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Abstract. Distributed software transactional memory is an emerging,
alternative concurrency control model for distributed systems promising
to alleviate the difficulties of lock-based distributed synchronization. We
consider the multi-versioning (MV) model to avoid unnecessary aborts.
MV schemes inherently guarantee commits of read-only transactions, but
limit the concurrency of write transactions. In this paper we propose CRF
(Commutative Requests First), a new scheduler tailored for enhancing
concurrency of write transactions. CRF relies on the notion of commuta-
tive transactions, namely conflicting transactions that leave the state of
the shared data-set consistent even if validated and committed concur-
rently. CRF is responsible to detect conflicts among commutative and
non-commutative write transactions and then schedules them according
to the execution state. We assess the goodness of the approach by an
extensive evaluation of a fully implementation of CRF. The tests reveal
that CRF improves throughput over a state-of-the-art DTM solution.

1 Introduction

Lock-based concurrency control suffers from programmability, scalability, and
composability challenges [16]. Transactional memory (TM) promises to allevi-
ate these difficulties sparing the programmers from the pitfalls of conventional
manual lock-based synchronization, drastically simplifying the development of
parallel and concurrent applications. With TM code, composed by read/write
on shared objects, is organized as memory transactions, which optimistically ex-
ecute, while logging changes made to accessed objects. Two transactions conflict
if they access to the same object and at least one access is in write. When that
happens, a contention manager is responsible to resolve the conflict by aborting
one of them, yielding (the illusion of) atomicity. Aborted transactions are typi-
cally re-started, after rolling-back the changes. The contention manager can be
supported by the transactional scheduler, that is the component responsible to
determine an ordering among concurrent transactions so that conflicts are either
avoided or minimized, thereby reducing abort rate and improving performance.
Originally proposed to simplify concurrent programming in centralized environ-
ments, TM systems are being growingly employed in distributed settings (Dis-
tributed TM or DTM), motivated as an alternative to the more challenging
distributed, lock-based, concurrency control. DTM can be classified based on



the system architecture: cache-coherent DTM (cc DTM) [14], in which a set of
nodes communicate with each other by message-passing links over a communi-
cation network, and a cluster model (cluster DTM) [6, 17], in which a group of
linked computers works closely together to form a single computer. Thanks to
the simple distributed programming model provided by DTM, the programmers
can focus on the implementation of the application logic, as it was centralized,
putting the charge of distributed synchronization into the hands of DTM[18, 19].
With a single copy for each object, i.e., single-version STM (SV-STM), when
a read/write conflict occurs between two transactions, the contention manager
resolves the conflict by aborting one and allowing the other to commit, thereby
maintaining the consistency of the (single) object version. SV-STM is simple,
but suffers from large number of aborts [21]. In contrast, with multiple versions
for each object, i.e., multi-versioning STM (MV-STM), unnecessary aborts of
transactions, that could have been committed without violating consistency, are
avoided [20]. Unless a conflict between operations to access a shared object oc-
curs, MV-STM allows the corresponding transactions to read the object’s old
versions, enhancing concurrency. MV-STM has been extensively studied for mul-
tiprocessors [21, 12] and also for distributed systems [31]. MV-STM uses snapshot
isolation (SI), which is weaker than serializability [24]. A transaction executing
under SI operates on a snapshot taken at the start of the transaction. The trans-
action successfully commits if the objects updated by the transaction have not
been changed externally since the snapshot was taken, guaranteeing that all read
transactions will see a consistent snapshot. Many works [24, 25, 19] used SI for
improving performance in centralized and distributed TM environments. Even
though SI allows more concurrency among transactions respect to serializability,
a write-write transaction’s conflict under SI causes the transaction to abort. In
write-intensive workloads, this conflict cannot be avoided because the concur-
rency of write transactions may violate SI.
In this paper, we address the problem of permitting multiple conflicting trans-
actions to commit concurrently, in order to enhance concurrency of write trans-
actions without violating SI in multi-version cc DTM for high performance.
We propose a transactional scheduler that enables concurrency of write trans-
actions, called Commutative Requests First (CRF). In order to do that, CRF
exploits the notion of commutative operations. Two operations are named com-
mutative if applying them sequentially in either order, they leave the objects
accessed in the same state and both return the same values. A very intuitive
example of commutativity is when two operations, call1(X) and call2(X), ac-
cessing both to the same object X but different fields of X (See Section 3 for
discussion about commutativity). Thus, CRF checks whether write operations
are commutative and lets them to validate and commit simultaneously. Unlike
past STM works, that exploit high concurrency based on the commutativity
property [13], CRF maintains a scheduling queue to identify commutative and
non-commutative transactions, and could decide to allow all commutative trans-
actions to commit first than the others, maximizing their concurrency. However,
despite the significant performance gain obtainable adopting the idea of commu-



