
On Enhancing Concurrency in Distributed Software Transactional Memory

Bo Zhang
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
alexzbzb@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
binoy@vt.edu

Abstract

Distributed software transactional memory (STM) promises to alleviate difficulties with lock-
based (distributed) synchronization and object performance bottlenecks in distributed systems.
The existing distributed STM model based on globally-consistent contention management poli-
cies may abort many transactions that could potentially commit without violating correctness.
To reduce unnecessary aborts and increase concurrency, we propose the distributed dependency-
aware (DDA) model for distributed STM, which adopts different conflict resolution strategies
based on the types of transactions.In the DDA model, read-only transactions never abort by
keeping a set of versions for each object. Each transaction only keeps precedence relations
based on its local knowledge of precedence relations.The DDA model that, when a transaction
reads from or writes to an object based on its local knowledge, the underlying precedence
graph remains acyclic. We propose starvation-free multi-version (SF-MV)-permissiveness, which
ensures that: 1) read-only transactions never abort; and 2) every transaction eventually commits.
The DDA model satisfies SF-MV-permissiveness with high probability. We present a set of
algorithms to support the DDA model, prove its correctness and permissiveness, and show
that is supports invisible reads and efficiently garbage collects useless object versions. Our
experimental results show that the DDA model outperforms existing contention management
policies by 30%-40% in average in high contention environments.

1. Introduction
Software transactional memory (STM) is an alternative synchronization model for shared in-memory

data objects that promises to alleviate the pitfalls of traditional lock-based synchronization schemes, where
are often non-scalable, non-composable, and inherently error-prone. Similar to database transactions, a
transaction, in STM context, is an explicitly delimited sequence of steps executed atomically by a single
thread. A transaction terminates by either committing (i.e., its operations take effect), or by aborting (i.e.,
its operations have no effect). If a transaction aborts, it is typically retried until it commits.

A distributed STM model supports the STM API in a distributed system consisting of a network of
nodes that communicate by message passing links. Supporting STM in distributed systems is motivated by
the similar difficulties of lock-based synchronization methods employed by existing distributed control-
flow programming models such as remote procedure calls (RPCs). For example, RPC calls, while holding
locks, can become remotely blocked on other calls for locks, causing distributed deadlocks. Livelocks
and lock convoying similarly occur. In addition, in the RPC model, an object can become a “hot spot,”
and thus a performance bottleneck. As suggested in [10], in a data-flow distributed STM model, object
performance bottlenecks can be reduced by exploiting locality: move the object to nodes. Moreover, if an
object is shared by a group of geographically-close clients that are far from the object’s home, moving
the object to the clients can reduce communication costs.

We consider Herlihy and Sun’s data-flow model [10]. In this model, transactions are immobile (running
at a single node), but objects move from node to node. Transactional synchronization is optimistic: a
transaction commits only if no other transaction has executed a conflicting access. Each node has a TM
proxy that provides interfaces to the STM application and to proxies of other nodes. When a node vA
initiates a transaction A that requests a read from or write to object o, its TM proxy first checks whether o
is in the local cache; if not, the TM proxy invokes a distributed cache-coherence protocol (CC) to locate
o in the network. Assume that o is in use by a transaction B initiated by node vB . When vB receives
request CC.locate(o) from vA, its TM proxy checks whether o is in use by an active local transaction;
if so, the TM proxy invokes a conflict resolution module to compare the priorities of transaction A and
B. Based on the result of the conflict resolution module, vB’s TM proxy decides whether to abort B
immediately, or postpone A’s request and let B proceed to commit. Eventually, vB invokes CC to move
o to vA.

Therefore, a distributed STM is primarily composed of two elements. The first element is the conflict
resolution strategy. Two transactions conflict if they access the same object and one access is a write. Most
existing STM implementations adopt a conflict resolution strategy that aborts one transaction whenever
a conflict occurs—e.g., a contention management module [8]. The second element is the distributed
cache-coherence protocol. When a transaction attempts to access an object in the network, the distributed
cache-coherence protocol must locate the latest cached copy of the object, and move a read-only or
writable copy to the requesting transaction.

Most of the past works on STM in distributed systems [3][10][17] focus on the design of cache-
coherence protocols, while assuming a contention-management-based conflict resolution strategy. While
easy to implement, such a contention management approach may lead to significant number of unnecessary
aborts, especially when high concurrency is preferred—e.g., for read-dominated workloads [2]. On the
other hand, none of the past works consider the design of conflict resolution strategies to increase
concurrency under a general cache-coherence protocol.

In this paper, we approach this problem by exploring how we can increase concurrency in a distributed
STM. Our work is motivated by the past works on enhancing concurrency by establishing precedence
relations among transactions in multiprocessor systems [7] [12] [14]. A transaction can commit as long as
the correctness criterion is not violated through its established precedence relations with other transactions.
Generally, the precedence relations among all transactions form a global precedence graph. By computing
the precedence graph and ensuring that it is acyclic, an STM can efficiently avoid unnecessary aborts [12].

Our contributions are as follows:
1) We propose the distributed dependency-aware (or DDA) STM model, which leverages the advantages

of the aforementioned two strategies. DDA model utilizes different conflict resolution strategies targeting
different types of transactions: read-only, write-only and update (involving both read and write operations)
transactions. We identify the two inherent limitations of establishing precedence relations in distributed
STM. First, there is no centralized unit to monitor precedence relations among transactions in distributed
systems, which are scattered in the network. Each transaction should first observe the status of the
precedence graph before the next operation. Hence, a large amount of communication cost between
transactions is unavoidable. In the DDA model, we design a set of algorithms to avoid frequent inter-
transaction communications. In the DDA model, read-only transactions never abort by keeping a set of
versions for each object. Each transaction only keeps precedence relations based on its local knowledge of
precedence relations. Our algorithms guarantee that, when a transaction reads from or writes to an object
based on its local knowledge, the underlying precedence graph remains acyclic. On the other hand, we
adopt a randomized algorithm to assign priorities to update/write-only transactions. This strategy ensures
that an update transaction is efficiently processed when it potentially conflicts with another transaction,
and ensures system progress.

