
Technical Report

Exploring Checkpointing and Closed Nesting
in Distributed Transactional Memory

Alexandru Turcu
Virginia Tech
talex@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Abstract
Checkpointing and closed nesting are mechanisms typically
used for implementing partial roll-back in transactional sys-
tems. Closed nesting limits the amount of work to redo on
an abort by allowing sub-transactions to abort and retry in-
dependently from their parents. Checkpointing goes further
and allows a transaction to be rolled back to any previous
point where a checkpoint was saved. Checkpointing thus en-
ables very fine-grained rollbacks.

In this paper we focus on understanding the performance
considerations of closed nesting and checkpointing in Dis-
tributed Transactional Memory (DTM). We extend an ex-
isting DTM algorithm, TFA, with support for the two par-
tial rollback models, and implement it in the Hyflow2 open-
source DTM framework for the JVM. We then perform a
thorough evaluation to determine their behavior, implemen-
tation overheads, and favorable conditions.

1. Introduction
Transactional systems based on Software Transactional
Memory (STM) are nowadays considered the next gen-
eration of software architectures for managing concurrent
requests on shared data. In such systems, transactions are
typically characterized by an execution time several orders
of magnitude smaller than in traditional architectures (e.g,
DBMS). Clearly, avoiding the synchronous interaction with
the stable storage, STM systems are able to serve many con-
current requests in parallel, guaranteeing great performance
in comparison to traditional DBMS systems [20].

Perhaps more importantly, STM frameworks aim to sim-
plify the development of concurrent applications. The diffi-
cult task of programming concurrency is shifted away from
regular programmers, and into the hands of expert library de-

[Copyright notice will appear here once ’preprint’ option is removed.]

velopers, who can guarantee consistency and a good level of
performance. In fact, leveraging an STM library, program-
mers only have to implement the business logic of the appli-
cation, without having to manage the details of synchroniz-
ing among the different live threads in the system.

The challenge to manually build synchronization mecha-
nisms is exacerbated when the system moves from the cen-
tralized setting to distributed. When implementing and de-
bugging concurrency in distributed systems, developers usu-
ally face issues like distributed deadlocks, distributed live-
locks, distributed conflict detection, and others. These issues
are typically difficult to trace and resolve without relying on
a physical synchronized clock for accurate ordering events.
Distributed Transactional Memory (DTM) systems promise
to solve these problems of distributed synchronization, while
providing an abstraction, the distributed transaction, that is
easy to work with and completely transparent.

In DTM, the transaction execution time is higher than
in centralized STM due to the (possibly multiple) interac-
tions with other nodes on the network. Aborting a trans-
action involves re-executing all the transactional operations
performed so far. While in a centralized setting transactions
are only comprised of in-memory operations, in DTM many
operations require network access, such as retrieving new
copies of objects from other nodes. This emphasizes the ef-
fect on performance due to aborts.

The typical approach to minimizing the effect of aborts is
trying to reduce the probability that such an abort will even
take place, using techniques like transaction scheduling. Un-
fortunately, depending on the underlying transactional pro-
tocols, this is not always possible. Often times, two or more
concurrent transactions access the same data, and at least one
access is a write. This is a conflict, and some of the transac-
tions have to be aborted and restarted at a later time.

The aborting transaction can either restart from the be-
ginning and re-execute in its entirety, or, in case some of
the operations it executed are still valid, restart from an in-
termediary location in the code and re-execute only the in-
validated portions of the transaction. Even though the first
approach (named flat nesting) is straightforward to imple-
ment and seems appropriate for short transactions, the sec-

1 2013/5/6

ond approach is particularity valuable when the transaction
execution time is not negligible, like in DTM. Potential gains
include transaction response time and throughput, but they
have to exceed any overheads introduced by the mechanism
used to implement the partial rollback.

In this paper we focus on the two methods previously
proposed for supporting partial rollback, closed-nested sub-
transactions and checkpoints, in the context of DTM. Our
aim is to determine which of the two performs better and
under what conditions. This question was previously asked
for multiprocessor STM [11], and an extension to DTM is
only natural.

Closed nesting allows treating transactions as containers
for inner transactions. While sub-transactions are executing,
they can abort independently from their parent transactions,
thereby potentially reducing the scope of rollbacks. When a
sub-transaction commits, its state is merged into the state of
its parent. If a conflict is detected after the sub-transaction
commits, the parent will be aborted as well. In closed nest-
ing, the scope of a rollback can only be chosen among en-
closing transaction boundaries when the conflict is detected.

The second mechanism, checkpointing, does not require
the sub-transaction construct for delimiting partial rollback
scopes. Instead, special calls for saving the transaction ex-
ecution state are used throughout the transaction, either
explicitly (manual checkpointing) or implicitly (automatic
checkpointing, when the checkpoint is taken alongside other
transactional operations already present in the code). Check-
points can be seen as a generalization of closed nesting:
transactions can be rolled back to any previous checkpoint
in order to resolve conflicts.

The granularity of checkpointing is configurable. At one
end of the spectrum, a checkpoint is taken before every
operation that can generate a conflict. If a conflict does arise,
the transaction can be restarted from the exact operation that
will resolve the conflict. This is optimal in the sense that no
unnecessary operations need to be re-executed. The problem
with this approach is that taking checkpoints is an expensive
operation in itself. Thus, taking too many checkpoints can
turn into a significant overhead. Conversely, reducing the
number of checkpoints will reduce overheads, but increases
the amount of valid work that needs to be retried in case
of a conflict. At the opposite end of the spectrum, the only
checkpoint ever taken is at the beginning of the transaction,
leading to a behavior identical to flat-nesting, albeit using a
different mechanism for implementing it.

Our paper focuses on this trade-off. The main goal is to
highlight the settings in which the checkpointing approach
outperforms closed nesting and vice-versa, and how both of
them compare to flat-nesting.

We start from an existing DTM protocol, the Transac-
tional Forwarding Algorithm (TFA) [21], and extend it to
support closed nesting and transactional checkpointing. We

name the resulting protocols N-TFA (Nested TFA1) and
TFA-CP (TFA with Checkpoints). TFA was chosen as a
starting point because it provides a strong consistency guar-
antee, opacity. Strong consistency makes it easy for pro-
grammers to reason about concurrency in their application.

We implement all the mechanisms for supporting partial
rollback within HyFlow2 [24], a high-performance, open-
source DTM framework for the JVM, written in Scala.
Hyflow2’s design is modular and allows for pluggable sup-
port for lookup protocols, transactional synchronization and
recovery mechanisms, and contention management policies.

Supported by an extensive evaluation study using a set of
six micro-benchmarks and one macro-benchmark, we deter-
mine that, when applicable, closed nesting consistently out-
performs flat nesting, but the average improvement is low at
only 3%. On the other hand, checkpointing incurred signif-
icant overheads and suffered from repeated aborts, leading
to an average performance degradation of 17-18%. Despite
that, we identified specific conditions where checkpointing
takes the lead: high-contention workloads where the aborts
are concentrated around the middle of the transaction.

Our complete implementation is publicly available at
http://www.hyflow.org/hyflow/wiki/Hyflow2 .

The rest of the paper is organized as follow: the Section 2
describes TFA and transaction nesting, which represent the
background for this work. Section 3 overviews related work.
In Section 4 we introduce N-TFA and TFA-CP, our exten-
sions to TFA with support for closed nesting and checkpoint-
ing. Section 5 discusses implementation details, focusing on
continuations, the mechanism needed to implement check-
points. In Section 6 we evaluate our implementation. Finally,
Sections 7 and 8 recommend future work, and respectively,
conclude the paper.

2. Background
In this section we provide a brief introduction to TFA, the
base protocol we extend in this paper. We then proceed to
describe the different transaction nesting models and trans-
action checkpointing.

2.1 TFA Protocol
Transactional Forwarding Algorithm (TFA) [21] is a lock-
based DTM algorithm with lazy lock acquisition and buffered
writes. All read objects are stored in a local read-set, so all
reads can later be revalidated. Written objects are also stored
in a local write-set.

TFA uses a variant of the Lamport clocks mechanism [12]
to establish “happens before” relationships across nodes.
Each distributed node has a local clock lc and atomically in-
crements its local clock on the commit of every transaction

1 Preliminary results on N-TFA were presented by the authors in the
TRANSACT 2012 workshop. TRANSACT does not publish archival pro-
ceedings to facilitate resubmission to more formal venues. The implementa-
tion and experimental analysis have been completely re-done for this paper.

2 2013/5/6

that changes the shared state (write transactions). All mes-
sages sent between nodes piggyback the local clock value of
the sender node. Upon receiving such a message, each node
compares the remote clock value included in the message
with its own local clock. If the remote value is greater, the
local clock is updated to this greater value. Otherwise, the
remote clock value is ignored.

TFA guarantees the safety property called opacity [8].
Under opacity, a transaction will never observe an inconsis-
tent snapshot of the data. This applies not only to successful
transactions (as in serializability), but also to failed attempts,
in order to avoid potentially unrecoverable situations such as
infinite loops [8]. Opacity is ensured by checking for con-
flicts every time a new object is accessed, using a process
called Transactional Forwarding.

Each transaction records the local clock value lc at the
time it starts (i.e., starting clock, sc). Then, when it commu-
nicates with remote nodes (for the purpose of accessing new
objects), it compares the clock value of the remote node (rc)
to its own start clock (sc). If rc > sc, the transaction under-
goes a Transactional Forwarding procedure: it validates its
read-set, and, should that be successful, updates its starting
time to sc = rc. If the validation fails the transaction aborts.
Validation is performed by comparing the object’s latest ver-
sion with the current transaction’s start clock.

2.2 Nested Transactions and Checkpointing
Transactions are nested when they appear within another
transaction’s boundary. Transaction nesting makes code
composability easy: multiple operations inside a transaction
will be executed atomically, regardless of whether the said
operations contain transactions or not, and without break-
ing encapsulation. This is an important advantage of trans-
actional memory when compared to traditional lock-based
synchronization.

Three transactional nesting models were proposed in the
literature: Flat, Closed [15, 16, 18] and Open [6, 17–19, 27].

Flat nesting is the simplest form of nesting, which sim-
ply ignores the existence of transactions in inner code. All
operations are executed in the context of the parent transac-
tion. Aborting any inner-transaction causes the parent trans-
action to abort. Thus, no partial rollback can be performed
with this model. Clearly, flat nesting does not provide any
performance improvement over non-nested transactions.