tativity transactions of CRF, there could be applications that do not admit such
kind of commutativity. CRF addresses this issue permitting to the developer to
explicitly specify non-commutative operations.

We implemented a full-working prototype of CRF in the Scala DTM frame-
work, called HyFlow [29], and conducted extensive experimental studies using
micro benchmarks (LinkedList and SkipList [22], as well as a real application
benchmark (TPC-C [7]) typically used for assessing the performance of DTM.
Our studies reveal that transactional throughput is improved by up to 5× over
a state-of-the-art DTM solution(DecentSTM [3]).

The rest of the paper is organized as follows. We outline the preliminaries
and the system model in Section 2. We describe the CRF scheduler in Section 3.
Implementation and experimental studies are reported in Section 4. We discuss
the related work in Section 5 and Section 6 concludes the paper.

2 Preliminaries and System Model

We consider a distributed system which consists of a set of nodes N = {n1, n2, · · · }
that communicate with each other by message-passing links over a network. Sim-
ilar to [14], we assume that the nodes are scattered in a metric space.
Distributed Transactions. A set of distributed transactions T = {T1, T2, · · · }
is assumed that share objects O = {o1, o2, . . .}, which are distributed in the
network. An execution of a transaction is a sequence of timed operations, reads
and writes. An execution ends by either a commit (success) or an abort (failure).
Each transaction has an unique identifier, and it is invoked by a node.

We consider data flow DTM model [14] where transactions are immobile and
objects move to the node invoking transactions. Each node has a TM proxy that
provides interfaces to the local application and to proxies at other nodes. When
a transaction Ti at node ni requests object oj , the TM proxy of ni first checks
whether oj is in its local cache. If the object is not present, the proxy invokes a
distributed cache-coherence protocol (e.g., [8, 14]) to fetch oj in the network. oj
may have multiple versions. The initial value of oj is denoted by o0j . Let the ver-

sion set of oj be {o0j , o1j , · · · }. Node nk, holding the version set, checks whether
the requested object version is in use by a local transaction Tk when it receives
the request for oj from ni. If so, nk’s TM proxy invokes a contention manager
to manage the conflict between Ti and Tk for the object version of oj .
Atomicity, Consistency, and Isolation. We use the Transactional Forward-
ing Algorithm (TFA) [27] to provide early validation of remote objects, guarantee
a consistent view of shared objects among distributed transactions, and ensure
atomicity for object operations in the presence of asynchronous clocks. With
early validation we refer to the fact that a transaction has already successfully
validated its accessed objects before to commit. A validation in distributed sys-
tems includes global registration of object ownership. As an extension of the
Transactional Locking 2 (TL2) algorithm [9], TFA replaces the central clock
of TL2 with independent clocks for each node and provides a means to re-
liably establish the “happens-before” relationship between significant events.
TFA is responsible for caching local copies of remote objects and changing



its ownership. For completeness, we illustrate TFA with an example. In Fig-
ure 1, a transaction updates object o1 at t1 (i.e., local clock (LC) is 14) and
four transactions (i.e., T1, T2, T3, and T4) request o1 from the object holder.

Fig. 1. An Example of TFA

Assume that T2 vali-
dates o1 at t2 and up-
dates o1 with LC=30
at t3. Any read or
write transaction (e.g.,
T4), which has re-
quested o1 between t2 and t3, aborts. When write transactions T1 and T3 validate
at times t1 and t2, respectively, T1 and T3 that have acquired o1 with LC=14
before t2 will abort, because LC is updated to 30.

