
Distributed Hybrid-Flow STM

[Technical Report]

Mohamed M. Saad
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
msaad@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
binoy@vt.edu

ABSTRACT
We present HyFlow — a distributed software transactional
memory (D-STM) framework for distributed concurrency
control. Lock-based concurrency control suffers from draw-
backs including deadlocks, livelocks, and scalability and com-
posability challenges. These problems are exacerbated in
distributed systems due to their distributed versions which
are more complex to cope with (e.g., distributed deadlocks).
STM and D-STM are promising alternatives to lock-based
and distributed lock-based concurrency control for central-
ized and distributed systems, respectively, that overcome
these difficulties. HyFlow is a Java framework for D-STM,
with pluggable support for directory lookup protocols, trans-
actional synchronization and recovery mechanisms, contention
management policies, cache coherence protocols, and net-
work communication protocols. HyFlow exports a simple
distributed programming model that excludes locks: using
(Java 5) annotations, atomic sections are defined as transac-
tions, in which reads and writes to shared, local and remote
objects appear to take effect instantaneously. No changes
are needed to the underlying virtual machine or compiler.
We describe HyFlow’s architecture and implementation, and
report on experimental studies comparing HyFlow against
competing models including Java remote method invoca-
tion (RMI) with mutual exclusion and read/write locks, dis-
tributed shared memory (DSM), and directory-based D-STM.
Our studies show that HyFlow outperforms competitors by
as much as 40-190% on a broad range of transactional work-
loads on a 72-node system, with more than 500 concurrent
transactions.

1. INTRODUCTION
Lock-based synchronization is inherently error-prone. Coarse-
grained locking, in which a large data structure is protected
using a single lock is simple and easy to use, but permits lit-
tle concurrency. In contrast, with fine-grained locking [44,
55], in which each component of a data structure (e.g., a
bucket of a hash table) is protected by a lock, program-
mers must acquire necessary and sufficient locks to obtain

maximum concurrency without compromising safety. Both
these situations are highly prone to programmer errors. In
addition, lock-based code is non-composable. For example,
atomically moving an element from one hash table to an-
other using those tables’ (lock-based) atomic methods is dif-
ficult: if the methods internally use locks, a thread cannot
simultaneously acquire and hold the locks of the two tables’
methods; if the methods were to export their locks, that
will compromise safety. Furthermore, lock-inherent prob-
lems such as deadlocks, livelocks, lock convoying, and pri-
ority inversion haven’t gone away. For these reasons, lock-
based concurrent code is difficult to reason about, program,
and maintain.

These difficulties are exacerbated in distributed systems with
nodes, possibly multicore, interconnected using message pass-
ing links, due to additional, distributed versions of their
centralized problem counterparts. For example, RPC calls,
while holding locks, can become remotely blocked on other
calls for locks, causing distributed deadlocks. Distributed
versions of livelocks, lock convoying, priority inversion, and
scalability and composability challenges similarly occur.

Transactional memory (TM) [33] is a promising alternative
to lock-based concurrency control. With TM, programmers
write concurrent code using threads, but organize code that
read/write shared objects as transactions, which appear to
execute atomically. Two transactions conflict if they ac-
cess the same object and one access is a write. When that
happens, a contention manager [70] resolves the conflict by
aborting one and allowing the other to proceed to commit,
yielding (the illusion of) atomicity. Aborted transactions
are re-started, often immediately. Thus, a transaction ends
by either committing (i.e., its operations take effect), or by
aborting (i.e., its operations have no effect). In addition
to providing a simple programming model, TM provides
performance comparable to highly concurrent, fine-grained
locking [6]. Numerous multiprocessor TM implementations
have emerged in software (STM) [32, 34, 38, 71], hardware
(HTM) [31,39], and in a combination (HybridTM) [6,22,58].

Similar to multiprocessor TM, distributed software transac-
tional memory (or D-STM) is an alternative to lock-based
distributed concurrency control. D-STM can be supported
in any of the classical distributed programming models, in-
cluding a) control flow [9,51,73], where objects are immobile
and transactions invoke object operations through RPCs; b)
dataflow [60, 74], where transactions are immobile, and ob-

1 public class BankAccount implements
I D i s t i n g u i s h a b l e {

2
3 @Override
4 public Object get Id () {
5 return id ;
6 }
7
8 @Remote @Atomic{ r e t r i e s =100}
9 public void depos i t (int d o l l a r s) {

10 amount = amount + d o l l a r s ;
11 }
12
13 @Remote @Atomic
14 public boolean withdraw (int d o l l a r s) {
15 i f (amount>=d o l l a r s) return fa lse ;
16 amount = amount − d o l l a r s ;
17 return true ;
18 }
19 }

1 public class Trans fe rTransact ion {
2 @Atomic{ r e t r i e s =50}
3 public boolean t r a n s f e r (S t r ing accNum1 ,

St r ing accNum2 , int amount) {
4 BankAccount account1 =

ObjectAccessManager . open (accNum1) ;
5 BankAccount account2 =

ObjectAccessManager . open (accNum2) ;
6
7 i f (! account1 . withdraw (amount))
8 return fa lse ;
9 account2 . depos i t (amount) ;

10
11 return true ;
12 }
13 }

Figure 1: A bank transaction using an atomic TM
method.

jects are migrated to invoking transactions; and c) a hybrid
model (e.g., [17]) where transactions or objects are migrated,
heuristically, based on properties such as access profiles, ob-
ject size, or locality. The different models have their con-
comitant tradeoffs.

The least common denominators for supporting D-STM in
any distributed programming model include mechanisms/pro-
tocols for directory lookup [23, 40, 41, 77, 78], transactional
synchronization and recovery [17, 21, 48, 53, 66], contention
management [69,70], cache coherence, and network commu-
nication. We present HyFlow — a Java D-STM framework
that provides pluggable support for these mechanisms/pro-
tocols as modules. HyFlow exports a simple distributed pro-
gramming model that excludes locks: atomic sections are de-
fined as transactions using (Java 5) annotations. Inside an
atomic section, reads and writes to shared, local and remote
objects appear to take effect instantaneously. No changes
are needed to the underlying virtual machine or compiler.

Figure 1 shows example transactional code in HyFlow, in
which two bank accounts are accessed and an amount is
atomically transferred between them. At the programming
level, no locks are used, the code is self-maintained, and

atomicity, consistency, and isolation are guaranteed (for the
transfer transaction). Composability is also achieved: the
atomic withdraw and deposit methods have been composed
into the higher-level atomic transfer operation. A conflict-
ing transaction is transparently retried. Note that the lo-
cation of the bank account is hidden from the program. It
may be cached locally, migrate to the current node, or ac-
cessed remotely using remote calls, which is transparently
accomplished by HyFlow.

Multiprocessor TM has been intensively studied, resulting
in a number of implementations. Example HTM imple-
mentations include TCC [31], UTM [5], OneTM [16], and
LogSPoTM [30]. They often extend multiprocessor cache
coherence protocols, or modify underlying hardware to sup-
port transactions. Example STM implementations include
DSTM2 [37], RSTM [54], and Deuce [47]. They often use
basic atomic hardware primitives (e.g., compare-and-swap)
to provide atomicity, and thread-local memory locations are
used to provide consistent view of memory. Example Hy-
bridTM implementations include LogTM [58], HyTM [49],
and McRT-STM [6].