Closed nesting allows inner transactions to abort indi-
vidually. Aborting an inner-transaction does not necessar-
ily lead to also aborting the parent transaction (i.e., par-
tial rollback is possible). However, inner-transactions’ com-
mits are not visible outside the parent transaction. An inner-
transaction commits its changes only into the private context
of its parent transaction, without exposing any intermediate
results to other transactions. Only when the parent transac-
tion commits is the shared state modified.

Open nesting considers the operations performed by sub-
transactions at a higher level of abstraction, in an attempt to

avoid false conflicts occurring at the memory level. It allows
inner transactions to commit or abort individually, and their
commits are globally visible immediately. In case an enclos-
ing transaction aborts, due to any fundamental conflicts (i.e.,
not false) at the higher levels of abstraction, all the inner
transactions are roll-backed by using compensating actions,
which are predefined for each abstract operation.

Transactional Memory systems with support for nested
transactions usually employ exceptions to manage the con-
trol flow after an abort. Exceptions allow passing execu-
tion to a handler associated with the enclosing transaction,
and can thus be used to rollback to the boundary of any
such ancestor transaction. This behavior closely matches the
closed nesting model. However, once a sub-transaction com-
mits, it becomes unavailable as a rollback destination. This
model is disadvantageous for workloads that have many sub-
transactions nested at the same level, because it increases the
amount of potentially valid work that needs to be aborted and
uselessly re-executed in case of a conflict.

Checkpointing [10, 11] addresses this issue by allow-
ing execution to return to any previously saved state (check-
point) within the current transaction, regardless of whether
the sub-transaction encompassing that checkpoint is still ac-
tive or not. This allows developing a very fine grained partial
rollback mechanism, which can identify the exact operation
to rollback execution to, in order to resolve the current con-
flict. On abort, a checkpoint that can resolve the conflict is
located and activated, effectively reverting transaction exe-
cution to the state it had at the time the checkpoint was origi-
nally taken. The program control flow is managed by saving
and restoring the thread’s execution state (i.e., CPU regis-
ters and activation stack) and employs a mechanism called
continuations [5]. By themselves, continuations do not af-
fect program data (i.e., the heap).

3. Related Work
Nested transactions (using closed nesting) originated in the
database community [3, 4] and were thoroughly described
by Moss in [16]. His work focused on the popular two-phase
commit protocol and extended it to support nesting. In addi-
tion to that, he also proposed algorithms for distributed trans-
action management, object state restoration, and distributed
deadlock detection.

One of the early works introducing nesting to Transac-
tional Memory was done by Moss and Hosking in [18]. They
describe the semantics of transactional operations in terms of
system states, which are tuples that group together a transac-
tion ID, a memory location, a read/write flag, and the value
read or written. They also provide sketches for several pos-
sible Hardware Transactional Memory (HTM) implementa-
tions, which work by extending existing cache coherence
protocols. Moss further focuses on open-nested transactions
in [17], explaining how using multiple levels of abstractions

3 2013/5/6

can help differentiate between fundamental and false con-
flicts and thus improve concurrency.

Moravan et al. [15] implement closed and open nesting
in their previously proposed LogTM HTM. They implement
the nesting models by maintaining a stack of log frames,
similar to the run-time activation stack, with one frame for
each nesting level. Hardware support is limited to four nest-
ing levels, with any excess nested transactions flattened into
the inner-most sub-transaction.

Agrawal et al. combine closed and open nesting by intro-
ducing the concept of transaction ownership [2]. They pro-
pose the separation of TM systems into transactional mod-
ules (or Xmodules), which own data. Thus, a sub-transaction
would commit data owned by its own Xmodule directly
to memory using an open-nested model. However, for data
owned by foreign Xmodules, it would employ the closed
nesting model and would not directly write to the memory.

Checkpoints were first introduced in the context of database
recovery [3, 9]. Here, the focus is on optimizing access to
the stable storage, in order to reduce the overhead in sav-
ing and restoring states saved on disk, while enabling reli-
able recovery in case of failures. An overview on the use of
checkpointing in distributed databases is available in [13].
For implementing partial rollback, databases use the notion
of savepoints [7]. While savepoints have been previously
studied in the database context [22], our work is focused on
an environment with different characteristics, namely main-
memory distributed transactions, executing without sand-
boxing, and destined to be integrated within a general pur-
pose programming language.

Koskinen and Herlihy introduced checkpoints to the
(centralized) transactional memory community in [11], and
present it as an alternative to closed nesting due to its fine-
grained conflict resolution capabilities. They implemented a
checkpoint-based STM algorithm in C. Saving and restor-
ing the execution state of the program was done using the
getcontext/setcontext function family, while responsibility
for backing up data (local variables) fell on the programmer.
They evaluated the overhead of checkpointing and showed
that performance gains of up to 100% are feasible. Their
evaluation however is brief and targets a system where trans-
actions are prioritized, which is not the general case.

Dhoke et al. in [1] conducted a comparison between
closed nesting and checkpointing in a fault-tolerant DTM
based on a Quorum protocol. The authors assess that ex-
ploiting closed-nested transactions to implement partial roll-
back leads to better performance. The Quorum-based pro-
tocol is intrinsically costly in terms of synchronization time
among replicas, and employs incremental validation of the
read-set at every read operation. In this scenario, checkpoint-
ing suffers from continuous abort and restore, nullifying the
gain of partial rollback. Our work differs as it targets non-
fault-tolerant DTM, where all operations are faster because
they do not need to consider replication, thus being a previ-

ously unexplored data-point. Moreover, our analysis is more
in-depth and manages to identify conditions favorable for
checkpointing.

4. Proposed Algorithms
4.1 System Model
Let O = {O1,O2,...} be the set of objects accessed using
transactions. Every such object Oj has an unique identifier,
idj . For simplicity, we treat them as shared registers which
are accessed solely through read and write methods, but
such treatment does not preclude generality. Each object has
an owner node, denoted by owner(Oj). Additionally, they
may have cached copies at other nodes and they can change
owners. A change in ownership occurs upon the successful
commit of a transaction which modified the object.

Let T = {T1, T2, ...} be the set of all transactions. Each
transaction has an unique identifier. A transaction contains
a sequence of operations, each of which is a read or write
operation on an object on O. An execution of a transaction
ends by either a commit (success) or an abort (failure). Thus,
transactions have three possible states: active, committed,
and aborted. Any aborted transaction is later retried using
a new identifier.

Our nesting model is based on Moss and Hosking [18].
With transactional nesting, let parent(Tk) denote the par-
ent (enclosing) transaction of a transaction Tk. A root
transaction has parent(Tk) = ∅. Sub-transactions are ex-
ecuted using either the flat or closed nesting models. For
closed nesting, a read operation on an object Ok first looks
at the current transaction’s (Tk) read and write-sets. If a
value is found, it is immediately returned. Otherwise, the
read is attempted again from the context of parent(Tk).
Read operations are thus recursive, going up Tk’s ancestor
chain until a value is found. Write operations simply store
the newly written value to the current transaction’s write-
set. The commit of a closed-nested transaction Tk merges
readset(Tk) into readset(parent(Tk)) and writeset(Tk)
into writeset(parent(Tk)).

4.2 TFA with Closed Nesting (N-TFA)
In TFA, transactions are immobile. Furthermore, all sub-
transactions of a transaction Tk are created and executed
on the same node as Tk. We name the commit operation
as present in TFA the top-level commit model. This is used
when a top-level transaction commits the changes from its
replay-log to the globally committed memory. This commit
is only performed after the successful validation of all ob-
jects in the transaction’s read-set, as defined by the TFA al-
gorithm. If the validation fails, i.e. at least one of the objects’
version is newer than the current transaction’s starting time,
the transaction is aborted.

We further define a second type of commit, the merge
commit model. This is used when a sub-transaction commits
the changes from its replay-log to the replay-log of its parent.

4 2013/5/6

Besides using the merge commit model, a TFA extension
with support for closed nesting needs to address three issues:
timestamps, object versioning and early validation.

To address all these issues we design a protocol called
Nested Transactional Forwarding Algorithm (N-TFA).

N-TFA merge commits do not change object versions.
Assume that transaction Tk opened and read an object O1.
Let Tk2 be a sub-transaction of Tk. Assume that Tk2 also
reads object O1, and moreover, Tk2 can successfully commit
(O1 was not modified by any other transaction). Intuitively,
Tk2 should not update the object’s lock version when it com-
mits, because, the object as seen by other transactions did not
change. If the version was updated at this point, other un-
related transactions would be forced to unnecessarily abort
due to invalid read-set even if Tk eventually aborts (due to
other objects) without changing O1 in the globally commit-
ted memory.

All objects are validated against the outer-most transac-
tion’s starting time. While we could imagine an algorithm
where sub-transaction’s start times were used to validate ob-
jects, doing so would only add unnecessary complexity and
would again provide no real benefit. Therefore, all transac-
tion forwarding operations must be operated upon the start-
ing time of the root transaction. This also implies that early
validation operations (i.e., checking the consistency of ob-
jects in a transaction’s read-set before advancing the transac-
tion’s starting time) must consider not only the current sub-
transaction’s read-set, but also all the objects in the read-sets
of all the sub-transaction’s ancestors.

Summarizing the previous observations, the starting time
of sub-transactions is not used for object validity verifica-
tion and the object versions are not updated upon a sub-
transaction’s commit. Consequently, merge-commits and
the start of new sub-transactions are not globally important
events and should not be recorded by incrementing node-
local clocks. If the clocks were incremented on such events,
remote nodes would need to perform the transaction for-
warding operation unnecessarily, only to find that no objects
were changed. This is undesirable as the forwarding opera-
tion bears the overhead of validating all objects in a trans-
action’s read-set. Additionally, since no global objects are
changed at merge-commits, no locks need to be acquired for
such commits.

In case one or more objects are detected as invalid, the
upper-most transaction that contains an invalid object and
all of its children should be aborted. In the original TFA,
it was sufficient to stop the validation procedure when the
first invalid object is observed. However, with N-TFA, all
objects within the root transaction must be validated in order
to determine the best point to rollback to.