2) We prove that the DDA model satisfies some desirable properties. It satisfies the opacity correctness
criterion [7]. We define starvation-free multi-versioned (SF-MV)-permissiveness, which ensures that:
1)read-only transactions never abort; and 2) every transaction eventually commits. The DDA model
satisfies SF-MV-permissiveness with high probability. The DDA model uses a real-time useless-prefix
(RT-UP)-garbage-collection (GC) mechanism, which enables it to only keep the shortest suffix of versions
that might be needed by live read-only transactions. The DDA model also supports invisible reads, which
is a desirable property for STM.

3) We implement the DDA model in our HyFlow distributed STM project [1] and compare it with
existing contention management policies with given cache-coherence protocols. Our results show that in
the high contention environments, the DDA model outperforms selected contention management policies
by 30%-40% in average; in low contention environments, the DDA model still exhibits an approximately
same performance compared with selected contention management policies.

The rest of the paper is organized as follows. We present the preliminaries and system model in
Section 2. We formally present the DDA model and propose a set of expected properties in Section 3.
We present algorithms of the DDA model and analyze them in Section 4. Experimental results are
presented in Section 5. The paper concludes in Section 6.

2. Preliminaries and System Model
Distributed transactions. We consider a set of distributed transactions T := {T1, T2, . . . , Tn} sharing

up to s objects O := {o1, o2, . . . , os} distributed on a network of m nodes {v1, v2, . . . , vm}, where
nodes communicate by message passing links. For simplicity of the analysis, we consider the objects as
read/write registers and each node runs a single thread only, i.e., in total there are at most m threads
running concurrently. A transaction is invoked by a certain node (or process) in the distributed system.
When there is no ambiguity, the notation of Ti may indicate either a transaction or the node that invokes
the transaction. The status of a transaction may be one of the following three: live, aborted, or committed.
Retrying an aborted transaction is interpreted as creating a new transaction with a new id. However, when
a transaction retries, it preserves the original starting timestamp as its starting time.

An execution of a transaction is a sequence of timed operations. Generally, there are four action types
that may be taken by a single transaction: write, read, commit, and abort. A transaction Ti’s type is
defined as: 1) read-only if Ti does not contain write operations; 2) write-only if Ti does not contain read
operations; 3) update if Ti consists of both read and write operations. The duration of a transaction Ti

is denoted by τi and refers to the time that Ti executes locally until commit without contention, i.e., τi

excludes the time needed to locate and move objects in the network.
When a transaction attempts to read from or write to a remote object, the cache-coherence protocol

is invoked by the transaction proxy to locate the current cached copy of the object, move a read-only or
writable copy to the requesting transaction’s local cache. A distributed cache-coherence protocol moves
each object via some specific path (e.g., the path in a spanning tree for Ballistic protocol [10]) or the
shortest path (e.g., Relay protocol [17]). In this paper we assume an existing underlying distributed
cache-coherence protocol CC which moves the object to the requester in a finite time period.
Correctness criterion. We consider the formal model in [9] to reason about concurrent transaction
executions. A transaction history is the sequence of all operations performed by transactions in a given
STM execution, ordered by the time they are issued. Two histories H1 and H2 are equivalent if they
contain the same transaction operations in the same order. A history is complete if it does not contain live
transactions (the status of any transaction is either committed or aborted). If a history H is not complete,
we can obtain Complete(H) by adding a number of abort operations for live transactions in H .

The real-time order of transactions is defined as follows: for any two transactions {Ti, Tj} ∈ H , if the
first operation of Tj is issued after the last operation of Ti (a commit operation or an abort operation of
Ti), then we denote Ti ≺H Tj . Transactions Ti and Tj are concurrent if Ti ⊀ Tj and Tj ⊀ Ti. A history
H is sequential if no two transactions in H are concurrent [7]. A sequential history H is legal if it
respects the sequential specification of each object accessed in H . Intuitively, a sequential history is legal
if every read operation returns the value given as an argument to the latest preceding write operation of
a committed transaction. For a sequential history H , a transaction Ti ∈ H is legal in H if the largest
subsequence H ′ of H is a legal history, where for every legal transaction Tk ∈ H ′, either 1) k = i, or
2) Tk is committed and Tk ≺H Ti.

We adopt the opacity correctness criterion proposed by Guerraoui and Kapalka [7], which defines the
class of histories that are acceptable for any STM. Specifically, a history H is opaque if there exists a
sequential history S, such that: 1) S is equivalent to Complete(H); 2) S preserves the real-time order
of H; and 3) every transaction Ti ∈ S is legal in S.
Precedence Graph. In our proposed model, the basic idea to guarantee correctness is to maintain a
precedence graph of transactions and keep it acyclic, which has been adopted by some recent STM
efforts in multiprocessor systems [7], [12], [14]. Generally, transactions form a directed labeled precedence
graph, PG, based on the dependencies created during the transaction history. The vertices of PG are
transactions. There exists a directed edge Ti → Tj in PG due to following cases:

1) Real-time order: Ti ≺H Tj ;
2) Read after Write (W → R): Tj reads the value written by Ti;
3) Write after Read (R → W): Tj writes to object o, while Ti reads the version overwritten by Tj ; or
4) Write after Write (W → W): Tj writes to object o, which was previously written to by Ti.