D-STM implementations also exist. Examples include Cluster-
STM [17], D2STM [21], DiSTM [48], and Cloud-TM [67].
Communication overhead, balancing network traffic, and net-
work failure models are additional concerns for such designs.
These implementations are mostly specific to a particular
programming model (e.g., the partitioned global address
space (PGAS) [2]) and often needs compiler or virtual ma-
chine modifications (e.g., JVSTM [18]), or assume specific
architectures (e.g., commodity clusters).

HyFlow supports both dataflow and control flow models,
and ensures distributed transactional properties including
atomicity, consistency, and isolation. HyFlow’s architec-
ture is module-based, with well-defined APIs for further
plugins. Default implementations exist for all needed mod-
ules. The framework currently includes two algorithms to
support distributed memory transactions: the transactional
forwarding algorithm (TFA) [68], and a distributed variant
of the UndoLog algorithm [65]. A wide range of transac-
tion contention management policies (e.g., Karma, Aggres-
sive, Polite, Kindergarten, Eruption [69, 70]) are included
in HyFlow. Four directory protocols [23, 41, 77] are imple-
mented in HyFlow to track objects which are distributed
over the network. HyFlow uses a voting algorithm, the dy-
namic two phase commitment protocol (D2PC) [62], to sup-
port control flow transactions. Network communication is
supported using protocols including TCP [20], UDP [61],
and SCTP [72]. We also implement a suite of distributed
benchmark applications in HyFlow, which are largely in-
spired by the multiprocessor STM STAMP benchmark suite [19],
to evaluate D-STM.

We experimentally evaluated HyFlow against competing mod-
els including Java remote method invocation (RMI) with
mutual exclusion and read/write locks, distributed shared
memory (DSM), and directory-based D-STM. Our studies
show that HyFlow outperforms competitors by as much as
40-190% on a broad range of transactional workloads on
a 72-node system, with more than 500 concurrent transac-
tions.

The paper’s central contribution is HyFlow — the first ever
D-STM framework implementation. HyFlow provides sev-
eral advantages over existing D-STM implementations in-
cluding pluggable support for D-STM algorithms, without
changes to the underlying virtual machine or compiler. The
framework also provides a testbed for the research commu-
nity to design, implement, and evaluate algorithms for D-
STM. We hope that this will increase the momentum in
D-STM research.

The rest of the paper is organized as follows. We overview
past and related efforts in Section 2. In Section 3, we detail
HyFlow’s system architecture and underlying mechanisms.
Section 4 formally analyzes dataflow and control flow D-
STM models, and establishes their tradeoff. In Section 5, we
experimentally evaluate HyFlow against competing efforts.
We conclude in Section 6.

2. RELATED WORK
Transactional Memory. The classical solution for han-
dling shared memory during concurrent access is lock-based
techniques [7,45], where locks are used to protect shared ob-
jects. Locks have many drawbacks including deadlocks, live-
locks, lock-convoying, priority inversion, non-composability,
and the overhead of lock management. TM, proposed by
Herlihy and Moss [39], is an alternative approach for shared
memory access, with a simpler programming model. Mem-
ory transactions are similar to database transactions: a trans-
action is a self-maintained entity that guarantees atomicity
(all or none), isolation (local changes are hidden till commit),
and consistency (linearizable execution). TM has gained sig-
nificant research interest including that on STM [32, 34, 37,
38,54,56,71], HTM [5,16,31,39,57], and HyTM [6,12,22,49,
58]. STM has relatively larger overhead due to transaction
management and architecture-independence. HTM has the
lowest overhead, but assumes architecture specializations.
HyTM seeks to combine the best of HTM and STM.

Distributed Shared Memory. Supporting shared mem-
ory access in distributed systems has been extensively stud-
ied through the DSM model. Earlier DSM proposals were
page-based [4, 8, 27, 50] that provide sequential consistency
using single-writer/multiple-reader protocol at the level of
memory pages. Though they still have a large user base,
they suffer from several drawbacks including false sharing.
This problem occurs when two different locations, located
in the same page, are used concurrently by different nodes,
causing the page to “bounce” between nodes, even though
there is no shared data [26]. In addition, DSM protocols that
provide sequential consistency have poor performance due to
the high message overhead incurred [4]. Furthermore, single-
writer/multiple-reader protocols often have “hotspots,” de-
grading their performance. Also, most DSM implementa-
tions are platform-dependent and does not allow node het-
erogeneity.

Variable-based DSM [13, 14] provides language support for
DSM based on shared variables, which overcomes the false-
sharing problem and allows the use of multiple-writer/multiple-
reader protocols. With the emergence of object-oriented
programming, object-based DSM implementations were in-
troduced [9,51,60,73,74] to facilitate object-oriented parallel
applications.

D-STM
Control Flow [9,51,73]
Data Flow

Single version [25,36]
Directory Based

Tightly coupled [41]
Variable [10,23,40,77]

Invalidate [64]
Replicate [3, 11,52]

Multiversion
Linearizable [43]
Non-Linearizable [65]

Hybrid Flow [17]

Figure 2: A Distributed STM taxonomy

Distributed STM. Similar to multiprocessor STM, D-STM
was proposed as an alternative to lock-based distributed con-
currency control. Figure 2 shows a taxonomy of different
D-STM designs. D-STM models can be classified based on
the mobility of transactions and objects. Mobile transac-
tions [9,51,73] use an underlying mechanism (e.g., RMI) for
invoking operations on remote objects. The mobile object
model [40, 60, 67, 74, 77] allows objects to move through the
network to requesting transactions, and guarantees object
consistency using cache coherence protocols. Usually, these
protocols employ a directory that can be tightly coupled
with its registered objects [41], or permits objects to change
their directory [10,23,40,77].

The mobile object model can also be classified based on
the number of active object copies. Most implementations
assume a single active copy, called single version. Object
changes can then be a) applied locally, invalidating other
replicas [64], b) applied to one object (e.g., latest version
of the object [25, 36]), which is discovered using directory
protocols [23,41], or c) applied to all replicated objects [3,11,
52]. In contrast, multiversion concurrency control (MVCC)
proposals allow multiple copies or replicas of an object in the
network [43,65]. The MVCC models often favor performance
over linearizable execution [42]. For example, in [65], reads
and writes are decoupled to increase transaction throughput,
but allows reading of older versions instead of the up-to-date
version to prevent aborts.

System architecture and the scale of the targeted problem
can affect design choices. With a small number of nodes
(e.g., 10) interconnected using message-passing links, cache-
coherent D-STM (cc D-STM) [23,40,77] is appropriate. How-
ever, for a cluster computer, in which a group of linked com-
puters work closely together to form a single computer, re-
searchers have proposed cluster D-STM [17, 21, 48, 53, 66].
The most important difference between the two is commu-
nication cost. cc D-STM assumes a metric-space network
between nodes, while cluster D-STM differentiates between
access to local cluster memory and remote memory at other
clusters.

Herlihy and Sun proposed cc D-STM [40]. They present a
dataflow model, where transactions are immobile and ob-
jects are mobile. Object conflicts and object consistency are
managed and ensured, respectively, by contention manage-
ment and cache coherence protocols. In [40], they present

a cache-coherence protocol, called Ballistic. Ballistic’s hi-
erarchical structure degrades its scalability—e.g., whenever
a node joins or departs the network, the whole structure
has to be rebuilt. This drawback is overcome in Zhang and
Ravindran’s Relay protocol [77, 78], which improves scal-
ability by using a peer-to-peer structure. Relay assumes
encounter time object access, which is applicable only for
pessimistic STM implementations, which, relative to opti-
mistic approaches, suffer from large number of conflicts [24].
Saad and Ravindran proposed an object-level lock-based al-
gorithm [68] with lazy acquisition. No central clocking (or
ticketing) mechanism is required. Network traffic is reduced
by limiting broadcasting to just the object identifiers. Trans-
actions are immobile, objects are replicated and detached
from any “home” node, and they ensure a single writable
copy of each object.