3 Commutative Requests First in MV-TFA

Multi-Version TFA. In this section we present multi-version MV-TFA, our
extension of TFA supporting SI. The basic idea is to record an event whenever
requesting and acquiring an object. Let ni denote a node invoking a transac-
tion Ti. We define two types of events: (1) Request(Req(ni, oj)) representing the
request of object oj from node ni; (2) Acquisition(Acq(ni, oj)) indicating when
node ni acquires object oj . Figure 2 shows an example execution scenario of
MV-TFA. We use the same style in the figure as that of [26]. The solid cir-
cles indicate write operations and the empty circles represent read operations.
Transactions’ evolution is represented on horizontal lines with the circles. The
horizontal line corresponding to the status of each object describes the time
domain. The dotted line indicates which node requests an object from where.

Fig. 2. Example of MV-TFA

Assume that transactions T0 and T1 invoked
on nodes n0 and n1 commit after writing o01
and o02, respectively. Let transactions T2, on
node n2, and T3, on node n3, request objects
o1 and o2 from nodes n0 and n1, respectively.
Node n1 holds the list of versions of o2. After
that, T3 requests o1 from n0 and subsequently
T4 requests o2 from n1. Thus, n1 records
the events Acq(n3, o

0
2) and Acq(n4, o

0
2). Then

T4 updates o2 creating a new version o12. When T4 validates o12 to commit,
Acq(n4, o

0
2) is removed from the events log of n3, and T3 has forced to abort

because in the n3’s log there is another request (Acq(n3, o
0
2)) on the same object

o2. The presence of this entry in the log means that T3 has not yet completed,
so T4 definitively commits before that T3 validates o2, invalidating the object
o02 accessed by T3. As a consequence of T4 commitment, node n4, which invokes
T4, receives the versions o02 and o12 of object o2. Now, after the commit of T4,
T2 requests o2 with the value | t4 - t2 | from n4. It replies with the version o02
instead of the newly o12 because o02 has been updated at time t1 to T2, because
| t4 − t3 | < | t4 - t2 | < | t4 − t1 |. Using this mechanism, T2 can access to a
consistent snapshot that is not affected by a write operation by T4, instead of



be aborted due to T4 ’s write. This is how MV-TFA ensures SI.
CRF Scheduler Design. MV-TFA shows how to enhance performance in
case of workload characterized by mostly read transactions, exploiting multi-
versions. In this subsection we focus on how to schedule write transac-
tions concurrently minimizing the abort rate and increasing the parallelism.

Fig. 3. Specification of a Set

When a transaction T1 at node
n1 needs object o1 for an operation,
it sends a request to the o1’s object
owner. If the operation is read, a ver-
sion of o1 is sent to n1. If the opera-
tion is write, we consider two possible cases in terms of o1. (A) The first case
happens when other transactions may have requested o1 but no transaction has
validated o1. In this case, a version of o1 is sent to n1 and T1’s request moves
into the scheduling queue of the o1’s owner. (B) The second case is when an-
other transaction T2 is validating o1. In this case, unless T2 and T1 commute,
T1 will abort and T1’s request also moves to the scheduling queue. If T2 and T1

commutes, o1 is sent to n1 and T1’s request moves to the scheduling queue. The
o1’s owner maintains the scheduling queue to execute commutative transactions
concurrently. Accordingly, the non-commutative transactions will be executed
serially. To better assess CRF, we use it to implement the specification of a Set
provided by [13]. We recall that a Set is a collection of items without dupli-
cations in which the following operations are provided: add(x), remove(x) and
contains(x) where x is the item of the Set accessed. Figure 3 summarizes Set
operations’ commutativity according to [13]’s definition. In the specification
illustrated in Figure 3, operations insert(x), insert(y), and insert(z) commutes
if x 6= y 6= z. Multiple write transactions may be invoked concurrently on the
Set. CRF identifies commutative and non-commutative transactions and gives
to the commutative transactions a chance to validate concurrently an object
first. However, if we consider the specification of the Set, in which the are no
commutative operations declared, and we encapsulate the Set into an object
(o1) and we consider the above operations as transactions, then typical con-
currency control does not permit to validate and commit concurrently more
than one transaction performing an update on the object (namely updating the
Set). Conversely, by Figure 3 is clear that multiple update transactions can be
validated concurrently whether they access to different items in the set. The
scheduling queue holds requests for those operations. If multiple transactions
have requested the same version of o1, CRF allows the commutative transac-
tions to concurrently validate o1. Meanwhile, many commutative transactions
may validate o1. This could bring non-commutative transactions to “starve” on
o1. Thus, CRF alternates between periods (called epochs), in which it privileges
the validation of a group of commutative transactions, with others in which
it prefer to validate the non-commutative ones. In this way, CRF handles con-
flicts between commutative and non-commutative transactions. Although epochs
contain commutative transactions, these transactions do not commute with the
transactions of the next epoch in the chronological sequence. The terminology