3. Distributed dependency-aware model
3.1. Motivation
Most current distributed STM proposals inherit the globally-consistent contention management strategy
(or CM model in short) from multiprocessor STM, for resolving read/write conflicts on shared objects. In
the CM model, a contention manager module is responsible for mediating between conflicting accesses to
shared objects. For example, in the data-flow distributed STM model proposed by Herlihy and Sun [10],
the Greedy contention manager [6] assigns priorities based on transactions’ starting timestamps. Each
transaction is assigned a unique timestamp when it starts, and it remains unchanged until commit. A
running transaction could only be aborted by another transaction with an older timestamp.

Although easy to implement, the CM model sometimes is too conservative in achieving high throughput.
Given a specific transactional workload, the CM model may execute all transactions almost entirely
sequentially even if a large number of them could run concurrently. For example, consider a workload

where n transactions with duration 1−δ each, share n+1 objects in a network, under a cache-coherence
protocol that ensures that the duration for any transaction to acquire a remote object is δ. Assume that
transaction Ti requests to write to object oi at time 0 and object oi+1 at time 1 − δ − i · ϵ. Assume
that the Greedy manager is used to resolve conflicts. Let Ti has the ith oldest timestamp. We have
T1 ≺G T2 ≺G . . . ≺G Tn, where “Ti ≺G Tj” means that Ti’s priority is higher than Tj’s under the
Greedy manager.

Figure 1. Example 1: the Greedy manager is adopted and transaction Ti has the ith oldest
timestamp. Ti can only commit at its ith execution.

We depict this example in Figure 1. We follow the style of [15] to depict transaction histories, and
extend it to distributed STM environments. Filled circles correspond to write operations and empty circles
represent read operations. Transactions are represented as polylines with circles (write or read operations).
Each object oi’s state in the time domain corresponds to a horizontal line from left to right. A commit or
an abort operation is indicated by the letter C or A, respectively. An object moves between transactions
which write to it. For example, in Figure 1, object o2 moves from T2 to T1 and T1 acquires it at 1− ϵ.
Similarly, o2 moves from T1 to T2 and T2 acquires it at t1 + (n− 1)ϵ.

We assume that initially each object oi is located at transaction Ti mod n. Hence, transaction Ti starts
without acquiring oi remotely and writes to oi at time 0. At time 1−δ− i ·ϵ, Ti requires a write operation
to oi and invokes the cache-coherence protocol to request the object. Hence, Ti acquires oi+1 at time
1− i · ϵ for i ≥ 2, and is aborted by Ti−1 before 1− (i− 1)ϵ. Only T1 commits in its first execution.

After the first execution of each transaction, object oi is located at Ti−1 for i ≥ 2. Transaction Ti

(i ≥ 2) restarts and requests oi remotely such that Ti acquires oi ϵ time units before Ti−1 acquires oi−1.
Note that transaction Ti−1 acquires oi (i− 1)ϵ time units before its termination. Hence, similarly to its
first execution, Ti is aborted by Ti−1 for i ≥ 3 and only T2 commits in its second execution. By repeating
this procedure, Ti−1 aborts Ti at least i − 1 times and Ti commits at its ith execution. The total time
duration to commit the set of n transactions is Σn

i=1(1− i · ϵ+ δ) = Ω(n+ n · δ).
Obviously, the schedule produced by the Greedy manager is not optimal. By first executing all even

transactions and then executing all odd transactions, an optimal schedule finishes in constant time O(1+δ).
Can we find a more efficient conflict resolution strategy to achieve high concurrency? For this specific
example, the answer is trivial: all transactions can proceed even when a conflict occurs. Without assigning
priorities to transactions, when transaction Ti receives a request from Ti−1 for object oi, which is currently
in use, it simply sends oi to Ti−1 with its initial value (the value before Ti writes to it), denoted by o0i .
When Ti commits, it sends a request to Ti−1 to write its value to oi. In this way, each transaction commits
at its first execution. Object oi (2 ≤ i ≤ n) is first written by Ti−1 and then by Ti. Let the value written
to oi by the jth write be denoted as oji . Then we know that Ti−1 writes o1i and Ti−1 writes o2i . As a
result, all transactions can be serialized in the order from T1 to Tn and the time duration to commit all
transactions is O(1 + δ), which is optimal.

The example in Figure 1 suggests that the CM model may incur a large amount of unnecessary aborts.
On the other hand, instead of aborting a transaction when a conflict occurs, letting conflicting transactions

to proceed in parallel can enhance concurrency efficiently as long as the correctness criterion (i.e., opacity)
is not violated. This observation motivates us to propose the distributed dependency-aware (DDA) STM
model, which differs from past distributed STM models in the way that it resolves read/write conflicts
over shared objects.

Figure 2. Dining philosophers problem: transactions’ write version requests may be interleaved.
In the DDA model, a write-only transaction commits by writing a new version to each object that

it requests. Adding a new version to each object in a greedy way in some cases is the simplest and
correct solution (e.g., Example 1). However, this method is problematic as it violates opacity under
certain workloads. Consider the dining philosophers problem, which is similar to Example 1, except that
Tn writes to object o1 (instead of on+1) at time 1 − δ − n · ϵ, as shown in Figure 2. In this scenario,
transaction Ti needs to write two new versions to oi and o(i+1) mod n, respectively. Note that Ti only
holds o(i+1) mod n locally (acquired at time 1 − i · ϵ) when it commits. Hence, Ti writes a version to
o(i+1) mod n locally at time 1 and writes to oi remotely at time 1+δ−, where δ− < δ. If objects versions
are added in a greedy way, then for object oi, o1i is written by T(i−1) mod n and o2i is written to by Ti.
Hence, Ti can only be serialized after T(i−1) mod n, since Ti writes after T(i−1) mod n over object oi.
Obviously, a cycle forms when serializing all transactions, and opacity is violated.