An example of N-TFA is shown in Figure 1. The top-level
transaction Tk is executing on node N1. A sub-transaction
Tk1 executes and commits successfully. Next, another sub-
transaction Tk2 opens an object O1, which is located on

N1
executing
txn Tk

N2
O1 is updated
before Tk2 begins

Tk2 requests O1 Tk3 operates on O1,
which is cached locally

Sub-txn Tk1
does some work
and commits

x

O1 is updated again
after being sent to Tk

Sub-txn Tk2

Sub-txn Tk3 nested
inside Tk2

o

An op. by Tk2 triggers
O1 early validation

O1 validation fails

Tk2 and Tk3
are aborted, and

execution is rolled back
to the start of Tk2, which executes again.

Figure 1. N-TFA Example

node N2. Tk2 spawns a further sub-transaction, Tk3 which
operates on O1. Assume that at this point sub-transaction
Tk3 performs an operation that triggers an early validation,
and O1 is observed to be invalid. Under TFA, this would
abort the root transaction Tk, including the work done by
sub-transaction Tk1. N-TFA on the other hand only aborts as
many sub-transactions as needed to resolve the conflict. In
this case, only Tk2 and Tk3 need to abort. The transaction
will be rolled-back to the beginning of Tk2, such that the
next operation performed is retrieving a new copy of the
previously invalid object, O1.

N-TFA maintains the properties of the original TFA, in
particular, opacity and strong progressiveness. Sketches of
the proofs are available in [23].

4.3 TFA with Checkpoints (TFA-CP)
We designed and implemented TFA-CP, an extension of the
TFA algorithm with support for transactional checkpoints.

Figures 2 and 3 show the key operations of TFA-CP.
Of interest is the startCheckpointedExec routine which acts
as an event-loop: it repeatedly passes execution to a user-
supplied block of code, which is to be executed transac-
tionally. The user-code, during its execution, calls DTM li-
brary functions, which are potential checkpoint locations.
The system may use any of these calls to trigger recording
a checkpoint. When it does, execution is passed back to the
event-loop thus creating a new continuation. This continu-
ation is stored alongside the current read and write-sets as
the new checkpoint within the context of the current trans-
action. Finally, the execution is passed back to the user-code
by resuming the previously created continuation. Except for
recording a checkpoint as described above, there are two
other occasions when execution is passed from the user-code
to the event-loop: on transaction completion and on the de-
tection of a conflict. In the first case, the event-loop is tasked
to commence the commit operation, and upon success, the
loop is terminated. In the second case, and also if the com-
mit fails, the system determines which checkpoint should
the transaction be reverted to, in order to resolve the con-
flict while aborting a minimal amount of work. The appro-

5 2013/5/6

c l a s s HaiTxnLevel (v a l p a r L e v e l : HaiTxnLevel , c o n t : C o n t i n u a t i o n)
{ / / . . . }
c l a s s HaiInTxn ex tends InTxn {

/ / Wrapper f o r t h e t r a n s a c t i o n .
/ / Needs t o be a Runnable t o be s t a r t e d as a c o n t i n u a t i o n .
c l a s s HaiRunCkpt [Z] (b l o c k : InTxn => Z) ex tends Runnable {

d e f run () {
/ / E x e c u t e b l o c k
v a l r e s = b l o c k (HaiInTxn . t h i s)
/ / End t r a n s a c t i o n , r e t u r n from c o n t i n u a t i o n t o commit .
C h e c k p o i n t S t a t u s . s e t (C h e c k p o i n t S u c c e s s (r e s))
C o n t i n u a t i o n . suspend ()

} }

/ / Main e n t r y p o i n t f o r t r a n s a c t i o n . Takes a f u n c t i o n (b l o c k)
/ / as an argument . R e t u r n s t h e v a l u e r e t u r n e d by a s u c c e s s f u l
/ / t r a n s a c t i o n a l e x e c u t i o n o f t h e g i v e n f u n c t i o n .
d e f s t a r t C h e c k p o i n t e d E x e c [Z] (b l o c k : InTxn => Z) : Z = {

/ / T h i s var s t o r e s t h e l i s t o f c h e c k p o i n t s .
v a r l e v e l = new HaiTxnLevel (nul l , n u l l)

/ / S t a r t e x e c u t i n g t h e t r a n s a c t i o n
v a r c o n t = C o n t i n u a t i o n . s t a r t W i t h (new HaiRunCkpt (b l o c k))
/ / Here we r e t u r n e d from t h e f i r s t c o n t i n u a t i o n

whi le (t rue) {
/ / Why d i d t h e c o n t i n u a t i o n r e t u r n ?
C h e c k p o i n t S t a t u s . g e t match {

case r e s : C h e c k p o i n t I n t e r i m =>
/ / T r a n s a c t i o n r e q u e s t s a new c h e c k p o i n t , s t o r e i t .
l e v e l = new HaiTxnLevel (l e v e l , c o n t)
l e v e l . mergeFrom (l e v e l . p a r L e v e l)
/ / C o n t i n ue
c o n t = C o n t i n u a t i o n . c o n t i n u e W i t h (c o n t)

case r e s : C h e c k p o i n t F a i l u r e =>
/ / C o n f l i c t d e t e c t e d . T r a n s a c t i o n r e q u e s t s r o l l b a c k .
v a l r e s t a r t R e s = r e s t a r t A t I n v a l i d L e v e l (b l o c k)
l e v e l = r e s t a r t R e s . 1
c o n t = r e s t a r t R e s . 2

case r e s : C h e c k p o i n t S u c c e s s =>
/ / T h i s t r a n s a c t i o n i s over , a t t e m p t commit .
i f (t ryCommit ()) {

/ / S u c c e s s
re turn r e s . r e s u l t . a s I n s t a n c e O f [Z]

} e l s e {
/ / Commit f a i l e d , r o l l b a c k t o a p p r o p r i a t e c h e c k p o i n t .
v a l r e s t a r t R e s = r e s t a r t A t I n v a l i d L e v e l (b l o c k)
l e v e l = r e s t a r t R e s . 1
c o n t = r e s t a r t R e s . 2

} } } }

Figure 2. Pseudo-code for TFA-CP.

priate continuation is then resumed, passing control back to
the user-code.

TFA-CP currently stores checkpoints before object re-
trieval operations. The granularity of checkpointing can be
configured using two distinct ways, either by specifying
the probability P that each object retrieval would record a
checkpoint, or specifying that a checkpoint will be taken
every E object opens. Clearly P = 100 and E = 1 both
characterize the finest grained strategy, which always allows
resuming execution at the exact operation that would resolve
the current conflict. P < 100% (or E > 1) can be used to
reduce the total number of checkpoints recorded and thus,
any overhead associated with capturing continuations.

In order to avoid superfluous checkpoints, the first object
opened in a transaction never triggers a checkpoint. Also ex-
empt are object re-opens, when the current transaction al-
ready has a cached copy of the requested object. Check-

/ / R o l l s back t r a n s a c t i o n
d e f r e s t a r t A t I n v a l i d L e v e l [Z] (b l o c k : InTxn => Z) :

Tuple2 [HaiTxnLevel , C o n t i n u a t i o n] = {
/ / Find o u t how f a r back we need t o a b o r t
v a r l e v e l = c u r r e n t L e v e l . r o o t
whi le (l e v e l . s t a t u s == Txn . A c t i v e

&& l e v e l . a c t i v e C h i l d != n u l l) {
l e v e l = l e v e l . a c t i v e C h i l d

}
/ / Resume e x e c u t i o n a t t h a t c h e c k p o i n t
v a r c o n t = l e v e l . c o n t
l e v e l = new HaiTxnLevel (l e v e l . pa rLeve l , c o n t)
i f (l e v e l . p a r L e v e l != n u l l) {

l e v e l . mergeFrom (l e v e l . p a r L e v e l)
}
i f (c o n t != n u l l) {

/ / I f we have a c o n t i n u a t i o n , resume t h e r e
c o n t = C o n t i n u a t i o n . c o n t i n u e W i t h (c o n t)

} e l s e {
/ / O therwise , re−s t a r t a t t h e b e g i n n i n g
c o n t = C o n t i n u a t i o n . s t a r t W i t h (new HaiRunCkpt (b l o c k))

}
re turn (l e v e l , c o n t)

}

/ / Per forms t r a n s a c t i o n a l f o r w a r d i n g
d e f f o r w a r d (r c l k : Long) {

i f (r c l k > c u r r e n t L e v e l . r o o t . s t a r t T i m e) {
/ / Check f o r read−s e t v a l i d i t y
i f (r s V a l i d a t e) {

/ / V a l i d read−s e t , upd a t e Txn s t a r t t i m e
c u r r e n t L e v e l . r o o t . s t a r t T i m e = r c l k

} e l s e {
/ / I n v a l i d read−s e t , a b o r t
/ / S i n c e we a b o r t t o t h e l a s t v a l i d l e v e l ,
/ / i t i s OK t o up da t e s t a r t i n g t i m e
c u r r e n t L e v e l . r o o t . s t a r t T i m e = r c l k

C h e c k p o i n t S t a t u s . s e t (C h e c k p o i n t F a i l u r e ())
C o n t i n u a t i o n . suspend ()

} } } }

/ / C h e c k p o i n t i n g−e n a b l e d d i r e c t o r y manager
c l a s s C p D i r e c t o r y ex tends D i r e c t o r y {

o v e r r i d e d e f open [T] (i d : S t r i n g) : T = {
/ / Record c h e c k p o i n t c h e c k p o i n t
C h e c k p o i n t S t a t u s . s e t (C h e c k p o i n t I n t e r i m ())
C o n t i n u a t i o n . suspend ()
/ / C o n t i n u a t i o n r e t u r n e d , open as u s u a l
re turn super . open (i d)

} }

Figure 3. Pseudo-code for TFA-CP. (continued)

points are stored in a doubly-linked list, with new check-
points inserted at the head of the list. Each checkpoint stores
the complete read and write-sets of the current transaction
at the time the checkpoint is taken. This makes read opera-
tions fast (they do not have to traverse the list), at the cost of
increased memory consumption.