“commutative” and “non-commutative” epoch distinguishes between these two
epochs. Thus, in commutative epoch, commutative transactions validate o1 and
then in the next (i.e., non-commutative) epoch, non-commutative transactions,
excluded in the previous commutative epoch, can validate o1. If a transaction
starts validating o1, its commutative transactions are also allowed to validate o1
but its non-commutative transactions abort. The non-commutative transactions
will resume after the commutative transactions commit.
CRF checks for whether different operations commute at the level of seman-
tics. Even when commutative operations concurrently update the object, the
object preserves a consistent state, ensuring SI. There are two purposes for
processing commutative requests first. First, MV-TFA ensures concurrency of
read transactions, and CRF is responsible to detect conflicts among commuta-
tive and non-commutative write transactions, reducing the number of conflicts.
This leads to higher concurrency. Second, CRF alleviates contention when many
write transactions are invoked. Even though a conflict between two write trans-
actions occurs, all subsequent commutative transactions are scheduled first. Non-
commutative transactions restart simultaneously after the commutative trans-
actions complete, so CRF avoids further conflicts, decreasing contention.
Illustrative Example. Figure 4 shows a scenario of CRF. The write trans-

(a) Requests of Five Transactions and Validation of Two Transactions for Object o1.

(b) Scheduling Queue Located in o1 Object Owner. The scheduling queue consists of two rows:

Enqueued Transactions and State of the Transactions. V (Validation), A (Abort), and E (Execution)

Fig. 4. A Scenario of CRF

actions T1=insert(x), T2=remove(x), T3=insert(y) and T4=remove(y) request
concurrently o1 from its owner. The transactions obtain the version of o1. The
state of the scheduling queue at t1, illustrated in Figure 4(b), shows that the
transactions are all executing. At t2, T2 starts validating o1. Consequently, T1

aborts because T1 and T2 do not commute. Conversely, T3 and T4 can still ex-
ecute because they are commutative with T2. Then T5=remove(x) requests o1
during the validation of T2 and immediately aborts because T5 and T2 do not
commute. At t3, T4 starts validating o1 and T3 aborts because T3 and T4 do not
commute. Thus, T2 and T4 concurrently validate o1. When T2 ends validation
(i.e., commits) at t4, the version updated by T2 is sent to the non-commutative
transaction T1, and T1 starts executing. Even though T5 is a non-commutative
transaction of T2, only T1 starts to avoid a conflict between non-commutative



transactions. Finally, the version updated by T4 at t5 is sent to T3. T1 and T3 may
validate o1 concurrently because they commute. Figure 5(a) shows that the val-

(a) Epoch and Depth of Validation. (b) Epochs of Validation

Fig. 5. Epoch-based CRF

idation of commutative transactions may not be completely overlapping, so the
period of validation may be stretched. This may lead to the deferred execution
of non-commutative transactions. To prevent this, we define a new parameter,
called depth of validation, namely the number of transactions involved in the
validation. Figure 5(a) indicates 3 for that depth, meaning that the commits of
three transactions mark the end of the epoch. Non-commutative transactions
will start after the epoch. Figure 5(b) illustrates the relationship of epochs. In
each epoch, commutative transactions concurrently participate in validation. At
the end of the epoch, their non-commutative transactions held in a scheduling
queue, restart. Non-commutative transactions will validate in the next epoch.