This phenomenon is unique for distributed STM, where objects’ versions may be written in an inter-
leaved way. Simply adding versions in a greedy way may violate correctness. To guarantee correctness,
the DDA model allows a transaction to insert an object version preceding an older version. How does a
transaction decide the proper place to insert an object version? One simplest way is to to assign priorities
to transactions based on starting timestamps and insert and the writer’s priority, as shown in Figure 2.
A circled letter “W” represents that an object version is inserted. When transaction Ti tries to insert a
version (red lines) to object oi , it first checks the priorities of the older versions of oi; if it finds a version
oki which is written by a lower-priority transaction (e.g., T1 finds that o1 has a version written by Tn at
time 1 + δ−), Ti inserts its version preceding oki (the green dotted arc). As a result, the time duration
to commit all transactions is O(1 + δ) and the history is opaque (transactions can be serialized in the
priority order). We will study how transactions of different types insert the object versions in detail in
Section 4.

3.2. Multi-versioning
Each object o maintains two object version lists: a pending version list o.vp and a committed version

list o.vc based on the status of a version’s writer. At any given time, the versions of each list is
numbered in increasing order, e.g., o.vp[1], o.vp[2], ..., etc. An object version Version includes the
data Version.data, the writer transaction Version.writer, and Version.sucSet, a set of detected
successors serialized after Version. Generally, a transaction is added into Version.sucSet if: 1) it is
an update transaction and reads Version; or 2) it writes to the object and Version.writer precedes
it in real-time order. A read operation on object o returns the value of one of o’s committed version list.
When transaction Ti accesses o to write a value v(Ti), it appends v(Ti) to the tail of o.vp (note that before
this operation, Ti must guarantee that writing to o does not violate correctness), e.g., v(Ti) = o.vp[max].

When Ti tries to commit, v(Ti) is removed from o.vp and inserted into o.vc.
Each transaction data structure TxnDsc keeps a readList and writeList. An entry in a readList

points to the version that has been read by the transaction. An entry in a writeList points to the version
written by the transaction. TxnDsc also keeps a status field which records its status (live, committed
or aborted) and a timestamp field which is initialized with its starting timestamp.

3.3. Expected properties
To evaluate the effectiveness of the DDA model, we propose a set of desirable properties for an effective
distributed STM supporting multi-versioned objects.
Permissiveness. For multi-versioned STM, the key advantage compared with the CM model is its ability
to reduce the number of aborts. The criterion of transaction histories accepted by an STM is captured by
the notion of permissiveness[5], which restricts the set of aborted transactions by defining such criterion.
Informally, an STM satisfies π-permissiveness for a correctness criterion π, if every history that does not
violate π is accepted by the STM. However, π-permissiveness is proposed based on an STM model only
supporting single-versioned objects and is not sufficient for multi-versioned STM. Keidar and Perelman
proposed online π-permissiveness [12] which does not allow aborting any transaction if there is a way to
continue the run without violating π. Later, Perelman et. al. proposed multi-versioned (MV)-permissiveness
in [13]. In an STM that satisfies MV-permissiveness, read-only transactions never abort and an update
transaction is only aborted when it conflicts with another update transaction.

π-permissiveness is argued to be too strong [13]: it aims to avoid all spurious aborts, but is too
complicated to achieve and requires keeping a large amount of object versions. On the other hand, we
argue that MV-permissiveness may not be strong enough since it does not guarantee that each transaction
eventually commits (after a finite number of aborts). For example, an update transaction T may be aborted
by infinite times if for every time it restarts, one object in its readset has been overwritten by another
update transaction after being read by T and before T commits. In other words, under a certain workload
a transaction may starve in an MV-permissive STM. Therefore, our permissive condition captures the
starvation-free property in addition to MV-permissiveness.

Definition 1: An STM satisfies starvation-free multi-versioned (SF-MV)-permissiveness if: 1) a trans-
action aborts only when it is an update transaction that conflicts with another update or write-only
transaction; 2) every transaction commits after a finite number of aborts.
Informally, in an STM that satisfies SF-MV-permissiveness, read-only transactions never abort and never
cause other transactions’ aborts. Furthermore, transactions never starve in SF-MV-permissive STM.
Garbage collection. For multi-versioned STM, old object versions have to be efficiently garbage collected
(GC) to save as much space as possible. Perelman et. al. [13] argued that no STM can be online space
optimal and proposed useless-prefix (UP)-GC, a GC mechanism which removes the longest possible
prefix of versions for each object at any point of time and keeps the shortest suffix of versions that
might be needed by read-only transactions. However, for distributed STM, while transactions may insert
its versions before an old version, it may not be safe to always remove the longest possible suffix of
versions, since a transaction may not be able to find the proper place to insert its versions. Hence, we
define a more practical GC mechanism for SF-MV-permissive STM.

Definition 2: A SF-MV-permissive STM satisfies real-time useless-prefix (RT-UP)-GC if at any point
in a transactional history H , an object version okj is kept only if there exists an extension of H with a
live transaction Ti, such that okj is the latest version of oj satisfying okj .writer ≺H Ti.
Read visibility. The STM implementation use invisible reads if no shared object is modified when a
transaction performs a read-only operation on a shared object, i.e., a read-only transaction leaves no trace
the external system about its execution. If a distributed STM supports invisible reads, a traffic between
nodes can be greatly reduced for read-dominated workloads and the overall throughput of operations is
potentially larger.