5. Implementation
N-TFA and TFA-CP were implemented in our high-performance
DTM framework for the JVM, Hyflow2 [24]. Hyflow2 is
written in Scala. Its architecture is modular, and the imple-
mentation makes use of the actor model extensively. Actors
are a concurrency abstraction that encapsulate private data,
and communicate externally solely through message pass-
ing. The actor library used under the covers is Akka [26],
which in turn relies on the Netty asynchronous network li-

6 2013/5/6

brary to provide communication with remote actors in a
completely network-transparent manner.

Unfortunately, standard JVMs do not provide any sup-
port for continuations. To exploit continuations in Java, one
would have to either use a non-standard JVM (e.g., Avian
JVM, DaVinci JVM with the continuation patch) or employ a
byte-code rewriting library (e.g., JavaFlow, LightWolf). We
experimented with the DaVinci JVM and with the JavaFlow
library. The former is faster, because continuations are im-
plemented in native code. It requires the users to run a non-
standard JVM, which unfortunately is not easily available
and needs to be compiled from older source code with sev-
eral patches applied.

The latter choice, JavaFlow, is able to run on stock JVM,
but is slower because it implements the continuation mech-
anism in Java code. JavaFlow stores all local variables in a
per-thread stack structure which replaces and emulates the
regular call stack. This replacement stack is under the con-
trol of the library: it is backed-up when suspending a contin-
uation and later restored when resuming it.

Both JavaFlow and DaVinci proved to support resuming
the same continuation multiple times — a feature that is es-
sential for implementing transaction checkpoints. In DaVinci
JVM this functionality is undocumented and required a small
modification to enable. On the other hand, JavaFlow turned
out to be incompatible with many of Scala’s features. At
first we attempted to rewrite our code to work around these
incompatibilities, but the problems were difficult to trace.
Moreover, regular transaction user-code would be severely
restricted and hard to debug. We thus decided DaVinci JVM
was the better platform choice for implementing TFA-CP.

In the early experiments we performed, we noticed it is
very easy to skew the results in favor of one rollback model
or another, simply by using inconsistent random back-off
strategies. Thus, a significant amount of time was spent
debugging the back-off implementation, making sure it is
correct and consistent across rollback models. We used the
same back-off settings for all rollback models. Choosing the
best back-off setting for each model could make the topic of
a separate study in its own.

6. Evaluation
Our implementation was evaluated on a testbed consisting
of up to 24 emulated nodes, communicating over loopback
TCP. Each such node spawns two CPU cores available on a
48-core AMD Opteron machine running at 1.7GHz. We veri-
fied that the behavior under this setup is very similar to using
genuinely distributed nodes connected using Gigabit Ether-
net, as long as the network is not driven to saturation. The
operating system is Ubuntu Linux 10.04, and the OpenJDK
HotSpot version (prerequisite for the continuations patch) is
19.0-b03, a beta release from circa 2010.

We used a set of five micro-benchmarks (Bank, BST,
RBT, Hash-Table and Skip-List), one macro-benchmark

Metric Type Records
Meter Event count, mean rate, per interval rate
Histogram Minimum, maximum, mean, median,

standard deviation, 95%, 99%, 99.9%
Timer Same as a meter for the event’s rate.

Same as a histogram for the event’s duration.

Table 1. Description of recorded metric types.

Transactions by outcome. Timers: non-aborting transactions,
first aborted attempt, subsequent aborted attempts, final
successful attempt.
Checkpoint operations. Timers: saving, resuming.
Contention management. Timers: random back-off.
Histograms: aborted nesting levels or checkpoints, nesting
level or checkpoint aborting to, previous aborts.
Meters: aborts by cause (invalid readset, object locked, etc.)
Front-end operations (as seen by the transaction thread).
Timers: locating an object, retrieving an object
Back-end operations. Timers: locating, retrieving, validating,
updating, locking, unlocking objects.
JVM metrics. Histograms: number of garbage collections,
time taken by GC (for 5s intervals).

Table 2. Recorded metrics by category and type.

(a version of TPC-C adapted for running within the re-
strictions of Hyflow2), and a synthetic counter application
where we could control the location within the transac-
tion likely to generate conflicts. Each node spawns trans-
actions back-to-back using two benchmark threads. For the
micro-benchmarks, each transaction consists of several data-
structure operations. In case of closed nesting, each opera-
tion is executed in its own sub-transaction, all nested directly
under the root transaction. For TPC-C, closed nesting was
not applicable and was omitted.

Each test was allowed to run for 150 seconds in order for
the code to be JIT-compiled before the measurements were
started. Next, throughput and a collection of other metrics2

were measured over an interval of 60 seconds. The metrics
we collected are summarized in Tables 1 and 2. For each
configuration, a number of rollback strategies were investi-
gated. They are (figure legend identifiers in parentheses):
nesting: flat nesting (flat), closed nesting (closed);
fine checkpointing: checkpoint on every object (cp100),
checkpoint on every object but always rollback to the be-
ginning (cp-flat);
coarse checkpointing: every N th object (cp-e3, cp-e7, etc);
zero checkpointing: saves no checkpoints (i.e., no partial
rollback), but use the continuations mechanism to pass exe-
cution out of a transaction in case of an abort (cp-zero);
manual checkpointing (cpman).
The cp-flat strategy was implemented to decouple the effects
of partial rollback from the overheads of checkpointing.

2 Using Coda Hale’s Metrics library: http://metrics.codahale.com/

7 2013/5/6

tpcc skiplist bst rbt bank hashtable ctr
0.6

0.7

0.8

0.9

1.0

1.1

0.
87

0.
67

0.
82 0.

85 0.
87

0.
87

0.
84

0.
63

0.
82 0.

85

0.
93

0.
92

1.
00

0.
95 0.

97 1.
00 1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99 1.
00

1.
00 1.

03

1.
00

1.
05

1.
021.
03

1.
00 1.

04

1.
00

1.
06

1.
00

cp100
cp-flat
cp-e7

flat
cp-zero

cpman
closed

Figure 4. Per-benchmark summary of our results. Plots
throughput relative to flat nesting.

5 10 15 20 25
Nodes

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Re
la

tiv
e

Ov
er

he
ad

t81-sl-flat
t93-sl-closed
t120-sl-cp100

t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 5. Average time taken by non-aborting transactions,
relative to flat nesting, on Skip-List.

Figure 4 presents a summary of our results. Two of our
rollback strategies were on average just slightly faster than
flat nesting: closed nesting by 3% and cp-zero by 1%. As
cp-zero does not enable partial rollback, its benefits are only
due to the continuations mechanism being faster than ex-
ceptions, in the absence of storing any checkpoints. The best
checkpoint strategy in our test was cp-e7 and only 2% slower
than flat nesting. Fine-grained checkpointing strategies, with
or without partial rollback, were 17-18% behind flat.

To better understand these results, we analyze the col-
lected data from three perspectives: overheads incurred by
the mechanisms used to implement the different strategies,
the behavior of the different partial rollback strategies, and
the effects of variables characterizing the workload. Addi-
tional plots are provided in a technical report [25].

6.1 Overheads
For the purpose of this section, we will focus on the Skip-
List benchmark, where checkpointing performed worst. The
other data-structure benchmarks and TPC-C followed simi-
lar trends, but to a lesser extent.

To understand the overheads of each mechanism, we look
at the average time taken by abort-free transactions. Figure 5
shows this metric normalized against flat nesting. We can

Benchmark Saving a Ckpt Restoring a Ckpt
Hash-Table 120-145 us 37-44 us
Skip-List 155-180 us 30-40 us
TPC-C 90-165 us 20-45 us

Table 3. Average durations for Saving and Restoring
Checkpoints under various benchmark configurations.

5 10 15 20 25
Nodes

0.00

0.02

0.04

0.06

0.08

0.10

Re
l C

kp
t T

im
e

t120-sl-cp100
t121-sl-cp-e7
t123-sl-cp-flat

Figure 6. Time spent saving checkpoints relative to the total
transaction time, on Skip-List.

Mean Median Stddev
cp100 960 450 6400
cp-e7 725 475 3600
flat 710 500 3200

Table 4. Duration values in microseconds for the front-end
object get operation, on Skip-List at 24 nodes.

notice that closed nesting and cp-zero are within 2-3% of
flat nesting, cp-e7 within 12%, while cp100 and cp-flat are
60%, and respectively 70% slower. The same trends can also
be observed for the duration of the first execution attempt in
a transaction with aborts.

We compare these slow-downs with the time spent in
checkpoint operations. Table 3 shows typical values for the
duration of checkpoint save and resume operations. We use
this data and compute the fraction of total transaction time
that is spent saving checkpoints. The result is shown in
Figure 6: saving checkpoints (using cp100) takes 3-9% of
the total transaction time. Time spent resuming checkpoints
is negligible. Thus, the time taken by checkpoint operations
accounts for only a small part of the increase in execution
time of each transaction.

To further try and explain this slow-down, we looked at
the time taken by the various operations performed during
transaction execution, such as locating, retrieving and vali-
dating objects. We measured this time from both the trans-
action’s perspective (which is likely sending a request across
the network), and from the back-end worker actor’s perspec-
tive (which services the requests). We noticed the mean du-
ration for the same operation is higher for the fine-grained
checkpointing strategies. The difference is small but notice-

8 2013/5/6

GC runs GC time
cp100 2.60 133 ms
cp-e7 2.20 85 ms
flat 2.37 70 ms

Table 5. Garbage Collector statistics, on Skip-List, at 24
nodes. Reported are the number of collections and time
taken by the collector over a five seconds interval.

5 10 15 20 25
Nodes

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Re
la

tiv
e

Ov
er

he
ad

t81-sl-flat
t93-sl-closed
t120-sl-cp100

t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 7. Average time taken by non-aborting transactions,
relative to flat nesting, on BST.

able on the back-end, but quite significant (25-30%) on the
front-end. Furthermore, the median values do not show such
differences, while standard deviation values are very large
(Table 4). This could be explained if a small fraction of the
operations take significantly more time than the rest.

The issue described above is reminiscent of garbage col-
lection, but we have found no evidence that would support
any claims of causality. While fine-grained checkpointing
does lead to increased garbage collection activity, the col-
lector runs roughly once every 2 seconds and takes no more
than 1.5% of the CPU time (Table 5). The impact on trans-
action throughput would be minimal, and would not lead to
the large standard deviation values observed.