4 Implementation and Experimental Evaluation

Implementation. We implemented CRF on MV-TFA using Scala’s actor model
for Java Virtual Machine. The actor model prohibits sharing memory by en-
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Fig. 6. Throughput Varying Thresholds

capsulating mutable state inside light-weight sequential constructs called actors
and it become popular with the advent of the Erlang programming language.
Since then, many languages (e.g., Google Go) have embraced this model.
Commutativity of Benchmarks. We assess the performance of CRF us-
ing LinkedList and SkipList as micro-benchmarks and a TPC-C [7] as real-
application benchmark. Regarding the commutativity in micro-benchmarks, the
Set (as introduced in Section 3) can be implemented with LinkedList and SkipList
[13], so we rely on the definition of commutativity in Figure 3. Regarding TPC-C,
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(a) CRF-MV-TFA, 10% Read
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(d) CRF-MV-TFA, 90% Read
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(e) MV-TFA, 90% Read
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Fig. 7. Throughput of CRF, MV-TFA, and DecentSTM Using LinkedList.

the write transactions consist of update, insert, and/or delete operations access-
ing a database of nine tables maintained in memory. Each row in the tables has
a unique key. Multiple operations commute if they access to a row (or object)
with the same key and modify different columns. We rely on explicit annotations
provided by the programmer, indicating the fields accessed by each transaction
profile. We configured the benchmark with a limited number of warehouses (#4)
in order to generate high conflicts. We recall that, in data flow model, objects
are not bound on fixed nodes but move, increasing likelihood of conflicts.
Experimental Setup. Our test-bed consists of 10 nodes connected via a switched
1 Gigabit network connection. Each node is comprised of 12 Intel Xeon 1.9GHz
processor cores. We use the Ubuntu Linux 10.04 server OS. We measured the
transactional throughput (number of committed transactions per second). To
manage garbage collection, versions that are no longer accessible, need to be
marked. Unlike multiprocessors, determining old versions for live transactions
in distributed systems incurs communication overheads. Thus, we consider a
threshold-based garbage collector [5], which checks the number of versions and
disposes the oldest if the number of versions exceeds a pre-defined threshold. We
consider threshold 4 for measuring the basic event model’s throughput, because
the observed that the speed-up is relatively less increased after threshold.
Finding a Depth. The large number of concurrent validations may lead to a
significant scheduling overhead due to delayed non-commutative transactions.
For the balance of commutative and non- requesting transactions, we consider
a threshold-based control, switching the next epoch when either a depth or a
number of non-commutative transactions enqueued meets a predefined thresh-
old, called MaxD. Figure 6 shows throughput moving the MaxD from 1 to 50.



By the plot is clear that CRF’s throughput is not improved after MaxD=10
for LinkedList and MaxD=5 for TPC-C due to the increasing number of non-
commutative transactions aborted. With the previous values of MaxD, CRF
reaches its maximum throughput, so we used those for the experiments.
Evaluation. Figures 7,9 show the throughput of CRF, MV-TFA and De-
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Fig. 8. Throughput of CRF, MV-TFA, and DecentSTM Using TPC-C

centSTM using LinkedList(Figure 7) and SkipList(Figure 9) benchmarks. The
legend has to be considered for all the plots and shows the colors differentiate
for number of running threads. Each micro-benchmark has been evaluated us-
ing two workloads representative of read intensive (10% writes and 90% reads)
and write intensive (90% writes and 10% reads) scenarios. The tests have been
performed varying the number of nodes and the number of threads per node.
Each thread submits requests to the distributed system. Summarizing, we span
scenarios from 2 up to 120 concurrent threads in the system. This allows to
exhaustive assess the behavior of CRF. The comparison between CRF and MV-
TFA shows how much CRF enhances the concurrency of write transactions. For
the LinkedList and SkipList, the new value to add or delete is randomly selected
using a uniform distribution. According to the increasing number of threads and
nodes, CRF performs better due to the detection of a large number of commu-
tative operations. Even though the throughput of CRF is slightly better than
MV-TFA in scenario characterized by most read-only transactions (due to the
limited number of commutative write operations), the maximum gain of CRF
against competitors is reached in write-intensive workload where CRF exploits
the ability to validate and commit concurrently conflicting transactions. In ad-
ditional the plot revels that, in write dominated workload, CRF scales better
than MV-TFA and DecentSTM. In fact, in contrast with CRF, their perfor-
mance stall increasing the number of concurrent threads in the system. This
is also confirmed by the plot in Figure 9(a) and 9(b) where CRF outperforms
MV-TFA by as much as 2×. As a competitor, DecentSTM [3] is based on a
snapshot isolation algorithm, which requires searching the history of objects to
find a valid snapshot. This algorithm incurs a significant overhead. Thus, we
observe that the transactional throughput of DecentSTM is not improved as
long as requesting nodes increase. Our evaluations reveal that CRF improves
throughput over MV-TFA and DecentSTM by as much as (average) 2× and 3×
under 10% read transactions, respectively. Further, our evaluations show that