4. Algorithms
4.1. Description
Before a transaction performs each read/write operation, it must guarantee that the correctness criterion
is not violated. Applying the precedence graph in distributed STM introduces some unique challenges.
The key challenge is that, in distributed systems, each transaction has to make decisions based on its
local knowledge. A centralized algorithm (e.g., assigning a coordinating node to maintain the precedence
graph and make decisions whenever a conflict occurs) involves frequent interactions between different
nodes, and is impractical due to the underlying high communication cost. For the same reason, it is also
impractical to maintain a global precedence graph on each individual node. Thus, we propose a set of
policies to handle read/write operations such that the acyclicity of the underlying precedence graph is
not violated and without frequent inter-transaction communications for each individual transaction.

Algorithm 1: Algorithms for read operations
1 procedure READ(o) for read-only transaction Ti

2 for Version← o.vc[max] to o.vc[min] do
// scan the committed version list of o from the latest one

3 if Version.writer ≺H then
4 return Version.data
5 break
6 procedure Priority Assignment
7 On (re)start of update/write-only transaction Ti:
8 xTi ← random integer in [1,m];

9 procedure READ(o) for update transaction Ti

10 abortList← ∅
11 foreach suc ∈ o.vc[max].sucSet do
12 if suc.status == live then
13 if xsuc < xTi then
14 ABORT;
15 else
16 add suc to abortList;
17 if Ti.status = live then
18 if o.vc[max].writer.timestamp ≥ Ti.timestamp then
19 Ti.timestamp← o.vc[max].writer.timestamp+ ϵ
20 foreach abortWriter ∈ abortList do
21 send abort message to abortWriter
22 add Ti to o.vc[max].sucSet
23 return o.vc[max].data // return the latest version

Principle 1: In the DDA model, a read-only transaction never aborts.
The pseudo code of read operation for read-only transactions is shown in Algorithm 1. Consider a
transaction Ti reading object o. If Ti is a read-only transaction, it reads the latest committed version
o.vc[j] where o.vc[j].writer ≺H Ti, i.e., the writer of o.vc[j] precedes Ti in real-time order (lines 2-
5). In this way, a read-only transaction is always serialized before other concurrent update/write-only
transactions. On the other hand, each object must keep proper object versions to satisfy that each read-
only transaction can find the latest committed object version which precedes it in real-time order.

Principle 2: In the DDA model, a transaction aborts if: 1) it is not a read-only transaction; and 2) it
conflicts with another transaction and at least one of the conflicting transaction is an update transaction.

Therefore, a transaction aborts in two cases: 1) two update transactions read the same object; and 2)
one update transaction and another update/write-only transaction writes to the same object. We discuss
them case by case.
Case 1. The pseudo code of read operation for update transactions is shown in Algorithm 1. If Ti is an
update transaction, it checks the known successors (which must be serialized after the versions’s writer)

of the latest committed version o.vc[max] and applies a randomized algorithm to make the decision.
To assign the priority randomly, each update/write-only transaction T selects an integer xT ∈ [1,m]
uniformly, independently and randomly when starts or restarts (lines 6-8).

If there exists a live update/write-only transaction Tj ∈ o.vc[max].sucSet (line 12), then either one
of Ti and Tj can proceed. The transaction with smaller xT has the higher priority (lines 13-17). After
examines all transactions in o.vc[max].sucSet, if Ti is still alive, it sends an abort message to each
transaction aborted by Ti (lines 20-21). Ti reads o.vc[max] and adds itself to o.vc[max].sucSet (lines
22-23).

An update transaction’s timestamp is updated when it reads an object. When an update transaction Ti

reads an object version o.vc[max], it checks the timestamp of its writer (o.vc[max].writer.timestamp). If
it has the larger timestamp than Ti, then Ti’s timestamp is increased to o.vc[max].writer.timestamp+ϵ,
which is slightly greater than o.vc[max].writer.timestamp.

For example, in the scenario depicted in Figure 3, the sequence of versions read by T2 is {o11, o12}.
Update transaction T4 checks the successors of o22 (written by T5) when reads o2. Hence, T4 compares
xT4

with xT6
. Assume that xT4

< xT6
, T4 aborts T6 by sending it an abort message (the dotted line).

Now the set of transactions can be serialized in order T1T3T2T5T4T6, where T6 aborts. Similar analysis
also applies if xT6

< xT5
and T5 aborts. Note that after reads o2, T4’s timestamp is updated from t1 to

t2+ϵ. Later in this section, we will show that by doing this, the versions written by T4 (e.g., T4’s version
of o3) can be correctly after the versions written by T5 (e.g., T5’s version of o3) by simply comparing
their timestamps.

Figure 3. Transactions are serialized in order
T1T3T2T5T4T6, where T6 aborts.

Figure 4. Transactions are serialized in order
T1T2T3T4, where T1 and T2 abort.

Case 2. We present the pseudo code of write operations in Algorithm 2. When requests to write value v(Ti)
to an object o, an update/write-only transaction Ti checks the latest committed version o.vc[j] such that the
writer of o.vc[j] precedes Ti in real-time order (lines 6-7). For each live transaction suc ∈ o.vc[j].sucSec,
if one transaction in the pair ⟨suc, Ti⟩ is an update transaction, then either one of Ti and suc can proceed.
The similar random algorithm as the read operations is applied to compare priorities (lines 8-13). If Ti

eventually proceeds, it sends an message to each aborted transactions (lines 15-16). Ti writes to o by
appending v(Ti) to the end of the pending committed list o.vp and adds itself to o.vc[j].sucSet (lines
17-18).