We were not able to pinpoint the cause of this slowdown,
but we suspect it may be specific to the particular implemen-
tation of continuations that DaVinci JVM is using. We were
however able to find a parameter that influences it. Figure 7
shows the effect of the length of a transaction on the slow-
down relative to flat nesting. Thus, a workload comprising
of long transactions which operate on many objects will in-
cur higher overheads compared to workloads consisting of
short transactions. This is indeed the case for the Skip-List
benchmark, where checkpointing performs worst.

6.2 Partial Rollback Effects
In this section we aim to show the effects of partial rollback
on transaction execution, where any benefits originate from,
and what are the limiting factors.

We delimited the three execution stages of transactions
with aborts: the first abort (from the beginning of the trans-
action until the first conflict is detected), subsequent failed

100 101

BST Ops per Transaction

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fa
ile

d
Re

tr
y

Du
ra

tio
n

(r
el

)

t105-bst-flat
t106-bst-closed
t135-bst-cp100
t108-bst-cp-e3

t109-bst-cp-e7
t110-bst-cp-flat
t111-bst-cp-zero

Figure 8. Relative duration of individual failed retries, BST.

100 101 102

BST Ops per Transaction

1.0

1.2

1.4

1.6

1.8

2.0

Re
l T

im
e

in
 F

ai
le

d
Re

tr
ie

s

t105-bst-flat
t106-bst-closed
t135-bst-cp100
t108-bst-cp-e3
t109-bst-cp-e7
t110-bst-cp-flat
t111-bst-cp-zero

Figure 9. Fraction of total time spent in failed retries, rela-
tive to flat nesting, on BST.

retries (in-between two consecutive conflicts), and the final
successful retry (from the last conflict until commit). We
measured the execution rate and duration of each of these
stages, and we can thus examine a breakdown of where the
execution time is spent.

Figure 8 shows how the average duration of a failed
retry generally decreases with more fine-grained partial roll-
back (except for very long transactions, as explained in Sec-
tion 6.1, and low-contention workloads, when rollbacks are
rare). A similar trend occurs for for the final successful retry.
However, when aggregated across all transactions, this trend
is reversed and more fine-grained rollback strategies actually
spend more time in failed retries (Figure 9). This reversal
can be explained by a disproportional increase in the rate of
aborts, as confirmed by our data. The benefits due to shorter
retries can not keep up with the repeating aborts.

6.3 Workload Characteristics
Throughout our experiments we varied a number of work-
load parameters, such as the ratio of read-only transactions,
number of objects available in the system, number of partic-
ipating nodes, and length of a transaction. All these parame-
ters affect contention. When contention is low, effects due to
partial rollback are negligible, and the transaction through-
put depends solely on the overheads of the implementation.

9 2013/5/6

30 40 50 60 70 80 90 100
Conflict Location (% txn len)

0.90

0.95

1.00

1.05

1.10

Re
la

tiv
e

Th
ro

ug
hp

ut

ckpt-hi-long
closed-hi-long
ckpt-med-long
closed-med-long

ckpt-low-long
closed-low-long
ckpt-hi-short
closed-hi-short

ckpt-med-short
closed-med-short
ckpt-low-short
closed-low-short

Figure 10. Enhanced Counter results. Labels given as
rollback model – contention level – transaction length. Note
that contention is very high (72%) even on the low setting.

In all other cases, fine-grained partial rollback led to re-
peated aborts, which with the exception of closed nesting,
canceled any benefits gained by shorter retries.

However, our analysis so far only covered workloads
where aborts lead to relatively large rollbacks, because the
conflicting objects were accessed early in the transaction.
Using our Enhanced Counter benchmark, we tried to explore
situations where a sizable portion at the beginning of the
transaction would be relatively conflict-free. Conflicts would
be significantly more likely in later parts of the transaction,
where checkpointing could perform better thanks to the short
abort and retry cycles. If the partial rollback provides suffi-
cient benefit, it may be able to offset the checkpointing over-
heads. Automatic checkpointing was disabled in an attempt
to reduce overheads, and two manual checkpoints were taken
right before and after the high conflict probability operation.

The results of this experiment are presented in Figure 10.
Checkpointing was able to match the performance of closed
nesting, and to a small extent even exceed it. The maximum
speed-up we observed compared to flat nesting was 10%.
This speed-up occurs for very high contention (in excess of
one abort per commit), for long transactions, when the con-
flicts are concentrated around the middle of the transaction.

7. Discussion and Future Work
Our analysis was shaped by two design choices we made
early in the study: the transactional protocol we based this
work on, and the Java platform with a specific implementa-
tion of continuations and its intrinsic overheads.

We thus found that checkpointing always started with a
5-100% performance degradation. The overheads can be re-
duced towards the lower end of the range by increasing the
granularity of checkpoints. Despite that, as long as conflicts
are either uniformly probable throughout the duration of the
transaction, or concentrated early in the transaction, partial

rollback using checkpointing did not enable sufficient per-
formance gain to offset the overheads.

However, we believe these overheads could be further re-
duced, either by using a better optimized implementation of
continuations in the JVM, or by changing platforms alto-
gether. Lower level languages like C/C++ have the potential
to increase overall performance by eliminating the additional
virtual machine layer and uncertainties like the garbage col-
lector behavior. Moreover, C/C++ provide a lighter-weight
continuations mechanism, the getcontext/setcontext function
family, that only saves and restores the CPU registers, leav-
ing the activation stack under the control of the program.
This approach would incur smaller overheads that are con-
centrated only within the checkpointing operation itself.

A C++ DTM framework containing an implementa-
tion of the algorithms we proposed was already completed
(HyflowCPP [14]). Preliminary results suggest that, in such
an environment, both partial rollback models can signifi-
cantly benefit from the lower overheads of C++. Moreover,
checkpointing is able to consistently outperform closed nest-
ing. We leave a thorough evaluation of N-TFA and TFA-CP
as implemented in HyflowCPP for future work.

The other important factor affecting our analysis is TFA,
our base protocol. TFA applies well for workloads which do
not exhibit data locality, and in high contention situations.
Moreover, the rollback in itself is passive and cheap: there
are no compensating actions to execute. If we would have
used an algorithm with different characteristics, our results
may be different. For example, checkpointing would bring
more benefit if rollbacks are expensive, such as in the case
of undo logging or open nesting.

8. Conclusion
This paper addressed the problem of partial rollback in a
distributed transactional memory system. We extended the
Transactional Forwarding Algorithm with support for closed
nesting and checkpointing, naming the resulting protocols
N-TFA, and respectively, TFA-CP. We then proceeded with
an extensive evaluation study to determine the performance
gains enabled by partial rollback, where these gains originate
from and what are the limiting factors.

Closed nesting, when applicable, turned out to be con-
sistently faster than flat nesting, but the average improve-
ment was small at only 3%. Checkpointing on the other
hand incurred significant implementation overheads that par-
tial rollback was generally unable to overcome. The average
performance degradation we observed was 17-18%. While
we were unable to pinpoint the source of the overheads, we
managed to link them to the length of the transaction as mea-
sured in the number of accessed objects. We further deter-
mined the specific conditions when checkpointing overheads
can be overcome: high-conflict workloads when conflicts are
concentrated around the middle of the transaction.

10 2013/5/6

Acknowledgements
This work is supported in part by US National Science Foun-
dation under grants CNS 0915895, CNS 1116190, CNS
1130180, and CNS 1217385.

A. Bank Plots
Note: plots in appendixes have not been curated and may
contain errors.

101 102 103

Object Pool Size

500

1000

1500

2000

2500

3000

3500

Th
ro

ug
hp

ut
 (t

xn
/s

)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 11. Absolute throughput, in Txn/s.

101 102 103

Object Pool Size

0.80

0.85

0.90

0.95

1.00

1.05
Th

ro
ug

hp
ut

 (n
or

m
 to

 fl
at

)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 12. Througput, normalized to flat.

11 2013/5/6

101 102 103

Object Pool Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ab
or

ts
 p

er
 C

om
m

it
Ra

tio

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 13. Aborts per commit ratio.

101 102 103

Object Pool Size

100000

200000

300000

400000

500000

600000

700000

Co
m

m
its

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 14. Total number of commits.

101 102 103

Object Pool Size

20000

30000

40000

50000

60000

70000

80000

90000

Ab
or

ts

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 15. Total number of aborts.

101 102 103

Object Pool Size

120

140

160

180

200

220

240

260

Fi
rs

t A
bo

rt
 R

at
e

(1
/s

)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 16. First Abort rate.

101 102 103

Object Pool Size

2000

2500

3000

3500

4000

4500

5000

Fi
rs

t A
bo

rt
 T

im
e

(u
s)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 17. First Abort average duration.

101 102 103

Object Pool Size

500

1000

1500

2000

2500

3000

3500

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ra
te

 (1
/s

)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 18. Non-Aborting Transaction rate.

12 2013/5/6

101 102 103

Object Pool Size

2000

2500

3000

3500

4000

4500

5000

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ti
m

e
(u

s)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 19. Non-Aborting Transaction average duration.

101 102 103

Object Pool Size

0

50

100

150

200

250

300

Fa
ile

d
Re

tr
y

Ra
te

 (1
/s

)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 20. Failed Retry rate.

101 102 103

Object Pool Size

10000

20000

30000

40000

50000

60000

70000

80000

Fa
ile

d
Re

tr
y

Ti
m

e
(u

s)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 21. Failed Retry average duration.

101 102 103

Object Pool Size

35000
40000
45000
50000
55000
60000
65000
70000
75000

Su
cc

es
sf

ul
 R

et
ry

 T
im

e
(u

s) t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 22. Successful Retry average duration.

101 102 103

Object Pool Size

2000

3000

4000

5000

6000

7000

8000

9000
Ba

ck
-e

nd
 G

et
 R

at
e

(1
/s

) t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 23. Back-end Get rate.

101 102 103

Object Pool Size

34
36
38
40
42
44
46
48
50
52

Ba
ck

-e
nd

 G
et

 T
im

e
(u

s)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 24. Back-end Get average duration.

13 2013/5/6

101 102 103

Object Pool Size

300

350

400

450

500

550

Fr
on

t-e
nd

 G
et

 T
im

e
(u

s)

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 25. Front-end Get average duration.

101 102 103

Object Pool Size

250

300

350

400

450

500

Ob
se

rv
ed

 M
es

sa
ge

 R
ou

nd
tr

ip t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 26. Observed round-trip latency.