In [17], Bocchino et. al. proposed a word-level cluster D-
STM. They decompose a set of existing cache-coherent STM
designs into a set of design choices, and select a combination
of such choices to support their design. However, each pro-
cessor is limited to one active transaction at a time. Also,
no progress guarantees are provided, except for deadlock-
freedom. In [53], Manassiev et. al. present a page-level dis-
tributed concurrency control algorithm for cluster D-STM,
which automatically detects and resolves conflicts caused
by data races for distributed transactions accessing shared
memory data. In their algorithm, page differences are broad-
cast to all other replicas, and a transaction commits suc-
cessfully upon receiving acknowledgments from all nodes. A
central timestamp is employed, which allows only a single
update transaction to commit at a time.

Kotselidis et. al. present the DiSTM [48] object-level, clus-
ter D-STM framework, as an extension of DSTM2 [37]. They
compare three cache-coherence protocols on benchmarks for
clusters. They show that, under the TCC protocol [31],
DiSTM induces large traffic overhead at commit time, as a
transaction broadcasts its read/write sets to all other trans-
actions, which compare their read/write sets with those of
the committing transaction. Using lease protocols [28], this
overheard is eliminated. However, an extra validation step is
added to the master node, as well as bottlenecks are created
upon acquiring and releasing the leases. These implemen-
tations assume that every memory location is assigned to a
home processor that maintains its access requests. Also, a
central, system-wide ticket is needed at each commit event
for any update transaction (except [17]).

Couceiro et. al. present D2STM [21]. Here, STM is repli-
cated on distributed system nodes, and strong transactional
consistency is enforced at commit time by a non-blocking
distributed certification scheme. In [46], Kim and Ravin-
dran develop a D-STM transactional scheduler, called Bi-
interval, that optimizes the execution order of transactional
operations to minimize conflicts, yielding throughput im-
provement of up to 200%. Romano et. al. extend cluster
D-STM for Web services [66] and Cloud platforms [67].

HyFlow is an object-level D-STM framework, with pluggable
support for the least common D-STM denominators, includ-
ing directory lookup, transactional synchronization and re-
covery, contention management, cache coherence, and net-

work communication. It supports both control and data
flow, and implements a variety of algorithms as defaults. In
addition, it doesn’t require any changes to the underlying
virtual machine or compiler, unlike [2, 18].

3. HYFLOW ARCHITECTURE
3.1 System Model
We consider an asynchronous distributed system model, sim-
ilar to Herlihy and Sun [40], consisting of a set of N nodes
N1, N2,, Nn, communicating through weighted message-
passing links E. Let G = (N,E, c) be an undirected graph
representing the network, where c is a function that defines
the link communication cost. Let M denote the set of mes-
sages transferred in the network, and Size(Mi) the size of a
message Mi. A message could be a remote call request, vote
request, resource publish message, or any type of message
defined in HyFlow’s protocols. A fixed minimum spanning
tree S or G is used for broadcasting. Thus, the cost of mes-
sage broadcasting is O(|N |), which we define as the constant
Ω.

We assume that each shared object has an unique identifier.
We use a grammar similar to the one in [29], but extend
it for distributed systems. Let O = {o1, o2, ...} denote the
set of objects shared by transactions. An object may be
replicated or may migrate to any other node. Without loss
of generality, objects export only read and write methods
(or operations). Thus, we consider them as shared registers.
Let T = {T1, T2, . . .} denote the set of transactions. Each
transaction has an unique identifier, and is invoked by a node
(or process) in a distributed system of N nodes. We denote
the sets of shared objects accessed by transaction Tk for read
and write as read-set(Tk) and write-set(Tk), respectively. A
transaction can be in one of three states: active, aborted, or
committed. When a transaction is aborted, it is retried by
the node again using a different identifier.

Every object has, at least, one “owner” node that is respon-
sible for handling requests from other nodes for the owned
object. Let Own(Oi) and Size(Oi) be functions that rep-
resent the owner and size of object Oi, respectively. In the
data-flow model, a cache-coherence protocol locates the cur-
rent cached copy of the object in the network, and moves it
to the requesting node’s cache. Under some circumstances,
the protocol may change the object’s owner to a new owner.
Changes to the ownership of an object occurs at the suc-
cessful commit of the object-modifying transaction. At that
time, the new owner broadcasts a publish message with the
owned object identifier.

In the control flow model, any node that wants to read from,
or write to an object, contacts the object’s owner using a
remote call. The remote call may in turn produce other
remote calls, which construct, at the end of the transaction,
a global graph of remote calls. We call this graph, a call
graph.

3.2 Architecture
Figure 3 shows the nodal architecture of HyFlow. Five mod-
ules and a runtime handler form the basis of the architec-
ture. The modules include the Transaction Manager, In-
strumentation Engine, Object Access Module, Transaction
Validation Module, and Communication Manager.

HyFlow Runtime

Transaction Manager

Object Access Module

Directory Manager Object

Proxy

Communication Manager

Migration

 Module

Cached/Local

 Objects Pool

.... Application

Level Threads

Transaction Validation

 Module

 Voting

 Protocol

Contention

 Manager

Java Classes

 Java

 Virtual

Machine

 (JVM)

 Instrumentation

 Engine

Figure 3: HyFlow Node Architecture

The HyFlow runtime handler represents a standalone en-
tity that delegates application-level requests to the frame-
work. HyFlow uses run-time instrumentation to generate
transactional code, like other (multiprocessor) STM such as
Deuce [47], yielding almost two orders of magnitude superior
performance than reflection-based STM (e.g., [37]).

The Transaction Manager contains mechanisms for ensur-
ing a consistent view of memory for transactions, validat-
ing memory locations, and retrying transactional code when
needed. Based on the access profile and object size, object
migration is permitted.

The Instrumentation Engine modifies class code at runtime,
adds new fields, and modifies annotated methods to support
transactional behavior. Further, it generates callback func-
tions that work as “hooks” for Transaction Manager events
such as onWrite, beforeWrite, beforeRead, etc.

Every node employs a Transaction Manager, which runs lo-
cally and handles local transactional code. The Transaction
Manager treats remote transactions and local transactions
equally. Thus, the distributed nature of the system is seam-
less at the level of transaction management.

The Object Access Module has three main tasks: 1) pro-
viding access to the object owned by the current node, 2)
locating and sending access requests to remote objects, and
3) retrieving any required object meta-data (e.g., latest ver-
sion number). Objects are located with their IDs using the
Directory Manager, which encapsulates a directory lookup
protocol [23, 41, 77]. Upon object creation, the Directory
Manager is notified and publishes the object to other nodes.
The Migration Module decides when to move an object to
another owner or keep it locally. The purpose of doing so is
to exploit object locality and reduce the overall communi-
cation traffic between nodes.

The Transaction Validation Module ensures data consistency
by validating transactions upon their completion. It uses
two sub-modules:

• Contention Manager. This sub-module is consulted
when conflicts occur—i.e., when two transactions ac-

cess a shared object, and one access is a write. When
local transactions conflict, a contention management
policy (e.g., Karma, Aggressive, Polite, Kindergarten,
Eruption [69, 70]) is used to abort or postpone one of
the conflicting transactions. However, when one of the
conflicting transactions is remote, the contention pol-
icy decision is made globally based on heuristics (we
explain this later in Section 3.2.3).
• Global Voting handler. In order to validate a transac-

tion based on control flow, a global decision must be
made across all participating nodes. This sub-module
is responsible for collecting votes from other nodes and
make a global commit decision such as by a voting pro-
tocol (e.g., D2PC [62]).