For example, consider the scenario depicted in Figure 4. T3 conflicts with T1 and T2 at t1 and T2,
respectively. Assume that xT3

< {xT1
, xT2

}, then T3 commits and sends an abort message to T1 and T2,
respectively (the dotted lines). T4 does not conflict with T3 since T3 ≺H T4. The set of transactions can
be serialized in order T1T2T3T4, where T1 and T2 abort.

Principle 3: An object’s versions are inserted in a greedy way according to writer’s timestamps: the
version written by a transaction with the older timestamp is always inserted before the version written
by a transaction with the newer timestamp.

We present algorithm INSERTVERSION in Algorithm 3. When a transaction tries to commit, it sends
a commit message to each object it has requested to write to simultaneously. When receives a commit

Algorithm 2: Algorithms for write operations
1 procedure Priority Assignment
2 On (re)start of update/write-only transaction Ti:
3 xTi ← random integer in [1,m];

4 procedure WRITE(o, v(Ti)) for update/write-only transaction Ti

5 abortList← ∅;
6 for Version← o.vc[max] to o.vc[min] do
7 if Version.writer ≺H Ti then
8 foreach suc ∈ Version.sucSet do
9 if suc.status = live & {Ti|suc}.type == update then

10 if xsuc < xTi then
11 ABORT;
12 else
13 add suc to abortList;
14 if Ti.status = live then
15 foreach abortSuc ∈ abortList do
16 send abort message to abortSuc
17 add Ti to Version.sucSet;
18 o.vp[max+ 1]← v(Ti);
19 break

message from Ti, object o removes v(Ti) from pending commit list o.vp and inserts it to the commit
list o.vc such that the versions in o.vc is in the order of writers’ (updated) timestamps. This strat-
egy guarantees that the versions written by different transactions never interleave at different nodes.
By updating the timestamp of each update transaction, a version written by an update transaction is
always inserted after the transaction which has written a version the update transaction reads from.
Algorithm 3: Algorithm INSERTVERSION

1 procedure INSERTVERSION(o, v(Ti)) when Ti inserts object version v(Ti) to o
2 On receiving a commit message from Ti at object o:
3 remove v(Ti) from o.vp
4 insert v(Ti) after o.vc[max]
5 for Version← o.vc[max] to o.vc[min] do

// scan the committed version list of o from the latest one
6 if Version.writer.timestamp > Ti.timestamp then
7 move v(Ti) before Version
8 else
9 break

4.2. Analysis
In this section, we prove that the DDA model satisfies opacity and has following properties: 1) it is
SF-MV-permissive with high probability; 2) it supports RT-UP-GC; and 3) it supports invisible reads.

Lemma 1: In the DDA model, a transaction does not generate any cycle in the precedence graph PG
before it tries to commit.

Proof: We prove this theorem case by case. Consider an update/write-only transaction Ti. If Ti reads
object version okj , then it only adds a W → R edge from okj .writer to Ti to PG since okj is the latest
committed version of oj . If Ti writes to object oj , it first finds the latest committed version oj .vc[k]
where oj .vc[k].writer ≺H Ti, i.e., the writer of oj .vc[k] precedes Ti in real-time order. It only adds an
R → W edge from Tl ∈ oj .vc[k].sucSet to Ti in two cases: 1) Tl is a read-only transaction which reads
oj .vc[k]; 2) Tl is a committed update transaction which reads oj .vc[k]. Note that the operations of Ti

only introduce incoming edges to Ti in PG. Hence, Ti does not generate any outgoing edge before it
tries to commit and no cycle forms.

Consider a read-only transaction Ti. From the description of read operations, we know that Ti can
always find an object version okj to read for object oj , where okj .writer ≺H Ti. Hence, for each object
okj read by Ti: 1) no new incoming edge to Ti is added to PG; 2) an R → W outgoing edge from Ti

to Tl is added to PG for each Tl ∈ okj .rtSuc where Tl writes to oj .
Suppose a cycle is generated by Ti’s operation. Then we can find a cycle Ti1 → Ti → Ti2 . . . → Ti1

where Ti1 ≺H Ti and Ti → Ti2 is an R → W edge. Then a path exists from Ti2 to Ti1 before Ti’s
operation. Note that Ti2 is an update transaction. There are two cases based on Ti2’s status. If Ti2 is a
live transaction, from the first part of the proof we know that no outgoing edge from Ti2 exists in PG. If
Ti2 is a committed transaction, a path forms from Ti2 to Ti1 if and only if Ti1 commits after Ti2 commits.
In both cases, a contradiction forms. The lemma follows.

Lemma 1 guarantees the acyclicity of PG from the time a transaction starts to the time it tries
to commit. Obviously, the commit of a read-only transaction does not make any change to PG. For
transactions with write operations, a new version is inserted in the committed version list for each object
in its writeList. Such operation brings new edges to PG.

Lemma 2: In the DDA model, the INSERTVERSION operation of a transaction with write operations
does not generate any cycle in the precedence graph PG.

Proof: Consider an update transaction Ti which inserts a new version v(Ti) to the committed version
list oj .vc of object oj . From Lemma 1, we know that before Ti tries to insert object versions, it does not
bring any new outgoing edge to PG. If v(Ti) is inserted to the tail of oj .vc, then a W → W edge from
oj .vc[max].writer to Ti and a set of R → W edges from Tl to Ti for each Tl ∈ oj .vc[max].readers
are added to PG. Hence, no new outgoing edge from Ti is added to PG.

If v(Ti) is inserted to the place preceding oj .vc[k], then a W → W edge from oj .vc[k − 1].writer
to Ti and a set of R → W edges from Tl to Ti for each Tl ∈ oj .vc[k − 1].readers are added to PG.
Additionally, a W → W edge from Ti to oj .vc[k].writer is added to PG. However, from the description
of INSERTVERSION we know that v(Ti) is inserted before oj .vc[k] if and only if there preexists an edge
from Ti to oj .vc[k] in PG. Hence, the INSERTVERSION operation does not introduce new outgoing edge
from Ti to PG. The lemma follows.