101 102 103

Object Pool Size

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Fa
ilu

re
s

du
e

to
 O

pe
ni

ng
 L

oc
ke

d
Ob

j

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 27. Fraction of aborts due to object locked at open
time.

14 2013/5/6

101 102 103

Object Pool Size

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Fa
ilu

re
s

du
e

to
 In

va
lid

 R
ea

ds
et

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 28. Fraction of aborts due to invalid read-set.

101 102 103

Object Pool Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
Sp

en
t i

n
Fa

ile
d

Re
tr

ie
s t94-bank-flat

t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 29. Fraction of time spent in failed retries.

101 102 103

Object Pool Size

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

Ti
m

e
Sp

en
t i

n
Su

cc
es

sf
ul

 R
et

rie
s

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 30. Fraction of time spent in successful retries.

101 102 103

Object Pool Size

0.015

0.020

0.025

0.030

0.035

0.040

Ti
m

e
Sp

en
t i

n
Fi

rs
t A

bo
rt

s

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 31. Fraction of time spent in first aborts.

101 102 103

Object Pool Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ti

m
e

Sp
en

t i
n

No
n-

Ab
or

tin
g

Tx
ns

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 32. Fraction of time spent in non-aborting transac-
tions.

101 102 103

Object Pool Size

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
Sp

en
t i

n
Ba

ck
of

f

t94-bank-flat
t95-bank-closed
t128-bank-cp100
t129-bank-cp-flat
t130-bank-cp-zero

Figure 33. Fraction of time spent in back-off.

15 2013/5/6

B. BST Plots

0 5 10 15 20 25
Nodes

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (t

xn
/s

)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 34. Absolute throughput, in Txn/s.

0 5 10 15 20 25
Nodes

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Th
ro

ug
hp

ut
 (n

or
m

 to
 fl

at
)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 35. Througput, normalized to flat.

0 5 10 15 20 25
Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ab
or

ts
 p

er
 C

om
m

it
Ra

tio

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 36. Aborts per commit ratio.

0 5 10 15 20 25
Nodes

8000

10000

12000

14000

16000

18000
Co

m
m

its

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 37. Total number of commits.

0 5 10 15 20 25
Nodes

0
5000

10000
15000
20000
25000
30000
35000
40000

Ab
or

ts

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 38. Total number of aborts.

16 2013/5/6

0 5 10 15 20 25
Nodes

10

20

30

40

50

60

70

Fi
rs

t A
bo

rt
 R

at
e

(1
/s

)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 39. First Abort rate.

0 5 10 15 20 25
Nodes

60000
80000

100000
120000
140000
160000
180000
200000
220000
240000

Fi
rs

t A
bo

rt
 T

im
e

(u
s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 40. First Abort average duration.

0 5 10 15 20 25
Nodes

15
20
25
30
35
40
45
50
55

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ra
te

 (1
/s

)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 41. Non-Aborting Transaction rate.

0 5 10 15 20 25
Nodes

50000

100000

150000

200000

250000

300000

350000

400000

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ti
m

e
(u

s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 42. Non-Aborting Transaction average duration.

0 5 10 15 20 25
Nodes

0

20

40

60

80

100

120

140
Fa

ile
d

Re
tr

y
Ra

te
 (1

/s
)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 43. Failed Retry rate.

0 5 10 15 20 25
Nodes

60000
80000

100000
120000
140000
160000
180000
200000
220000

Fa
ile

d
Re

tr
y

Ti
m

e
(u

s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 44. Failed Retry average duration.

17 2013/5/6

0 5 10 15 20 25
Nodes

50000

100000

150000

200000

250000

300000

350000

400000

Su
cc

es
sf

ul
 R

et
ry

 T
im

e
(u

s) t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 45. Successful Retry average duration.

0 5 10 15 20 25
Nodes

2000

4000

6000

8000

10000

12000

14000

16000

Ba
ck

-e
nd

 G
et

 R
at

e
(1

/s
) t81-sl-flat

t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 46. Back-end Get rate.

0 5 10 15 20 25
Nodes

40

50

60

70

80

90

100

110

Ba
ck

-e
nd

 G
et

 T
im

e
(u

s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 47. Back-end Get average duration.

0 5 10 15 20 25
Nodes

300

400

500

600

700

800

900

1000

Fr
on

t-e
nd

 G
et

 T
im

e
(u

s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 48. Front-end Get average duration.

0 5 10 15 20 25
Nodes

200

300

400

500

600

700

800

900

Ob
se

rv
ed

 M
es

sa
ge

 R
ou

nd
tr

ip t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 49. Observed round-trip latency.

0 5 10 15 20 25
Nodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fa
ilu

re
s

du
e

to
 O

pe
ni

ng
 L

oc
ke

d
Ob

j

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 50. Fraction of aborts due to object locked at open
time.

18 2013/5/6

0 5 10 15 20 25
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
s

du
e

to
 In

va
lid

 R
ea

ds
et

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 51. Fraction of aborts due to invalid read-set.

0 5 10 15 20 25
Nodes

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Ti
m

e
Sp

en
t i

n
Fa

ile
d

Re
tr

ie
s t81-sl-flat

t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 52. Fraction of time spent in failed retries.

0 5 10 15 20 25
Nodes

0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

Ti
m

e
Sp

en
t i

n
Su

cc
es

sf
ul

 R
et

rie
s

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 53. Fraction of time spent in successful retries.

0 5 10 15 20 25
Nodes

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Ti
m

e
Sp

en
t i

n
Fi

rs
t A

bo
rt

s

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 54. Fraction of time spent in first aborts.

0 5 10 15 20 25
Nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ti

m
e

Sp
en

t i
n

No
n-

Ab
or

tin
g

Tx
ns

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 55. Fraction of time spent in non-aborting transac-
tions.

0 5 10 15 20 25
Nodes

0.00

0.01

0.02

0.03

0.04

0.05

Ti
m

e
Sp

en
t i

n
Ba

ck
of

f

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 56. Fraction of time spent in back-off.

19 2013/5/6

C. TPCC Plots

4 5 6 7 8 9 10 11 12
Nodes

240

260

280

300

320

340

360

380

Th
ro

ug
hp

ut
 (t

xn
/s

)

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 57. Absolute throughput, in Txn/s.

4 5 6 7 8 9 10 11 12
Nodes

0.85

0.90

0.95

1.00

1.05

1.10

Th
ro

ug
hp

ut
 (n

or
m

 to
 fl

at
) t170-tpcc-flat

t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 58. Througput, normalized to flat.

4 5 6 7 8 9 10 11 12
Nodes

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Ab
or

ts
 p

er
 C

om
m

it
Ra

tio

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 59. Aborts per commit ratio.

4 5 6 7 8 9 10 11 12
Nodes

265000
270000
275000
280000
285000
290000
295000
300000
305000
310000

Co
m

m
its

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 60. Total number of commits.

4 5 6 7 8 9 10 11 12
Nodes

15000
20000
25000
30000
35000
40000
45000
50000
55000

Ab
or

ts

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 61. Total number of aborts.

20 2013/5/6

4 5 6 7 8 9 10 11 12
Nodes

40
50
60
70
80
90

100
110
120

Fi
rs

t A
bo

rt
 R

at
e

(r
el

)

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 62. First Abort rate.

4 5 6 7 8 9 10 11 12
Nodes

5000

6000

7000

8000

9000

10000

Fi
rs

t A
bo

rt
 T

im
e

(u
s)

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 63. First Abort average duration.

4 5 6 7 8 9 10 11 12
Nodes

460
480
500
520
540
560
580
600
620
640

No
n-

Ab
or

tin
g

Tx
n

Ra
te

 (r
el

) t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 64. Non-Aborting Transaction rate.

4 5 6 7 8 9 10 11 12
Nodes

4500

5000

5500

6000

6500

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ti
m

e
(u

s)

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 65. Non-Aborting Transaction average duration.

4 5 6 7 8 9 10 11 12
Nodes

20

40

60

80

100

120

140

160
Fa

ile
d

Re
tr

y
Ra

te
 (r

el
)

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 66. Failed Retry rate.

4 5 6 7 8 9 10 11 12
Nodes

60000

65000

70000

75000

80000

Fa
ile

d
Re

tr
y

Ti
m

e
(u

s)

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 67. Failed Retry average duration.

21 2013/5/6

4 5 6 7 8 9 10 11 12
Nodes

63000
64000
65000
66000
67000
68000
69000
70000
71000
72000

Su
cc

es
sf

ul
 R

et
ry

 T
im

e
(u

s)

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 68. Successful Retry average duration.

4 5 6 7 8 9 10 11 12
Nodes

2200
2400
2600
2800
3000
3200
3400
3600
3800
4000

Ba
ck

-e
nd

 G
et

 R
at

e
(1

/s
) t170-tpcc-flat

t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 69. Back-end Get rate.

4 5 6 7 8 9 10 11 12
Nodes

50

55

60

65

70

75

Ba
ck

-e
nd

 G
et

 T
im

e
(u

s)

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 70. Back-end Get average duration.

4 5 6 7 8 9 10 11 12
Nodes

400

450

500

550

600

650

700

750

Fr
on

t-e
nd

 G
et

 T
im

e
(u

s)

t170-tpcc-flat
t171-tpcc-cp100
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 71. Front-end Get average duration.

4 5 6 7 8 9 10 11 12
Nodes

350

400

450

500

550

600

650

Ob
se

rv
ed

 M
es

sa
ge

 R
ou

nd
tr

ip t170-tpcc-flat
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 72. Observed round-trip latency.

4 5 6 7 8 9 10 11 12
Nodes

0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31

Fa
ilu

re
s

du
e

to
 O

pe
ni

ng
 L

oc
ke

d
Ob

j

t170-tpcc-flat
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 73. Fraction of aborts due to object locked at open
time.

22 2013/5/6

4 5 6 7 8 9 10 11 12
Nodes

0.52

0.54

0.56

0.58

0.60

0.62

0.64

Fa
ilu

re
s

du
e

to
 In

va
lid

 R
ea

ds
et

t170-tpcc-flat
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 74. Fraction of aborts due to invalid read-set.

4 5 6 7 8 9 10 11 12
Nodes

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ti
m

e
Sp

en
t i

n
Fa

ile
d

Re
tr

ie
s t170-tpcc-flat

t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 75. Fraction of time spent in failed retries.