3.2.1 Instrumentation Engine
Instrumentation is a Java feature that allows the addition
of byte-codes to classes at run-time. In contrast with re-
flection, instrumentation works just once at class load time,
which incurs much less overhead. HyFlow’s Instrumenta-
tion Engine (HyIE) is a generic Java source code processor,
which inserts transactional code at specified locations in a
given source code. HyIE employs Annotations — a Java
5 feature that provides runtime access to syntactic form of
metadata defined in source code, to recognize portions of
code that need to be transformed. HyIE is built as an ex-
tension of the Deuce (multiprocessor) STM [47], which is
based on ASM [15], a Java bytecode manipulation and anal-
ysis framework.

Like Deuce, we consider a Java method as the basic an-
notated block. This approach has two advantages. First,
it retains the familiar programming model, where @Atomic

replaces synchronized methods and @Remote substitutes for
RMI calls. Secondly, it simplifies transactional memory main-
tenance, which has a direct impact on performance. The
Transaction Manager need not handle local method vari-
ables as part of a transaction.

Any distributed class must implement the IDistinguish-

able interface with a single method getId(). The purpose
of this restriction is to decouple object references from their
memory locations. HyIE detects any loaded class of type
IDistinguishable and transforms it to a transactional ver-
sion. Further, it instruments every class that may be used
within transactional code. This transformation occurs as
follows:

• Classes. A synthetic field is added to represent the
state of the object as local or remote. The class con-
structor(s) code is modified to register the object with
the Directory Manager at creation time.
• Fields. For each instance field, setter and getter meth-

ods are generated to delegate any direct access for
these fields to the Transaction manager. Class code
is modified accordingly to use these methods.
• Methods. Two versions of each method are generated.

The first version is identical to the original method,
while the second one represents the transactional ver-
sion of the method. During the execution of transac-
tional code, the second version of the method is used,
while the first version is used elsewhere.
• @Atomic methods. Atomic methods are duplicated

as described before, however, the first version is not
similar to the original implementation. Instead, it en-
capsulates the code required for maintaining transac-
tional behavior, and it delegates execution to the trans-
actional version of the method.
• @Remote methods. RMI-like code is generated to

handle remote method calls at remote objects. In the
control flow model, the Directory Manager can open
the object, but cannot move it to the local node. An
object appears to application code as a local object,
while transformed methods call their corresponding
original methods at the remote object.

Figure 4 shows part of the instrumented version of a BankAc-

count class defined in Figure 1.

It is worth noting that the closed nesting model [63], which
extends the isolation of an inner transaction until the top-
level transaction commits, is implicitly implemented. HyIE
“flattens” nested transactions into the top-level one, result-
ing in a complete abort on conflict, or allow partial abort
of inner transactions. Whenever an atomic method is called
within the scope of another atomic method, the duplicate
method is called with the parent’s Context object, instead
of the instrumented version.

3.2.2 Object Access Module
During transaction execution, a transaction accesses one or
more shared objects. The Directory Manager delegates ac-
cess to all shared objects. An object may reside at the cur-
rent node. If so, it is accessed directly from the local ob-
ject pool. Or, it may reside at another node, and if so, it
is considered as a remote object. Remote objects may be
accessed differently according to the transaction execution
model—i.e., control or dataflow. In the dataflow model, a
Migration Module guarantees local access to the object. It
can move the object, or copy it to the current node, and
update the directory accordingly. In the control flow model,
a Proxy Module provides access to the object through an
empty instance of the object “facade” that acts as a proxy
to the remote object. At the application level, these details
are hidden, resulting in an uniform access interface for all
objects.

It is interesting to see how the example in Figure 1 works
using the dataflow and control flow models. Assume that
the two bank accounts accessed in this example reside at
different nodes. In the dataflow model, the transaction will
call the Object Access Manager, which in turn, will use the
Directory Manager to retrieve the required objects. The
Directory Manager will do so according to the underlying
implementation and contention management policy. Even-
tually objects (or copies of them) will be transferred to the
current node. Upon completion, the transaction will be vali-
dated and the new versions of the objects will be committed.

Now, let us repeat the scenario using the control flow model.
In this case, the Object Access Manager will employ an Ob-
ject Proxy to obtain proxies to the remote object. Remote
calls will be sent to the original objects. As we explain in the
next section, once the transaction completes, a voting proto-
col will decide whether to commit the transaction’s changes
or to retry again.

1 public class BankAccount implements
I D i s t i n g u i s h a b l e {

2 // Remote access f l a g
3 boolean remote obj$ = fa l se ;
4
5 // Modif ied c o n s t r u c t o r
6 BankAccount (S t r ing id) {
7
8 DirectoryManager . r e g i s t e r (id , this) ;
9 }

10
11 // S y n t h e t i c d u p l i c a t e method
12 public void depos i t (int d o l l a r s ,

Context c) {
13 amount Setter$ (c , amount Getter$ (c)

+ d o l l a r s) ;
14 }
15 // O r i g i n a l method instrumented
16 public void depos i t (int d o l l a r s) {
17 i f (remote obj$) {
18 // Invoke remote c a l l
19 Proxy . open (id) . d epos i t (d o l l a r s) ;
20 return ;
21 }
22 // Transact ion a c t i v e thread
23 Context context = ContextDelegator .

g e t In s tance () ;
24 boolean commit = true ;
25 for (int i =100; i >0; −− i) {
26 // I n i t i a l i z e t r a n s a c t i o n
27 context . i n i t () ;
28 try{
29 //Try e x e c u t e
30 r e s u l t=depos i t (d o l l a r s , context) ;
31 } catch (Transact ionExcept ion ex) {
32 commit = fa l se ; // Aborted
33 } catch (Throwable ex) {
34 // A p p l i c a t i o n Except ion
35 throwable = ex ;
36 }
37 i f (commit) {
38 i f (context . commit ()) {
39 i f (throwable == null)
40 return r e s u l t ; //Committed
41 // Rethrow A p p l i c a t i o n e x c e p t i o n
42 throw (IOException) throwable ;
43 }
44 } else {
45 context . r o l l b a c k () ; // R o l l b a c k
46 commit = true ;
47 }
48 }
49 //Maximum r e t r i e s reached
50 throw new Transact ionExcept ion () ;
51 }
52 }

Figure 4: Instrumented version of BankAccount
class.

3.2.3 Transaction Validation Module
The main task of this module is to guarantee transaction
consistency, and to achieve system-wide progress. Recall
that, in HyFlow, a transaction may be mobile or immobile.
Thus, this module employs two sub-modules: 1) a Voting
Manager, which is used for mobile transactions to collect
votes from other participating nodes, and 2) a Global Con-
tention Manager, which is consulted to resolve conflicting

transactions (this is needed for both mobile and immobile
transactions).

Voting Manager In the control flow model, a remote call
on an object may trigger another remote call to a differ-
ent object. The propagated access of objects forms a call
graph, which is composed of nodes (sub-transactions) and
undirected edges (calls). This graph is essential for mak-
ing a commit decision. Each participating node may have
a different decision (on which transaction to abort/commit)
based on conflicts with other concurrent transactions. Thus,
a voting protocol is required to collect votes from nodes, and
the originating transaction can commit only if it receives an
“yes” message from all nodes. By default, we implement
the D2PC protocol, however any other protocol may substi-
tute it. We choose D2PC, as it yields the minimum possible
time for collecting votes [62], which reduces the possibility
of conflicts and results in the early release of acquired ob-
jects. Furthermore, it balances the overhead of collecting
votes by having a variable coordinator for each vote. For
completeness, here we overview the key idea of D2PC in
the context of transactional memory (more information is
available in [62]).