We now introduce the following lemma with the help of Lemma 4 from [12]:
Lemma 3: If PG of the execution of a set of transactions is acyclic, then the non-local history H of

the execution satisfies opacity.
Then from Lemmas 1, 2 and 3, we have the following theorem.
Theorem 4: In the DDA model, the non-local history H of the execution of any set of transactions

satisfies opacity.
Lemma 5: A transaction is aborted at most O(C log n) times before it commits with probability 1− 1

n2 ,
where n is the number of transactions in T and C is the maximum number transactions concurrently
conflicting with a single transaction.

Proof: Let the set of conflicting transaction of transaction T denoted by NT . T can only be aborted
when it chooses a larger xT than xT ′ , the integer chosen by a conflicting transaction T ′. The probability
that for transaction T , no transaction T ′ ∈ NT selects the same random number xT ′ = xT is

Pr(@T ′ ∈ NT |xT ′ = xT) =
∏

T ′∈NT

(1− 1

m
) ≥ (1− 1

m
)|NT | ≥ (1− 1

m
)m ≥ 1

e
.

Note that |NT | ≤ C ≤ m. On the other hand, the probability that xT is at least as small as xT ′ for any
conflicting transaction T ′ is at least 1

(C+1) . Thus, the probability that xT is the smallest among all its
neighbors is at least 1

e(C+1) . We use the following Chernoff bound:
Lemma 6: Let X1, X2, . . . , Xn be independent Poisson trials such that, for 1 ≤ i ≤ n, Pr(Xi =

1) = pi, where 0 ≤ pi ≤ 1. Then, for X =
∑n

i=1Xi, µ = E[X] =
∑n

i=1 pi, and any δ ∈ (0, 1],
Pr(X < (1− δ)µ) < e−δ2µ/2.

By Lemma 6, if we conduct 16e(C + 1) lnn trials, each having success probability 1
e(C+1) , then the

probability that the number of successes X is less than 8 lnn becomes: Pr(X < 8 lnn) < e−2 lnn = 1
n2 .

The theorem follows.
From Lemma 6 we immediately have the following theorem.

Theorem 7: The DDA model satisfies SF-MV-permissiveness with probability 1− 1
n2 .

Theorem 8: The DDA model satisfies RT-UP-GC.
Proof: The theorem directly follows from the algorithm description. For any object, the earliest

version it needs to keep is the latest version that precedes all live read-only transactions in real-time
order. All versions earlier than this version can be GCed. The theorem follows.

Theorem 9: The DDA model supports invisible reads.
Proof: We prove the corollary by contradiction. Suppose the DDA model does not support invisible

reads. Then for any history H , we can find a read-only transaction Ti which causes the abort of a
read-only transaction or a write-only transaction if Ti is invisible. Note that if Ti is invisible, then the
edges added to PG by its read operations are not observed by the STM. From the proof of Lemma 1,
we know that Ti only adds outgoing edges from Ti to PG. On the other hand, an update transaction
only adds incoming edges to PG. Hence, the only possibility of the cycle formed must be of the form
Ti1 → Ti → → Ti2 → Ti1 where: 1) Ti1 ≺H Ti; 2) Ti2 is an update transaction; 3) Ti1 reads
a committed version written by Ti2 . Then contradiction forms since Ti and Ti2 must be concurrent
transactions. The theorem follows.

5. Experimental Results
To evaluate the practical performance of the DDA model, we implement the DDA model within our

HyFlow distributed STM project [1]. HyFlow currently focuses on Herlihy and Sun’s data flow model [10],
and integrates a class of conflict resolution strategies and distributed cache-coherence protocols. In
HyFlow, object location is transparent to the application. Objects are located with its IDs using the
Directory Manager, which encapsulates a class of cache-coherence protocols. Atomic sections are defined
as transactions in which reads and writes to shared objects appear to take effect instantaneously. A
transaction maintains its read set and write set, and checks for conflicts on shared objects. If conflicts are
detected, the encapsulated conflict resolution strategy decides which transaction to abort in a way that
avoids deadlocks, livelock, and ensures system-wide progress.

The experiments were conducted on a 24-node system, with each node running a Java Virtual Machine.
Nodes communicate via TCP connections with a link delay of 1ms. The transactional code length is at
least 100ms. Objects are initially distributed equally on the nodes. Each node run 100 consecutive
transactions. We developed and used a distributed version of the Bank application of the STAMP
benchmark suite [4], which was rewritten with HyFlow’s distributed STM APIs with different cache-
coherence protocol/conflict resolution strategy combination.

We use the Home directory protocol [11] and Relay protocol [17] as two underlying cache-coherence
protocols. We also implement the Greedy [6] and Karma [16] contention managers for comparison.
We control the level of contention by change the percentage of shared objects accessed by a single
transaction. Figures 5 and 6 show that in high contention environments (where each transaction accesses
80% of shared objects), the DDA model always outperforms selected contention management policies by
30%-40% in average. When the workload is not read dominated, the DDA model reduces the number of
aborts by guaranteeing that a write-only transaction is never aborted by another write-only transaction.
The randomized priority assignment also assures the starvation-freedom of a single transaction with high
probability. When the workload is read dominated, the number of aborts is significantly reduced since
the DDA model never aborts a read-only transaction.

