. It satisfies (Op.1) because each write
transaction is validated before commit, in order to certify that its serialization order
is equivalent to the optimistic atomic broadcast order, which reflects the order of the
client’s requests. Read-only transactions perform their operations according to the r-
timestamp recorded from the replica-timestamp before their first read. They access only
the committed versions written by transactions with the highest c-timestamp lower or
equal to the r-timestamp. Read-only transactions with the same r-timestamp have the
same serialization order with respect to write transactions. Conversely, if they have dif-
ferent r-timestamps, then they access only objects committed by transactions serialized
before. (Op.2) is guaranteed for write transactions because they are executed serially in



the same thread. Therefore, a transaction cannot start if the previous one has not com-
pleted, preventing it from accessing modifications made by non-completed transactions.
Under SCC, optimistically delivered transactions can access objects written by previ-
ous optimistically (and not yet finally) delivered transactions. However, due to serial
execution, transactions cannot access objects written by non-completed transactions.
(Op.2) is also ensured for read-only transactions because they only access committed
versions. (Op.3) is guaranteed by serial execution, which prevents concurrent accesses
to same objects. When a transaction is aborted, it is only because its serialization order
is not equivalent to the final delivery order (due to network reordering). However, that
serialization order has been realized by a serial execution. Therefore, the transaction’s
observed state of objects is always consistent.

1-Copy serializability [2]. 1-copy serializability is guaranteed because each replica
commits the same set of write transactions in the same order notified by the optimistic
atomic broadcast layer. Read-only transactions activated on different nodes cannot ob-
serve any two write transactions that are serialized differently on those nodes.

Lock-freedom [10]. Lock-freedom guarantees that there always exists at least one
thread that makes progress, which rules out deadlocks and livelocks. In HiperTM, this is
a direct consequence of the fact that transactions aborted due to unsuccessful validation
and already Adelivered can restart their execution and cannot be aborted anymore due
to serial execution and its highest priority for subsequent commit.

Abort-freedom of read-only transactions. Before issuing the first operation, read-
only transactions save the replica-timestamp in their local r-timestamp and use it for
selecting the proper committed versions to read. The subset of all the versions that read-
only transactions can access during their execution is fixed when the transactions define
their r-timestamp. Only one write transaction is executing when a read-only transaction
acquires the r-timestamp. If this write transaction updates the replica-timestamp before
the other acquires the r-timestamp, the read-only transaction is serialized after the write
transaction, but before the next write transaction eventually commits. On the contrary,
if the replica-timestamp’s update happens after, the read-only transaction is serialized
before the write transaction and cannot access the write transaction’s just committed
objects. In both cases, the subset of versions that the read-only transaction can access
is defined and cannot change due to future commits. For this reason, when a read-only
transaction completes its execution, it returns the values to its client without validation.

4 Implementation and Evaluation

HiperTM’s architecture consists of two layers: network layer (OS-Paxos) and replica
concurrency control (SCC). We implemented both in Java: OS-Paxos as an extension
of S-Paxos, and SCC from scratch. To evaluate performance, we used two benchmarks:
Bank and TPC-C. Bank emulates a bank application and is typically used in TM works
for benchmarking performance [16, 25, 6]. TPC-C [5] is a well known benchmark that
is representative of on-line transaction processing workloads.

We used PaxosSTM [16] and Score [25] as competitors. PaxosSTM implements
the deferred update replication scheme and relies on a non-blocking transaction certi-
fication protocol, which is based on atomic broadcast (provided by JPaxos). Score is a



 20000

 40000

 60000

 80000

 100000

 120000

 3  4  5  6  7  8

Tx
 p

er
 s

ec

Replicas

HiperTM 0% read
HiperTM 10% read

PaxosSTM 10% read

(a) Write-intensive workload

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 3  4  5  6  7  8

Tx
 p

er
 s

ec

Replicas

HiperTM 50% read
HiperTM 90% read

PaxosSTM 50% read
PaxosSTM 90% read

(b) Read workload

Fig. 4. Performance of HiperTM and PaxosSTM for the Bank benchmark.

partial replication-based DTM protocol (in contrast to HiperTMs state machine-based
replication, which yields full failure-masking). Score is designed to scale up to hundred
nodes with a replication degree of two. Both represent state-of-the-art DTM.

Our test-bed consists of 8 nodes interconnected using a 1Gb/s switched network.
Four of the nodes are 64-core AMD Opteron machines (128GB RAM, 2.3 GHz), while
the other four are 48-core AMD Opteron (32GB RAM, 1.7 GHz). For each benchmark,
we varied the percentage of read-only transactions to cover all configuration settings.
Clients are balanced on all the replicas. They inject transactions for the benchmark and
wait for the reply. A pool of 20 threads are deployed for serving read-only transactions.
Data points plotted are the average of 10 repeated experiments.