In D2PC, the originating node, which started the transac-
tion, sends a PREPARE message to its neighbors, contain-
ing the transaction identifier. Each node forwards this mes-
sage to its neighbors in the call graph except its parent. If a
node receives the PREPARE message again, it discards it.
The number of messages sent is the number of edges in the
call graph. Each node consults its Contention Manager for
committing the requested transaction. The message propa-
gation results in the construction of a spanning tree of the
call graph: each node remembers its parent and the chil-
dren nodes to which it propagates its message to. D2PC
doesn’t distinguish between parent and children nodes; it
treats them equally as “neighbors.”

Now, assume that one or more nodes decide to send an
ABORT message. The nodes will forward the message to
their neighbors, which in turn will recursively forward to
theirs, except the sender. Sub-transactions will be termi-
nated and the originating transaction will be retried. How-
ever, in the success case, all nodes will send a COMMIT
message. Upon receiving a “COMMIT” message from all
its neighbors, including its parent, except the last, a node
forwards the commit decision to the last neighbor. It can
be shown that there will be just one node that will receive
all the votes, and this node is selected dynamically based
on message speed and nodal delays (Lemma 3.1 proves this
argument). This node will be elected as a coordinator for
the current vote. Similar to the failure case, the coordina-
tor populates the COMMIT decision to others, commits the
distributed changes, and the transaction completes.

Lemma 3.1. Under D2PC there will be one and only one
node that will receive all the sent votes, assuming no parti-
tions exist in the network.

Proof. The proof is by contradiction. We will assume
that the protocol ends with two nodes that work as coordi-
nators. Thus, each of these nodes must receive replies from

A
B

E

C

D

H

GF

(a)

A
B

E

C

D

H

GF

(b)

A
B

E

C

D

H

GF

(c)

A
B

E

C

D

H

GF

(d)

Figure 5: (a) Call graph: each node represents a
sub-transaction, and edges denote remote calls be-
tween them. (b) Originating node A sends a PRE-
PARE message that is forwarded to other nodes. (c)
The vote is replied, and the coordinator is selected
through the process of last-neighbor forwarding. (d)
Coordinator node C publishes the vote result

all their neighbors, which implies that one node sent its votes
to two of its neighbors. However, according to the described
protocol, any node will send its collected votes to just one
node (the last neighbor that did not reply). This contra-
dicts the initial assumption, implying that there is exactly
one coordinator at the end of the election protocol.

Figure 5 shows a possible execution of D2PC for collecting
votes for a transaction distributed over seven nodes.

Global Contention Manager In contention manager-based
STM implementations, the progress of the system is guar-
anteed by the contention policy. Having a special module
for global contention management enables us to achieve ef-
fective decisions for resolving distributed transactional con-
flicts. Using classical non-distributed contention policies for
this may be misleading and expensive. This module employs
a set of heuristics for making such decisions, including the
following:

• A local transaction that accesses local objects is aborted
only when it conflicts with any distributed transaction.
• A distributed transaction that follows the dataflow

model is favored over one that uses control flow, be-
cause the former is usually more communication-expensive.
• If two distributed transactions in the dataflow model

conflict, we abort the one that a) accesses objects hav-
ing a smaller total size, or b) communicates with less
number of remote nodes.
• In all other cases, a contention manager employs any

local methodology such as Karma, Aggressive, Polite,
Kindergarten, or Eruption [70] [69].

4. ANALYSIS
We now illustrate the factors of communication and process-
ing overhead through a comparison between control flow and
dataflow D-STM models. A compromise between the two
models can be used to design a hybrid D-STM model.

4.1 Dataflow Model
In the dataflow model, transactions are immobile, and ob-
jects move through the network. To estimate the transaction
cost under this model, we state the following theorem. For
simplicity, we consider a single transactional execution.

Theorem 4.1. The communication cost for a transaction
Ti running on node NS and accessing k remote objects Oj,
1 ≤ j ≤ k, using the dataflow model is given by:
DFcost(Ti) =

∑
1<j<k[[Size(Oj) + Π(Ti, Oj)] ∗

c(NS , Own(Oj)) + λ + β ∗ (1 − Π(Ti, Oj))]. Here, λ is the
lookup cost, β is the directory update cost, and Π is a func-
tion that returns 1 if the transaction accesses the object for
read-only and 0 for read-write operations.

Proof. To execute a transaction using the dataflow model,
three steps must be done for each remote object: locate the
object, move the object, and validate or own the object.

There has been significant research efforts on object lookup
(or discovery) protocols in distributed systems. Object (or
service) lookup protocols can be either directory-based [9,
75,76] or directory-less [1,35,59], according to the existence
of a centralized directory that maintains the locations of
services/resources. There could be one or more directories
in the network or a single directory that is fully distributed.

Directory-based architectures suffer from scalability and sin-
gle points-of-failure problems. Directory-less protocols can
be classified as push protocols or pull protocols. In a push
protocol, a node advertises its object to other nodes, and
is responsible for updating other nodes with any changes to
the provided object. In a pull protocol, when a node needs
to access an object, it broadcasts a discover request to find
the object provider. Usually, caching of object locations is
exploited to avoid storms of discover requests. We denote
the cost for object location by λ, which may differ according
to the underlying protocol.

The cost for moving an object to the current node is propor-
tional to the object size and the total communication cost
between the current node and the object owner.

At commit time, a transaction needs to validate a read ob-
ject, or obtain the ownership of the object, and thus will need
to update the directory. β is an implementation-specific con-
stant that represents the cost to update the directory. It may
vary from a single message cost as in Arrow and Relay di-
rectory protocols [23,77], logarithmic in the size of nodes as
in the Ballistic protocol [23], or may require message broad-
casting over the entire network as in the Home directory
protocol [41].

4.2 Control Flow Model
In contrast to the dataflow model, in the control flow model,
a transaction can be viewed as being composed of a set of
sub-transactions. Remote objects remain at their nodes, and
are requested to do some operations on behalf of a transac-
tion. Such operations may request other remote objects.
For simplicity, we assume that the voting protocol will use a
static minimum spanning tree S for sending messages, and
the nodes which are not interested in voting will not respond.

Theorem 4.2. The communication cost for a transaction
Ti running on a set of nodes Nti = {N1ti , N2ti , . . . , Nnti},
and accessing k remote objects Oj, 1 ≤ j ≤ k, using the
control flow model is given by:
CFcost(Ti) = V oting(Nti) +

∑
1<j<k
1<s<n

[c(Nsti , Own(Oj)) ∗
Calls(Ti, Oj) ∗ Θ(Nsti , Oj)]. Here, Calls is the number of
method calls per object in transaction Ti, V oting is the cost
of collecting votes of a given set of nodes, and Θ is a func-
tion that returns 1 if a node needs to access a remote object
during its execution, and 0 otherwise.

Proof. Let us divide the distributed transaction Ti into
a set of sub-transactions. Each sub-transaction is executed
on a node, and during the sub-transaction, the node can
access one (or more) remote object(s). The communication
cost per each sub-transaction is the cost for accessing re-
mote objects using remote calls. Each remote call requires
a round-trip message for the request and its response. The
total communication cost per node, is the sum of the costs
of all sub-transactions which run on the node.