The DDA model does not always outperforms selected contention management policies, as illustrated
in Figures 7 and 8. In low contention environments (where each transaction accesses 20% of shared

5 10 15 20 25
0

50

100

150

200

250

300

Number of Nodes

T
ra

ns
ac

to
in

s
pe

r
S

ec
on

d

Home Karma
Home Greedy
Relay Greedy
Home DDA
Relay DDA

5 10 15 20 25
0

50

100

150

200

250

300

Number of Nodes

T
ra

ns
ac

to
in

s
pe

r
S

ec
on

d

Home Karma
Home Greedy
Relay Greedy
Home DDA
Relay DDA

Figure 5. Bank; 50% reads; high contention Figure 6. Bank; 90% reads; high contention

5 10 15 20 25
0

50

100

150

200

250

300

Number of Nodes

T
ra

ns
ac

to
in

s
pe

r
S

ec
on

d

Home Karma
Home Greedy
Relay Greedy
Home DDA
Relay DDA

5 10 15 20 25
0

50

100

150

200

250

300

Number of Nodes

T
ra

ns
ac

to
in

s
pe

r
S

ec
on

d

Home Karma
Home Greedy
Relay Greedy
Home DDA
Relay DDA

Figure 7. Bank; 50% reads; low contention Figure 8. Bank; 90% reads; low contention

objects), the DDA model does not perform as well as in high contention environments. The penalty is
that in the DDA model, a transaction has to insert an object versions for each object it requested to
write to, which incurs high communication overhead. Yet the DDA model does show an approximately
same performance compared with selected contention management policies. This is due to its RT-UP-GC
mechanism which discards the useless object versions and reduces the overhead of inserting versions
efficiently.

6. Conclusion
This paper takes a step towards enhancing concurrency in distributed STM. We have shown the tradeoff

of directly adopting past conflict resolution strategies: the CM model is easy to implement and involves
low communication cost in resolving conflicts. However, it may introduce a large number of unnecessary
aborts. On the other hand, resolving conflicts by completely relying on establishing precedence relations
can effectively reduce aborts. However, it requires frequent message exchanges, which may introduce high
communication costs in distributed STM. The DDA model, in some sense, plays a role between these two
extremes. It allows maximum concurrency for some transactions (i.e., read-only transactions), and uses
randomized priority assignment to treat “dangerous” transactions (i.e., update/write-only transactions),
which will likely participate in a cycle in the underlying precedence graph. Moreover, the randomized
algorithm ensures the starvation-freedom property with high probability.

Our work suggests a new direction for future research, particular for distributed STM: different conflict
resolution strategies can be applied based on different types of transactions. Our work shows that there is
a tradeoff between the inter-transaction communication cost and the number of aborts, which is unique
for distributed STM. We believe that understanding this tradeoff (as well as others already shown in
multiprocessor systems) is important in the design of distributed STM.

References

[1] HyFlow TM, http://www.hyflow.org

[2] Attiya, H., Milani, A.: Transactional scheduling for read-dominated workloads. In: OPODIS ’09: Proceedings
of the 13th International Conference on Principles of Distributed Systems. pp. 3–17. Springer-Verlag, Berlin,
Heidelberg (2009)

[3] Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory for large scale clusters. In:
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming. pp. 247–258. ACM, New York, NY, USA (2008)

[4] Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional applications for multi-
processing. In: IISWC ’08: Proceedings of The IEEE International Symposium on Workload Characterization
(September 2008)

[5] Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memories. In: DISC ’08: Proceedings
of the 22nd international symposium on Distributed Computing. pp. 305–319. Springer-Verlag, Berlin,
Heidelberg (2008)

[6] Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention managers. In: PODC
’05: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing. pp.
258–264. ACM, New York, NY, USA (2005)

[7] Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: PPoPP ’08: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel programming. pp. 175–184. ACM,
New York, NY, USA (2008)

[8] Herlihy, M., Luchangco, V., Moir, M., Scherer, III, W.N.: Software transactional memory for dynamic-sized
data structures. In: PODC ’03: Proceedings of the twenty-second annual symposium on Principles of distributed
computing. pp. 92–101. ACM, New York, NY, USA (2003)

[9] Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann (2008)

[10] Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Distributed Computing
20(3), 195–208 (2007)

[11] Herlihy, M., Warres, M.P.: A tale of two directories: implementing distributed shared objects in java. In:
Proceedings of the ACM 1999 conference on Java Grande. pp. 99–108. JAVA ’99, ACM, New York, NY,
USA (1999), http://doi.acm.org/10.1145/304065.304107

[12] Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. In: SPAA ’09: Proceedings of the
twenty-first annual symposium on Parallelism in algorithms and architectures. pp. 59–68. ACM, New York,
NY, USA (2009)

[13] Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in stm. In: PODC ’10: Proceeding of the
29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing. pp. 16–25. ACM, New York,
NY, USA (2010)

[14] Ramadan, H.E., Roy, I., Herlihy, M., Witchel, E.: Committing conflicting transactions in an stm. In: PPoPP
’09: Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of parallel programming.
pp. 163–172. ACM, New York, NY, USA (2009)

[15] Riegel, T., Fetzer, C., Sturzrehm, H., Felber, P.: From causal to z-linearizable transactional memory. In: PODC
’07: Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed computing. pp. 340–
341. ACM, New York, NY, USA (2007)

[16] Scherer, III, W.N., Scott, M.L.: Advanced contention management for dynamic software transactional memory.
In: PODC ’05: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed
computing. pp. 240–248. ACM, New York, NY, USA (2005)

[17] Zhang, B., Ravindran, B.: Brief announcement: Relay: A cache-coherence protocol for distributed transactional
memory. In: OPODIS ’09: Proceedings of the 13th International Conference on Principles of Distributed
Systems. pp. 48–53. Springer-Verlag, Berlin, Heidelberg (2009)