Figure 4 shows the throughput of the Bank benchmark1. Figure 4(a) shows results
for 0% read and 10% read, and Figure 4(b) shows results for read-intensive workloads
(50% and 90% read). HiperTM OS-Paxos sustains its throughput in all configurations,
achieving almost constant throughput for write-only transactions with increasing replica
count. Interestingly, with 3 replicas, HiperTM’s write-only transaction throughput out-
performs PaxosSTM’s throughput for 10% of read-only transactions. This speed-up is
directly due to HiperTM’s speculative processing of write transactions, which allows
SCC to commit most of the transactions when they are Adelivered.

Performance as well as system scalability significantly increases when read-only
transactions are varied from 10% to 90%. This is mainly because, read-only transac-
tions can execute locally without involving OS-Paxos and other nodes for computation.
The maximum throughput observed is ≈400K transactions processed per second in the
entire system, with a maximum speed-up of ≈1.2× over PaxosSTM.

Figure 5 compares HiperTM’s performance with Score [25]2. In these experiments,
we ran TPC-C with the same configuration as Bank, and also with the configuration
suggested by the TPC-C specification (Score’s results are not available for all configu-
rations). TPC-C’s average transaction execution time is much higher than Bank’s, due
to the nature of its transactions, impacting overall throughput. However, HiperTM is

1 Results of PaxosSTM that we used are also available in [16].
2 Score’s results are available in [25].



 0

 10000

 20000

 30000

 40000

 50000

 3  4  5  6  7  8

Tx
 p

er
 s

ec

Replicas

HiperTM 0% read
HiperTM 10% read

HiperTM TPC-C spec

(a) Write-intensive workload

 0

 10000

 20000

 30000

 40000

 50000

 3  4  5  6  7  8

Tx
 p

er
 s

ec

Replicas

HiperTM 50% read
HiperTM 90% read

Score 50% read
Score 90% read

(b) Read workload

Fig. 5. Performance of HiperTM and Score for the TPC-C benchmark.

still able to overlap transaction execution with coordination for committing a transac-
tion when its Adeliver arrives. HiperTM outperforms Score with 8 replicas by up to
10×. Its effectiveness is particularly evident here, as Score pays the cost for looking-up
remotely accessed objects, unlike HiperTM, which executes transactions locally.

We also measured the impact of the leader’s failure on transactional throughput
with the TPC-C benchmark. Due to space constraints, we skip plots, but summarize
the key trend: we observed a maximum degradation of ≈30% after the crash. This is
because, clients directly connected to the leader’s replica need time to detect the failure
and reroute their connections (for write and read transactions) to other replicas. After
this time window, the performance returns to a stable state.

5 Related Work

Replication in transactional systems has been widely explored in the context of DBMS,
including protocol specifications [14] and infrastructural solutions [30, 26, 21, 22]. These
proposals span from the usage of distributed locking mechanisms to atomic commit pro-
tocols. [32] implements and evaluates various replication techniques, and those based
on active replication are found to be the most promising.

In [1, 13], two active replication techniques are presented. Both rely on atomic
broadcast for ordering transaction requests, and execute them only when the final order
is notified. In contrast HiperTM, based on optimistic atomic broadcast, begins to pro-
cess transactions before their final delivery, i.e., when they are optimistically delivered.

Speculative processing of transactions has been originally presented in [15] and
further investigated in [19, 20]. [19] presents AGGRO, a speculative concurrency con-
trol protocol, which processes transactions in-order, in actively replicated transactional
systems. In AGGRO, for each read operation, the transaction identifies the following
transactions according to the opt-order, and for each one, it traverses the transactions’
write-set to retrieve the correct version to read. The authors only present the protocol
in [19]; no actual implementation is presented, and therefore overheads are not revealed.



In HiperTM, all the design choices are motivated by real performance issues. Our
results show how single-thread processing and multi-versioned memory for parallel
activation and abort-freedom of read-only transactions are the best trade-off in terms
of performance and overhead for conflict detection, in systems based on total order
services similar to OS-Paxos. In contrast to [20], HiperTM does not execute the same
transaction in multiple serialization orders, because OS-Paxos, especially in case of
failure-free execution, guarantees no-reorders.

Full replication based on total order has also been investigated in certification-based
transaction processing [16, 4, 24]. In this model, transactions are first processed locally,
and a total order service is invoked in the commit phase for globally certifying transac-
tion execution (by broadcasting their read and write-sets). [4] is based on OAB and [24]
is based on AB. Both suffer from (O)AB’s scalability bottleneck when message size in-
creases. In HiperTM, the length of messages does not depend on transaction operations;
it is only limited by the signature of invoked transactions along with their parameters.

Granola [6] is a replication protocol based on a single round of communication.
Granola’s concurrency control technique uses single-thread processing for avoiding
synchronization overhead, and has a structure for scheduling jobs similar to SCC.