4 5 6 7 8 9 10 11 12
Nodes

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Ti
m

e
Sp

en
t i

n
Su

cc
es

sf
ul

 R
et

rie
s

t170-tpcc-flat
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 76. Fraction of time spent in successful retries.

4 5 6 7 8 9 10 11 12
Nodes

0.030

0.032

0.034

0.036

0.038

0.040

0.042

0.044

Ti
m

e
Sp

en
t i

n
Fi

rs
t A

bo
rt

s

t170-tpcc-flat
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 77. Fraction of time spent in first aborts.

4 5 6 7 8 9 10 11 12
Nodes

0.10

0.15

0.20

0.25

0.30

0.35
Ti

m
e

Sp
en

t i
n

No
n-

Ab
or

tin
g

Tx
ns

t170-tpcc-flat
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 78. Fraction of time spent in non-aborting transac-
tions.

4 5 6 7 8 9 10 11 12
Nodes

0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20

Ti
m

e
Sp

en
t i

n
Ba

ck
of

f

t170-tpcc-flat
t172-tpcc-cp-zero
t173-tpcc-cp-flat
t174-tpcc-cp-e3
t175-tpcc-cp-e7

Figure 79. Fraction of time spent in back-off.

23 2013/5/6

D. Hashtable Plots

0 5 10 15 20 25
Nodes

200

250

300

350

400

450

Th
ro

ug
hp

ut
 (t

xn
/s

)

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 80. Absolute throughput, in Txn/s.

0 5 10 15 20 25
Nodes

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

Th
ro

ug
hp

ut
 (n

or
m

 to
 fl

at
) t87-ht-flat

t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 81. Througput, normalized to flat.

0 5 10 15 20 25
Nodes

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Ab
or

ts
 p

er
 C

om
m

it
Ra

tio

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 82. Aborts per commit ratio.

0 5 10 15 20 25
Nodes

30000

40000

50000

60000

70000

80000

90000
Co

m
m

its
t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 83. Total number of commits.

0 5 10 15 20 25
Nodes

0

20000

40000

60000

80000

100000

120000

140000

Ab
or

ts

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 84. Total number of aborts.

24 2013/5/6

0 5 10 15 20 25
Nodes

0

50

100

150

200

250

Fi
rs

t A
bo

rt
 R

at
e

(1
/s

)

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 85. First Abort rate.

0 5 10 15 20 25
Nodes

10000

15000

20000

25000

30000

35000

Fi
rs

t A
bo

rt
 T

im
e

(u
s)

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 86. First Abort average duration.

0 5 10 15 20 25
Nodes

140
150
160
170
180
190
200
210
220

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ra
te

 (1
/s

)

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 87. Non-Aborting Transaction rate.

0 5 10 15 20 25
Nodes

15000

20000

25000

30000

35000

40000

45000

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ti
m

e
(u

s)

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 88. Non-Aborting Transaction average duration.

0 5 10 15 20 25
Nodes

0

100

200

300

400

500
Fa

ile
d

Re
tr

y
Ra

te
 (1

/s
)

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 89. Failed Retry rate.

0 5 10 15 20 25
Nodes

20000

30000

40000

50000

60000

70000

80000

Fa
ile

d
Re

tr
y

Ti
m

e
(u

s)

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 90. Failed Retry average duration.

25 2013/5/6

0 5 10 15 20 25
Nodes

30000

40000

50000

60000

70000

80000

90000

Su
cc

es
sf

ul
 R

et
ry

 T
im

e
(u

s) t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 91. Successful Retry average duration.

0 5 10 15 20 25
Nodes

4000

6000

8000

10000

12000

Ba
ck

-e
nd

 G
et

 R
at

e
(1

/s
) t87-ht-flat

t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 92. Back-end Get rate.

0 5 10 15 20 25
Nodes

35
40
45
50
55
60
65
70
75

Ba
ck

-e
nd

 G
et

 T
im

e
(u

s)

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 93. Back-end Get average duration.

0 5 10 15 20 25
Nodes

400

500

600

700

800

900

1000

Fr
on

t-e
nd

 G
et

 T
im

e
(u

s)

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 94. Front-end Get average duration.

0 5 10 15 20 25
Nodes

300

400

500

600

700

800

900

Ob
se

rv
ed

 M
es

sa
ge

 R
ou

nd
tr

ip t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 95. Observed round-trip latency.

0 5 10 15 20 25
Nodes

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Fa
ilu

re
s

du
e

to
 O

pe
ni

ng
 L

oc
ke

d
Ob

j

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 96. Fraction of aborts due to object locked at open
time.

26 2013/5/6

0 5 10 15 20 25
Nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fa
ilu

re
s

du
e

to
 In

va
lid

 R
ea

ds
et

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 97. Fraction of aborts due to invalid read-set.

0 5 10 15 20 25
Nodes

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Ti
m

e
Sp

en
t i

n
Fa

ile
d

Re
tr

ie
s t87-ht-flat

t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 98. Fraction of time spent in failed retries.

0 5 10 15 20 25
Nodes

0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40

Ti
m

e
Sp

en
t i

n
Su

cc
es

sf
ul

 R
et

rie
s

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 99. Fraction of time spent in successful retries.

0 5 10 15 20 25
Nodes

0.08

0.10

0.12

0.14

0.16

0.18

Ti
m

e
Sp

en
t i

n
Fi

rs
t A

bo
rt

s t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 100. Fraction of time spent in first aborts.

0 5 10 15 20 25
Nodes

0.1

0.2

0.3

0.4

0.5

0.6
Ti

m
e

Sp
en

t i
n

No
n-

Ab
or

tin
g

Tx
ns

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 101. Fraction of time spent in non-aborting transac-
tions.

0 5 10 15 20 25
Nodes

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
Sp

en
t i

n
Ba

ck
of

f

t87-ht-flat
t88-ht-closed
t124-ht-cp100
t125-ht-cp-e7
t126-ht-cp-zero
t127-ht-cp-flat

Figure 102. Fraction of time spent in back-off.

27 2013/5/6

E. Skip-List Plots

0 5 10 15 20 25
Nodes

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (t

xn
/s

)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 103. Absolute throughput, in Txn/s.

0 5 10 15 20 25
Nodes

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Th
ro

ug
hp

ut
 (n

or
m

 to
 fl

at
)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 104. Througput, normalized to flat.

0 5 10 15 20 25
Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ab
or

ts
 p

er
 C

om
m

it
Ra

tio

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 105. Aborts per commit ratio.

0 5 10 15 20 25
Nodes

8000

10000

12000

14000

16000

18000
Co

m
m

its

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 106. Total number of commits.

0 5 10 15 20 25
Nodes

0
5000

10000
15000
20000
25000
30000
35000
40000

Ab
or

ts

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 107. Total number of aborts.

28 2013/5/6

0 5 10 15 20 25
Nodes

10

20

30

40

50

60

70

Fi
rs

t A
bo

rt
 R

at
e

(1
/s

)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 108. First Abort rate.

0 5 10 15 20 25
Nodes

60000
80000

100000
120000
140000
160000
180000
200000
220000
240000

Fi
rs

t A
bo

rt
 T

im
e

(u
s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 109. First Abort average duration.

0 5 10 15 20 25
Nodes

15
20
25
30
35
40
45
50
55

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ra
te

 (1
/s

)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 110. Non-Aborting Transaction rate.

0 5 10 15 20 25
Nodes

50000

100000

150000

200000

250000

300000

350000

400000

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ti
m

e
(u

s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 111. Non-Aborting Transaction average duration.

0 5 10 15 20 25
Nodes

0

20

40

60

80

100

120

140
Fa

ile
d

Re
tr

y
Ra

te
 (1

/s
)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 112. Failed Retry rate.

0 5 10 15 20 25
Nodes

60000
80000

100000
120000
140000
160000
180000
200000
220000

Fa
ile

d
Re

tr
y

Ti
m

e
(u

s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 113. Failed Retry average duration.

29 2013/5/6

0 5 10 15 20 25
Nodes

50000

100000

150000

200000

250000

300000

350000

400000

Su
cc

es
sf

ul
 R

et
ry

 T
im

e
(u

s) t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 114. Successful Retry average duration.

0 5 10 15 20 25
Nodes

2000

4000

6000

8000

10000

12000

14000

16000

Ba
ck

-e
nd

 G
et

 R
at

e
(1

/s
) t81-sl-flat

t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 115. Back-end Get rate.

0 5 10 15 20 25
Nodes

40

50

60

70

80

90

100

110

Ba
ck

-e
nd

 G
et

 T
im

e
(u

s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 116. Back-end Get average duration.

0 5 10 15 20 25
Nodes

300

400

500

600

700

800

900

1000

Fr
on

t-e
nd

 G
et

 T
im

e
(u

s)

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 117. Front-end Get average duration.

0 5 10 15 20 25
Nodes

200

300

400

500

600

700

800

900

Ob
se

rv
ed

 M
es

sa
ge

 R
ou

nd
tr

ip t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 118. Observed round-trip latency.

0 5 10 15 20 25
Nodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fa
ilu

re
s

du
e

to
 O

pe
ni

ng
 L

oc
ke

d
Ob

j

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 119. Fraction of aborts due to object locked at open
time.

30 2013/5/6

0 5 10 15 20 25
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ilu

re
s

du
e

to
 In

va
lid

 R
ea

ds
et

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 120. Fraction of aborts due to invalid read-set.

0 5 10 15 20 25
Nodes

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Ti
m

e
Sp

en
t i

n
Fa

ile
d

Re
tr

ie
s t81-sl-flat

t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 121. Fraction of time spent in failed retries.

0 5 10 15 20 25
Nodes

0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

Ti
m

e
Sp

en
t i

n
Su

cc
es

sf
ul

 R
et

rie
s

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 122. Fraction of time spent in successful retries.

0 5 10 15 20 25
Nodes

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Ti
m

e
Sp

en
t i

n
Fi

rs
t A

bo
rt

s

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 123. Fraction of time spent in first aborts.

0 5 10 15 20 25
Nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ti

m
e

Sp
en

t i
n

No
n-

Ab
or

tin
g

Tx
ns

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 124. Fraction of time spent in non-aborting transac-
tions.