The second term of the equation of the theorem shows the
aggregate cost for all nodes involved in executing the dis-
tributed transaction. The D2PC voting protocol [62] needs
to broadcast at most three messages, one for requesting the
votes, one for collecting the votes, and one for publishing the
result of the global decision—i.e., V oting(Nti) ≤ 3 ∗ Ω.

4.3 Tradeoff
The previous two sections show that there is a trade-off be-
tween using the dataflow or control flow model for D-STM,
which hinges on the number of messages and the size of
objects transferred. The definition of functions Calls, Θ,
and Π could be obtained either by code-analysis that identi-
fies object-object relationships for objects defined as shared
ones, or by transaction profiling based on past retries. The
Own(O) function is implemented as one of the functions of
the Directory Manager, while λ, β, and V oting functions
are implementation-specific according to underlying proto-
cols. Under a network with stable topology conditions, we
can define a fixed communication cost metric.

Another factor that affects the communication cost is the
locality of objects. Exploiting locality can reduce network
traffic and thereby enhance D-STM performance. Consider
an object, which is accessed by a group of geographically-
close nodes, but far from the object’s current location. Send-
ing several remote requests to the object can introduce high
network traffic, causing a communication bottleneck. The
following two lemmas show the cost of moving an object
versus sending remote requests to it.

Lemma 4.3. The communication cost introduced by relo-
cating an object Oj to a new node Ni is given by:
Reloccost(Oj , Ni) = β + Size(Oj) ∗ c(Ni, Own(Oj)).

Proof. Object relocation or duplication recquires; i) up-
dating the objects directory (β), and ii) moving or copying
the object over the network, which is proportional to the ob-
ject size and depends on the link costs between the source
and distination nodes.

 0

 100

 200

 300

 400

 500

10% 30% 50% 70% 90%

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Reads Percentage

HyFLow/TFA
HyFLow/Undo-Log

RMI-RW
DSM
RMI

Figure 6: Throughput of bank benchmark at differ-
ent read percentages over 72 nodes.

Lemma 4.4. For a distributed transaction in the control
flow model, the communication cost for sending a remote
request to an object Oj is given by:
Msgcost(Oj , Own(Oj)) =

∑
1<s<n[c(Nsti , Own(Oj)) ∗

Θ(Nsti , Oj)].

Proof. As distributed trabsaction can run over multiple
nodes, a remote object may be accessed by some of the par-
ticipating nodes. We formulate this using the Θ funtion, and
aggregate the cost over all the participating nodes.

We conclude that even in the control flow model, object re-
location may be beneficial. For any object Oj accessed by
some transaction running on a set of nodes Nti under the
control flow model, ifMsgcost(Oj , Own(Oj)) > Msgcost(Oj , Ni)+
Reloccost(Oj , Ni), then the object should be moved to node
Ni.

5. EXPERIMENTAL RESULTS
Bank Benchmark. We developed a distributed version of
a banking application, which maintains a set of accounts dis-
tributed over bank branches. Two atomic transactions were
implemented: transfer transaction (see Figure 1), which
transfers a given amount between two accounts, and to-
tal balance transaction that computes the total balance for
given accounts. Three versions of this benchmark were im-
plemented. The first version uses Java RMI as the remote
method invocation mechanism, and locks to guard critical
sections. Two variants of locks were used, one using normal
(mutual exclusion) spin locks, and the other using read-write
locks. A random timeout mechanism was used to handle
deadlock and livelock situations. The second version uses
atomic transactions using two D-STM implementations in
HyFlow: TFA [68] and UndoLog [65]. The Home directory
manager was used to locate and trace object locations. The
third version of the benchmark was based on a distributed
shared memory (DSM) implementation using the Home di-
rectory protocol, like Jackal [64]. It uses the single-writer
multiple-readers pattern.

 24

 48

 72 10
 20

 30
 40

 50
 60

 70
 80

 90

 200

 250

 300

 350

 400

 450

 500

 550

HyFlow/TFA Throughput (Transactions/Sec)

Nodes

% Reads

 200

 250

 300

 350

 400

 450

 500

 550

(a) Throughput under increasing number of nodes.

 1
 2

 3
 4

 5
 6

 7
 8 10

 20
 30

 40
 50

 60
 70

 80
 90

 200

 300

 400

 500

 600

 700

 800

 900

HyFlow/TFA Throughput (Transactions/Sec)

Threads/Node

% Reads

 200

 300

 400

 500

 600

 700

 800

 900

(b) Throughput under increasing number of threads per
node.

Figure 7: Scalability of HyFlow/TFA.

Testbed. We conducted the experiments on a multiproces-
sor/multicomputer network comprising of 72 nodes, each of
which is an Intel Xeon 1.9GHz processor, running Ubuntu
Linux, and interconnected by a network with 1ms link de-
lay. We ran the experiments using one processor per node,
because we found that this configuration was necessary to
obtain stable runtimes. This configuration also generated
faster runtimes than using multiple processors per node, be-
cause it eliminated resource contention between two proces-
sors on one node.

Evaluation. Ten bank accounts were distributed equally
on nodes, and hundred transactions were executed at each
node. Figures 6 shows the throughput of the different schemes
at 10%, 30%, 50%, 70% and 90% read-only transactions,
respectively, under increasing number of nodes, which in-
creases contention (with all else being equal). The confi-
dence intervals of the data-points of the figure are in the
5% range. Figure 7 shows the scalability of HyFLow/TFA
under increasing number of nodes and number of concurrent
threads at each node. Figure 8 shows the effect of increasing
the number of method calls per object on throughput, under
control flow.

From Figure 6 we observe that HyFlow/TFA outperforms all
other distributed concurrency control models by 40-190%.

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Number of nodes

1 Call
2 Calls
4 Calls
8 Calls

Figure 8: Control flow throughput degradation un-
der increasing number of calls per object.

HyFlow/TFA is scalable and provides linear throughput at
large number of nodes, while RMI throughput saturates af-
ter 15 nodes. For read-dominant transactions, HyFlow/TFA
still gives a comparable performance against RMI with read-
write locks. Further, from Figure 7, we observe the excellent
scalability of HyFlow/TFA under high contention (72 nodes,
more than 500 concurrent transactions).

UndoLog, which was not originally designed for D-STM, still
gives comparable performance to DSM and RMI with mu-
tual exclusion locks. However, relying on the Home directory
for accessing objects increases the number of conflicts, which
offset other STM features. Our experiments show that the
number of conflicts in UndoLog is ten times more than that
in HyFlow/TFA.

Figure 8 demonstrates the importance of employing locality
of reference: in the control flow model, each remote call
incurs a round-trip network delay, whereas in dataflow (e.g.,
TFA), an object is retrieved only once.

6. CONCLUSIONS
We presented HyFlow, a high performance pluggable, dis-
tributed STM that supports both dataflow and control flow
distributed transactional execution. Our experiments show
that HyFlow outperforms other distributed concurrency con-
trol models, with acceptable number of messages and low
network traffic, thanks to a cache coherence D-STM algo-
rithm called TFA.

The dataflow model scales well with increasing number of
calls per object, as it permits remote objects to move to-
ward geographically-close nodes that access them frequently,
reducing communication costs. Control flow is beneficial un-
der non-frequent object calls or calls to objects with large
sizes. Our implementation shows that D-STM, in general,
provides comparable performance to classical distributed con-
currency control models, and exports a simpler program-
ming interface, while avoiding dataraces, deadlocks, and
livelocks.