6 Conclusions

At its core, our work shows that optimism pays off: speculative transaction execution,
started as soon as transactions are optimistically delivered, allows hiding the total or-
dering latency, and yields performance gain. Single-communication step is mandatory
for fine-grain transactions. Complex concurrency control algorithms are sometimes not
feasible when the available processing time is limited.

Implementation matters. Avoiding atomic operations, batching messages, and opti-
mizations to counter network non-determinism are important for high performance.

Acknowledgement

The authors would like to thank the authors of S-Paxos [3], PaxosSTM [16], and Score [25]
for their willingness to share source codes.

This work is supported in part by US National Science Foundation under grants
CNS 0915895, CNS 1116190, CNS 1130180, and CNS 1217385.

References

1. D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Exploiting atomic broadcast in repli-
cated databases (extended abstract). In Euro-Par 97.

2. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

3. M. Biely, Z. Milosevic, N. Santos, and A. Schiper. S-Paxos: Offloading the Leader for High
Throughput State Machine Replication. In SRDS ’12.

4. N. Carvalho, P. Romano, and L. Rodrigues. Scert: Speculative certification in replicated
software transactional memories. In SYSTOR ’11.



5. T. Council. TPC-C benchmark. 2010.
6. J. Cowling and B. Liskov. Granola: Low-overhead distributed transaction coordination. In

USENIX Annual Technical Conference ’12.
7. X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast algorithms: Tax-

onomy and survey. ACM Computing Surveys, 36(4), 2004.
8. D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC ’06.
9. A. Dragojevic, R. Guerraoui, and M. Kapalka. Stretching transactional memory. PLDI ’09.

10. K. Fraser. Practical lock freedom. PhD thesis, Cambridge Univ. Computer Laboratory, 2003.
11. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In PPOPP ’08.
12. R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed Programming. 2006.
13. R. Jiménez-Peris, M. Patiño-Martı́nez, and S. Arévalo. Deterministic scheduling for trans-

actional multithreaded replicas. In SRDS 2000.
14. B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new way to implement

database replication. In VLDB 2000.
15. B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann. Using optimistic atomic

broadcast in transaction processing systems. IEEE TKDE, 15(4), 2003.
16. T. Kobus, M. Kokociński, and P. Wojciechowski. Practical considerations of distributed STM

systems development (abstract). In WDTM ’12.
17. J. Kończak, N. Santos, T. Żurkowski, P. T. Wojciechowski, and A. Schiper. JPaxos: State

machine replication based on the Paxos protocol. Technical Report EPFL-REPORT-167765,
Faculté Informatique et Communications, EPFL, July 2011. 38pp.

18. L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., pages 133–169, 1998.
19. R. Palmieri, F. Quaglia, and P. Romano. AGGRO: Boosting STM replication via aggressively

optimistic transaction processing. In NCA ’10.
20. R. Palmieri, F. Quaglia, and P. Romano. OSARE: Opportunistic speculation in actively

replicated transactional systems. In SRDS ’11.
21. M. Patino-Martinez, R. Jiménez-Peris, B. Kemme, and G. Alonso. MIDDLE-R: Consistent

database replication at the middleware level. ACM Trans. Comput. Syst., 23(4), 2005.
22. F. Pedone and S. Frølund. Pronto: High availability for standard off-the-shelf databases. J.

Parallel Distrib. Comput., 68(2), 2008.
23. F. Pedone and A. Schiper. Optimistic atomic broadcast. In DISC, 1998.
24. S. Peluso, J. Fernandes, P. Romano, F. Quaglia, and L. Rodrigues. SPECULA: Speculative

replication of software transactional memory. In SRDS ’12.
25. S. Peluso, P. Romano, and F. Quaglia. SCORe: A scalable one-copy serializable partial

replication protocol. In Middleware, 2012.
26. F. Perez-Sorrosal, M. Pati no-Martinez, R. Jimenez-Peris, and B. Kemme. Consistent and

scalable cache replication for multi-tier j2ee applications. In Middleware ’07.
27. N. Santos and A. Schiper. Tuning paxos for high-throughput with batching and pipelining.

In ICDCN ’12.
28. N. Schiper, P. Sutra, and F. Pedone. P-store:genuine partial replication in WAN. In SRDS 10.
29. F. B. Schneider. Replication management using the state-machine approach. ACM

Press/Addison-Wesley Publishing Co., 1993.
30. P. Sebastiano, R. Palmieri, F. Quaglia, and B. Ravindran. On the viability of speculative

transactional replication in database systems: a case study with PostgreSQL. In NCA ’13.
31. N. Shavit and D. Touitou. Software transactional memory. PODC ’95.
32. M. Wiesmann and A. Schiper. Comparison of database replication techniques based on total

order broadcast. IEEE TKDE, 17(4), 2005.