MV-TFA outperforms DecentSTM in throughput as much as 2×. Figure 8 shows
the throughput of CRF, MV-TFA, and DecentSTM using TPC-C benchmark.
We used the amount of read and write transactions that the specification of
TPC-C recommends. TPC-C benchmark accesses large tables to read and write
values. Due to the non-negligible transaction execution time, scheduling commu-
tative operations highly impacts the overall performance. In fact, the conflicting
transactions generated by the benchmark are well managed by CRF and this
results observing that CRF performs better than DecentSTM as much as 5×
over 10 nodes.
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Fig. 9. Throughput of CRF, MV-TFA, and DecentSTM Using SkipList.

5 Related Work

Transactional scheduling has been explored in a number of multiprocessor STM
efforts [11, 1, 30, 10, 2]. In [11], is described an approach that dynamically sched-
ules transactions based on their predicted read/write access sets. In [1], the au-
thors discuss the Steal-On-Abort transaction scheduler, which queues an aborted
transaction behind the non-aborted transaction, and thereby prevents the two
transactions from conflicting again. In [30] is presented Adaptive Transaction
Scheduler (ATS), that adaptively controls the number of concurrent transactions
based on the contention intensity: when the intensity is below a threshold, the
transaction begins normally; otherwise, the transaction stalls and does not begin
until dispatched by the scheduler. CAR-STM scheduling approach [10] uses per-
core transaction queues and serializes conflicting transactions by aborting one
and queueing it on the other’s queue, preventing future conflicts. CAR-STM pre-
assigns transactions with high collision probability (application-described) to the
same core, and thereby minimizes conflicts. In [4] has been proposed the Proac-
tive Transactional Scheduler (PTS). This scheme detects hot spots of contention



that can degrade performance, and proactively schedules affected transactions
around the hot spots. In [2] has been presented the BIMODAL scheduler, which
targets read-dominated and bimodal (i.e., those with only early-write and read-
only) workloads. BIMODAL alternates between “writing epochs” and “reading
epochs” during which writing and reading transactions are given priority, respec-
tively, ensuring greater concurrency for reading transactions. Steal-On-Abort,
CAR-STM, and BIMODAL enqueue aborted transactions to minimize future
conflicts in SV-STM. In contrast, CRF only enqueues non-commutative trans-
actions that conflict with commutative transactions. The purpose of enqueuing
is to prevent contending transactions from requesting all objects again. Thus,
CRF also minimizes conflicts, but the overhead of CRF’s scheduling is lower
than the others because the number of enqueued transactions is smaller. ATS
and PTS determine contention intensity and use it for contention management.
Unlike these schedulers which are designed for multiprocessors, CRF maintains
contention monitoring only between commutative and non-commutative write
transactions, alleviating some of the overhead of contention management. In
terms of commutativity, in [15] has been used a similar approach of CRF in
order to running in parallel independent parts of the code.

It is important to note that, MV-STM has been extensively studied for mul-
tiprocessors and for distributed systems. MV increases concurrency by allowing
transactions to read older versions of shared data, thereby minimizing conflicts
and aborts. For example, in [23] is presented a dependency-aware transactional
memory (DATM) for multiprocessors, where transaction execution is interleaved,
and show substantially more concurrency than two-phase locking. Replicated
object models for DTM have been studied in [17, 28], but these efforts also do
not consider scheduling.

6 Conclusions

We presented a commutativity-based transactional scheduler for multi-version
DTM, called CRF. CRF focuses on how to enhance concurrency of write trans-
actions in multiversioning schemes ensuring SI, where write transactions are
exposed to a high probability of conflicts. Our key idea is to detect a conflict
between commutative and non-commutative write transactions and allow the
first ones to commit concurrently before the others. CRF’s design shows how
commutativity-based scheduling impacts throughput in DTM. Our experimen-
tal evaluation shows that CRF enhances throughput over a state-of-the-art DTM
solution, by 3 and 5× using micro-benchmarks and real-application.
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