HyFlow provides a testbed for the research community to de-
sign, implement, and evaluate algorithms for D-STM. HyFlow

is publicly available at hyflow.org.

7. REFERENCES
[1] UPnP Forum: Understanding universal plug and play

white paper, 2000.

[2] Partitioned Global Address Space (PGAS), 2003.

[3] S. Ahuja, N. Carriero, and D. Gelernter. Linda and
friends. Computer, 19(8):26–34, 1986.

[4] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu,
R. Rajamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared memory computing on networks
of workstations. IEEE Computer, (29), 1996.

[5] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.
Leiserson, and S. Lie. Unbounded transactional
memory. In HPCA ’05: Proceedings of the 11th
International Symposium on High-Performance
Computer Architecture, pages 316–327, Washington,
DC, USA, 2005. IEEE Computer Society.

[6] B. S. andAli-Reza Adl-Tabatabai andRichard L.
Hudson andChi Cao Minh andBen Hertzberg.
McRT-STM: a high performance software
transactional memorysystem for a multi-core runtime.
In PPOPP, pages 187–197, 2006.

[7] T. Anderson. The performance of spin lock
alternatives for shared-money multiprocessors. Parallel
and Distributed Systems, IEEE Transactions on,
1(1):6 –16, Jan. 1990.

[8] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa,
R. J. Miller, and J. Mylopoulos. The Hyperion
project: From data integration to data coordination.
In In: SIGMOD RECORD (2003, 2003.

[9] K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, and
A. Wollrath. Jini Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[10] H. Attiya, V. Gramoli, and A. Milani. COMBINE: An
Improved Directory-Based Consistency Protocol.
Technical report, EPFL, 2010.

[11] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum.
Orca: A language for parallel programming of
distributed systems. IEEE Trans. Softw. Eng.,
18(3):190–205, 1992.

[12] L. Baugh, N. Neelakantam, and C. Zilles. Using
hardware memory protection to build a
high-performance, strongly atomic hybrid
transactional memory. In In Proceedings of the 35th 8
International Symposium on Computer Architecture,
2008.

[13] J. K. Bennett, J. B. Carter, and W. Zwaenepoel.
Munin: Distributed shared memory based on
type-specific memory coherence. In In PPOPP, pages
168–176. ACM, 1990.

[14] B. N. Bershad and M. J. Zekauskas. Midway: Shared
memory parallel programming with entry consistency
for distributed memory multiprocessors. Technical
report, Carnegie-Mellon University, 1991.

[15] W. Binder, J. Hulaas, and P. Moret. Advanced java
bytecode instrumentation. PPPJ ’07, pages 135–144,
New York, NY, USA, 2007. ACM.

[16] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K.
Martin. Making the fast case common and the

uncommon case simple in unbounded transactional
memory. SIGARCH Comput. Archit. News,
35(2):24–34, 2007.

[17] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain.
Software transactional memory for large scale clusters.
In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming, pages 247–258, New York, NY,
USA, 2008. ACM.

[18] J. a. Cachopo and A. Rito-Silva. Versioned boxes as
the basis for memory transactions. Sci. Comput.
Program., 63:172–185, December 2006.

[19] C. Cao Minh, J. Chung, C. Kozyrakis, and
K. Olukotun. STAMP: Stanford transactional
applications for multi-processing. In IISWC ’08:
Proceedings of The IEEE International Symposium on
Workload Characterization, September 2008.

[20] V. G. Cerf and R. E. Icahn. A protocol for packet
network intercommunication. SIGCOMM Comput.
Commun. Rev., 35:71–82, April 2005.

[21] M. Couceiro, P. Romano, N. Carvalho, and
L. Rodrigues. D2STM: Dependable distributed
software transactional memory. In PRDC ’09: Proc.
15th Pacific Rim International Symposium on
Dependable Computing, nov 2009.

[22] P. Damron, A. Fedorova, Y. Lev, V. Luchangco,
M. Moir, and D. Nussbaum. Hybrid transactional
memory. In ASPLOS-XII: Proceedings of the 12th
international conference on Architectural support for
programming languages and operating systems, pages
336–346, New York, NY, USA, 2006. ACM.

[23] M. J. Demmer and M. Herlihy. The Arrow distributed
directory protocol. In DISC ’98: Proceedings of the
12th International Symposium on Distributed
Computing, pages 119–133, London, UK, 1998.
Springer-Verlag.

[24] D. Dice, O. Shalev, and N. Shavit. Transactional
Locking II. In In Proc. of the 20th Intl. Symp. on
Distributed Computing, 2006.

[25] M. Factor, A. Schuster, and K. Shagin. A
platform-independent distributed runtime for standard
multithreaded Java. Int. J. Parallel Program.,
34(2):113–142, 2006.

[26] V. W. Freeh. Dynamically controlling false sharing in
distributed shared memory. In Proceedings of the 5th
IEEE International Symposium on High Performance
Distributed Computing, HPDC ’96, pages 403–,
Washington, DC, USA, 1996. IEEE Computer Society.

[27] R. Friedman, M. Goldin, A. Itzkovitz, and
A. Schuster. MILLIPEDE: Easy parallel programming
in easy parallel programming in available distributed
environments.

[28] C. Gray and D. Cheriton. Leases: an efficient
fault-tolerant mechanism for distributed file cache
consistency. In Proceedings of the twelfth ACM
symposium on Operating systems principles, SOSP
’89, pages 202–210, New York, NY, USA, 1989. ACM.

[29] R. Guerraoui and M. Kapalka. The semantics of
progress in lock-based transactional memory.
SIGPLAN Not., 44:404–415, January 2009.

[30] R. Guo, H. An, R. Dou, M. Cong, Y. Wang, and
Q. Li. Logspotm: a scalable thread level speculation

model based on transactional memory. In ACSAC
2008. 13th Asia-Pacific, pages 1 –8, 2008.

[31] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In in Proc. of
ISCA, page 102, 2004.

[32] T. Harris and K. Fraser. Language support for
lightweight transactions. ACM SIGPLAN Notices,
(38), 2003.

[33] T. Harris, J. Larus, and R. Rajwar. Transactional
Memory, 2nd edition. Synthesis Lectures on Computer
Architecture, 5(1):1–263, 2010.

[34] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy.
Composable memory transactions. In PPoPP ’05:
Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming,
pages 48–60, New York, NY, USA, 2005. ACM.

[35] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - A
Service Discovery and Delivery Protocol for Ad-Hoc
Networks, 2003.

[36] M. Herlihy. The Aleph Toolkit: Support for scalable
distributed shared objects. In CANPC ’99:
Proceedings of the Third International Workshop on
Network-Based Parallel Computing, pages 137–149,
London, UK, 1999. Springer-Verlag.

[37] M. Herlihy, V. Luchangco, and M. Moir. A flexible
framework for implementing software transactional
memory. volume 41, pages 253–262, New York, NY,
USA, October 2006. ACM.

[38] M. Herlihy, V. Luchangco, M. Moir, and W. N.
Scherer. Software transactional memory for
dynamic-sized data structures. In In Proceedings of
the 22nd Annual ACM Symposium on Principles of
Distributed Computing, pages 92–101. ACM Press,
2003.

[39] M. Herlihy, J. E. B. Moss, J. Eliot, and B. Moss.
Transactional memory: Architectural support for
lock-free data structures. In in Proceedings of the 20th
Annual International Symposium on Computer
Architecture, pages 289–300, 1993.

[40] M. Herlihy and Y. Sun. Distributed transactional
memory for metric-space networks. In In Proc.
International Symposium on Distributed Computing
(DISC 2005), pages 324–338. Springer, 2005.