0 5 10 15 20 25
Nodes

0.00

0.01

0.02

0.03

0.04

0.05

Ti
m

e
Sp

en
t i

n
Ba

ck
of

f

t81-sl-flat
t93-sl-closed
t120-sl-cp100
t121-sl-cp-e7
t122-sl-cp-zero
t123-sl-cp-flat

Figure 125. Fraction of time spent in back-off.

31 2013/5/6

F. RBT Plots

100 101 102

% Write Transactions

200
300
400
500
600
700
800
900

1000

Th
ro

ug
hp

ut
 (t

xn
/s

)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 126. Absolute throughput, in Txn/s.

100 101 102

% Write Transactions

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 (n

or
m

 to
 fl

at
)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 127. Througput, normalized to flat.

100 101 102

% Write Transactions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ab
or

ts
 p

er
 C

om
m

it
Ra

tio

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 128. Aborts per commit ratio.

100 101 102

% Write Transactions

40000
60000
80000

100000
120000
140000
160000
180000
200000
220000

Co
m

m
its

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 129. Total number of commits.

100 101 102

% Write Transactions

0
5000

10000
15000
20000
25000
30000
35000
40000

Ab
or

ts

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 130. Total number of aborts.

32 2013/5/6

100 101 102

% Write Transactions

0

20

40

60

80

100

120

Fi
rs

t A
bo

rt
 R

at
e

(1
/s

)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 131. First Abort rate.

100 101 102

% Write Transactions

40000

60000

80000

100000

120000

140000

Fi
rs

t A
bo

rt
 T

im
e

(u
s)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 132. First Abort average duration.

100 101 102

% Write Transactions

100
200
300
400
500
600
700
800
900

1000

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ra
te

 (1
/s

)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 133. Non-Aborting Transaction rate.

100 101 102

% Write Transactions

40000
60000
80000

100000
120000
140000
160000
180000
200000

No
n-

Ab
or

tin
g

Tr
an

sa
ct

io
n

Ti
m

e
(u

s)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 134. Non-Aborting Transaction average duration.

100 101 102

% Write Transactions

0

10

20

30

40

50

60

70
Fa

ile
d

Re
tr

y
Ra

te
 (1

/s
)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 135. Failed Retry rate.

100 101 102

% Write Transactions

0

20000

40000

60000

80000

100000

120000

140000

Fa
ile

d
Re

tr
y

Ti
m

e
(u

s)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 136. Failed Retry average duration.

33 2013/5/6

100 101 102

% Write Transactions

60000

80000

100000

120000

140000

160000

180000

Su
cc

es
sf

ul
 R

et
ry

 T
im

e
(u

s) t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 137. Successful Retry average duration.

100 101 102

% Write Transactions

6000
8000

10000
12000
14000
16000
18000
20000
22000

Ba
ck

-e
nd

 G
et

 R
at

e
(1

/s
) t112-rbt-flat

t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 138. Back-end Get rate.

100 101 102

% Write Transactions

55

60

65

70

75

80

85

Ba
ck

-e
nd

 G
et

 T
im

e
(u

s)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 139. Back-end Get average duration.

100 101 102

% Write Transactions

650

700

750

800

850

900

950

Fr
on

t-e
nd

 G
et

 T
im

e
(u

s)

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 140. Front-end Get average duration.

100 101 102

% Write Transactions

550

600

650

700

750

800

850

900

Ob
se

rv
ed

 M
es

sa
ge

 R
ou

nd
tr

ip

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 141. Observed round-trip latency.

100 101 102

% Write Transactions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ilu

re
s

du
e

to
 O

pe
ni

ng
 L

oc
ke

d
Ob

j

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 142. Fraction of aborts due to object locked at open
time.

34 2013/5/6

100 101 102

% Write Transactions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Fa
ilu

re
s

du
e

to
 In

va
lid

 R
ea

ds
et

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 143. Fraction of aborts due to invalid read-set.

100 101 102

% Write Transactions

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

Ti
m

e
Sp

en
t i

n
Fa

ile
d

Re
tr

ie
s t112-rbt-flat

t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 144. Fraction of time spent in failed retries.

100 101 102

% Write Transactions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
Sp

en
t i

n
Su

cc
es

sf
ul

 R
et

rie
s

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 145. Fraction of time spent in successful retries.

100 101 102

% Write Transactions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ti
m

e
Sp

en
t i

n
Fi

rs
t A

bo
rt

s t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 146. Fraction of time spent in first aborts.

100 101 102

% Write Transactions

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ti

m
e

Sp
en

t i
n

No
n-

Ab
or

tin
g

Tx
ns

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 147. Fraction of time spent in non-aborting transac-
tions.

100 101 102

% Write Transactions

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Ti
m

e
Sp

en
t i

n
Ba

ck
of

f

t112-rbt-flat
t113-rbt-closed
t114-rbt-cp100
t115-rbt-cp-e3
t116-rbt-cp-e7
t117-rbt-cp-flat
t118-rbt-cp-zero

Figure 148. Fraction of time spent in back-off.

35 2013/5/6

References
[1] B. Z. Aditya Dhoke and B. R. Ravindran. On

closed nesting and checkpointing in replicated dis-
tributed transactional memory. Technical report,
Technical report, Virginia Tech, October 2012. URL
http://www.ssrg.ece.vt.edu/papers/ipdps.pdf.

[2] K. Agrawal, I.-T. A. Lee, and J. Sukha. Safe open-nested
transactions through ownership. In D. A. Reed and V. Sarkar,
editors, PPOPP. ACM, 2009. ISBN 978-1-60558-397-6.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency control and recovery in database systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1987. ISBN 0-201-10715-5.

[4] E. Boertjes, P. W. P. J. Grefen, J. Vonk, and P. M. G.
Apers. An architecture for nested transaction support on
standard database systems. In Proceedings of the 9th In-
ternational Conference on Database and Expert Systems
Applications, DEXA ’98, pages 448–459, London, UK,
UK, 1998. Springer-Verlag. ISBN 3-540-64950-6. URL
http://dl.acm.org/citation.cfm?id=648311.761611.

[5] C. Flanagan, A. Sabry, B. Duba, and M. Felleisen. The
essence of compiling with continuations. In ACM SIGPLAN
Notices, volume 28, pages 237–247. ACM, 1993.

[6] H. Garcia-Molina. Using semantic knowledge for transaction
processing in distributed database. ACM Trans. Database
Syst., 8(2):186–213, 1983.

[7] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lo-
rie, T. Price, F. Putzolu, and I. Traiger. The recov-
ery manager of the system r database manager. ACM
Comput. Surv., 13(2):223–242, June 1981. ISSN
0360-0300. doi: 10.1145/356842.356847. URL
http://doi.acm.org/10.1145/356842.356847.

[8] R. Guerraoui and M. Kapaka. Opacity: A correctness condi-
tion for transactional memory, 2007.

[9] T. Haerder and A. Reuter. Principles of transaction-oriented
database recovery. ACM Comput. Surv., 15(4):287–317, Dec.
1983. ISSN 0360-0300. doi: 10.1145/289.291. URL
http://doi.acm.org/10.1145/289.291.

[10] R. Koo and S. Toueg. Checkpointing and rollback-recovery
for distributed systems. Software Engineering, IEEE Trans-
actions on, SE-13(1):23 – 31, jan. 1987. ISSN 0098-5589.
doi: 10.1109/TSE.1987.232562.

[11] E. Koskinen and M. Herlihy. Checkpoints and continuations
instead of nested transactions. In SPAA, 2008.

[12] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, 1978.

[13] J.-L. Lin and M. H. Dunham. A survey of distributed database
checkpointing. Distrib. Parallel Databases, 5(3):289–319,
July 1997. ISSN 0926-8782. doi: 10.1023/A:1008689312900.
URL http://dx.doi.org/10.1023/A:1008689312900.

[14] S. Mishra. Hyflowcpp: A distributed transactional memory
framework for c++. Master’s thesis, Virginia Tech, 2013.

[15] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D.
Hill, B. Liblit, M. M. Swift, and D. A. Wood. Supporting

nested transactional memory in logtm. In J. P. Shen and
M. Martonosi, editors, ASPLOS, pages 359–370. ACM, 2006.
ISBN 1-59593-451-0.

[16] J. E. B. Moss. Nested transactions: An approach to reliable
distributed computing, 1981.

[17] J. E. B. Moss. Open nested transactions: Semantics and
support (poster). In Workshop on Mem Perf Issues, 2006.

[18] J. E. B. Moss and A. L. Hosking. Nested tm: Model and
architecture sketches. Sci Comp Prog, 63(2):186–201, 2006.

[19] Y. Ni, V. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L.
Hudson, J. E. B. Moss, B. Saha, and T. Shpeisman. Open
nesting in software transactional memory. In PPOPP, 2007.

[20] R. Palmieri, F. Quaglia, P. Romano, and N. Carvalho. Evalu-
ating database-oriented replication schemes in software trans-
actional memory systems. In Proc. of DPDNS, 2010.

[21] M. M. Saad and B. Ravindran. Transactional forwarding
algorithm. Technical report, Virginia Tech, January 2012.

[22] A. Thomasian. Checkpointing for optimistic concurrency
control methods. Knowledge and Data Engineering, IEEE
Transactions on, 7(2):332–339, 1995. ISSN 1041-4347. doi:
10.1109/69.382303.

[23] A. Turcu. On improving distributed transactional memory
through nesting and data partitioning. PhD Thesis Proposal,
November 2012.

[24] A. Turcu and B. Ravindran. Hyflow2: A high perfor-
mance distributed transactional memory framework
in scala. Technical report, Virginia Tech, April 2012.
URL http://hyflow.org/hyflow/chrome/site/pub

/hyflow2-tech.pdf.

[25] A. Turcu, R. Palmieri, and B. Ravindran. Exploring check-
pointing and closed nesting in distributed transactional
memory. Technical report, Virginia Tech, March 2013.
URL http://hyflow.org/hyflow/chrome/site/pub

/ckpt-tech.pdf.

[26] TypeSafe. Akka (toolkit and runtime for building highly con-
current, distributed and fault tolerant event-driven applications
on the jvm), April 2012. URL http://akka.io/.

[27] G. Weikum. Principles and realization strategies of multilevel
transaction management. ACM Trans. Database Syst., 16(1):
132–180, 1991.

36 2013/5/6