[41] M. Herlihy and M. P. Warres. A tale of two
directories: implementing distributed shared objects
in Java. In JAVA ’99: Proceedings of the ACM 1999
conference on Java Grande, pages 99–108, New York,
NY, USA, 1999. ACM.

[42] M. P. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and
Systems, 12:463–492, 1990.

[43] R. Hickey. The clojure programming language. In
Proceedings of the 2008 symposium on Dynamic
languages, DLS ’08, pages 1:1–1:1, New York, NY,
USA, 2008. ACM.

[44] G. C. Hunt, M. M. Michael, S. Parthasarathy, and
M. L. Scott. An efficient algorithm for concurrent
priority queue heaps. Inf. Process. Lett., 60:151–157,
November 1996.

[45] T. Johnson. Characterizing the performance of
algorithms for lock-free objects. Computers, IEEE
Transactions on, 44(10):1194 –1207, Oct. 1995.

[46] J. Kim and B. Ravindran. On transactional scheduling
in distributed transactional memory systems. In
S. Dolev, J. Cobb, M. Fischer, and M. Yung, editors,
Stabilization, Safety, and Security of Distributed
Systems, volume 6366 of Lecture Notes in Computer
Science, pages 347–361. Springer Berlin / Heidelberg,
2010.

[47] G. Korland, N. Shavit, and P. Felber. Noninvasive
concurrency with Java STM. In Third Workshop on
Programmability Issues for Multi-Core Computers
(MULTIPROG), 2010.

[48] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján,
C. Kirkham, and I. Watson. DiSTM: A software
transactional memory framework for clusters. In ICPP
’08: Proceedings of the 2008 37th International
Conference on Parallel Processing, pages 51–58,
Washington, DC, USA, 2008. IEEE Computer Society.

[49] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and
A. Nguyen. Hybrid transactional memory. In
Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel
programming, PPoPP ’06, pages 209–220, New York,
NY, USA, 2006. ACM.

[50] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM, (7), 1989.

[51] B. Liskov, M. Day, M. Herlihy, P. Johnson, and
G. Leavens. Argus reference manual. Technical report,
Cambridge University, Cambridge, MA, USA, 1987.

[52] J. Maassen, T. Kielmann, and H. E. Bal. Efficient
replicated method invocation in Java. In JAVA ’00:
Proceedings of the ACM 2000 conference on Java
Grande, pages 88–96, New York, NY, USA, 2000.
ACM.

[53] K. Manassiev, M. Mihailescu, and C. Amza.
Exploiting distributed version concurrency in a
transactional memory cluster. In PPoPP ’06, pages
198–208. ACM Press, Mar 2006.

[54] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. S. III, and M. L. Scott. Lowering
the overhead of nonblocking software transactional
memory. Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing
(TRANSACT), June 2006.

[55] M. M. Michael and M. L. Scott. Simple, fast, and
practical non-blocking and blocking concurrent queue
algorithms. In Proceedings of the fifteenth annual
ACM symposium on Principles of distributed
computing, PODC ’96, pages 267–275, New York, NY,
USA, 1996. ACM.

[56] M. Moir. Practical implementations of non-blocking
synchronization primitives. In In Proc. of 16th PODC,
pages 219–228, 1997.

[57] K. E. Moore. Thread-level transactional memory. In
Wisconsin Industrial Affiliates Meeting. Oct 2004.
Wisconsin Industrial Affiliates Meeting.

[58] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill,
and D. A. Wood. LogTM: Log-based transactional
memory. In In Proc. 12th Annual International
Symposium on High Performance Computer

Architecture, 2006.

[59] M. Nidd. Timeliness of service discovery in DEAP
space. In ICPP ’00: Proceedings of the 2000
International Workshop on Parallel Processing,
page 73, Washington, DC, USA, 2000. IEEE
Computer Society.

[60] M. Philippsen and M. Zenger. Java Party transparent
remote objects in Java. concurrency practice and
experience, 1997.

[61] J. Postel. Rfc 768: User datagram protocol, internet
engineering task force, August 1980.

[62] Y. Raz. The Dynamic Two Phase Commitment
(D2PC) Protocol. In ICDT ’95: Proceedings of the 5th
International Conference on Database Theory, pages
162–176, London, UK, 1995. Springer-Verlag.

[63] D. P. Reed. Naming and synchronization in a
decentralized computer system. Technical report,
Cambridge, MA, USA, 1978.

[64] A. A. Reeves and J. D. Schlesinger. JACKAL: A
hierarchical approach to program understanding. In
WCRE ’97: Proceedings of the Fourth Working
Conference on Reverse Engineering (WCRE ’97),
page 84, Washington, DC, USA, 1997. IEEE
Computer Society.

[65] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot
algorithm with eager validation. In S. Dolev, editor,
Distributed Computing, Lecture Notes in Computer
Science, pages 284–298. Springer Berlin / Heidelberg,
2006.

[66] P. Romano, N. Carvalho, M. Couceiro, L. Rodrigues,
and J. Cachopo. Towards the integration of
distributed transactional memories in application
servers clusters. In Quality of Service in Heterogeneous
Networks, volume 22 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 755–769.
Springer Berlin Heidelberg, 2009. (Invited paper).

[67] P. Romano, L. Rodrigues, N. Carvalho, and
J. Cachopo. Cloud-TM: harnessing the cloud with
distributed transactional memories. SIGOPS Oper.
Syst. Rev., 44:1–6, April 2010.

[68] M. M. Saad and B. Ravindran. Transactional
Forwarding Algorithm : Technical Report. Technical
report, ECE Dept., Virginia Tech, January 2011.

[69] W. N. Scherer, III and M. L. Scott. Advanced
contention management for dynamic software
transactional memory. In PODC ’05: Proceedings of
the twenty-fourth annual ACM symposium on
Principles of distributed computing, pages 240–248,
New York, NY, USA, 2005. ACM.

[70] W. N. Scherer III and M. L. Scott. Contention
management in dynamic software transactional
memory. In PODC ’04: Proceedings of Workshop on
Concurrency and Synchronization in Java Programs.,
NL, Canada, 2004. ACM.

[71] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the fourteenth annual ACM
symposium on Principles of distributed computing,
PODC ’95, pages 204–213, New York, NY, USA, 1995.
ACM.

[72] R. R. Stewart and Q. Xie. Stream control transmission
protocol (SCTP): a reference guide. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[73] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A
bytecode translator for distributed execution of legacy
Java software. In In European Conference on
Object-Oriented Programming (ECOOP, 2001.

[74] E. Tilevich and Y. Smaragdakis. J-Orchestra:
Automatic Java application partitioning. In In
Proceedings of the European Conference on
Object-Oriented Programming (ECOOP, 2002.

[75] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan.
Service location protocol, 1997.

[76] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan.
Salutation consortium: Salutation architecture
specification. version 2.0c, 1999.

[77] B. Zhang and B. Ravindran. Brief announcement:
Relay: A cache-coherence protocol for distributed
transactional memory. In OPODIS ’09: Proceedings of
the 13th International Conference on Principles of
Distributed Systems, pages 48–53, Berlin, Heidelberg,
2009. Springer-Verlag.

[78] B. Zhang and B. Ravindran. Dynamic analysis of the
Relay cache-coherence protocol for distributed
transactional memory. In IPDPS ’10: Proceedings of
the 2010 24th IEEE International Parallel and
Distributed Processing Symposium, Washington, DC,
USA, 2010. IEEE Computer Society.

