
Transactional Interference-less Balanced Tree

Ahmed Hassan, Roberto Palmieri, Binoy Ravindran

Systems Software Research Group

Virginia Tech

TRANSACT 2015

2

Concurrent Balanced Trees

● Wide spectrum in literature
– Lock-Based

● Traversal: Hand-over-hand-locking, unmonitored, ...

● Balancing: strict, relaxed

– Non-Blocking

● Obstruction-free, lock-free, wait-free...

2

3

An Orthogonal Extension

● Transactional Interference-less Balanced Trees.

4

An Orthogonal Extension

● Transactional Interference-less Balanced Trees.

– Transactional: Functionality (e.g. Stamp).

5

An Orthogonal Extension

● Transactional Interference-less Balanced Trees.

– Transactional: Functionality (e.g. Stamp).

– Interference-less: Performance.

6

Transactional Interference-less Balanced Tree

7

Transactional Interference-less Tree

● Concurrent Trees:

– Atomic operations: e.g., add; remove; contains.

8

Transactional Interference-less Tree

● Concurrent Trees:

– Atomic operations: e.g., add; remove; contains.

● Transactional Trees:

9

Transactional Interference-less Tree

● Concurrent Trees:

– Atomic operations: e.g., add; remove; contains.

● Transactional Trees:

Shared data: Tree

atomicFoo()
{

Tree.add(x);
Tree.add(y);

}

Composability

Shared data: Tree1, Tree2

atomicFoo()
{

Tree1.remove(x);
Tree2.add(x);

}

10

Solutions?

11

Solutions?

Sequential Tree

TM-BEGIN

TM-END

Concurrent Tree

Acquire Semantic Locks

Release Semantic Locks

Transactional Memory Transactional Boosting

12

Solutions?

TM-BEGIN

TM-END

Acquire Semantic Locks

Release Semantic Locks

Transactional Memory Transactional Boosting

Sequential Tree Concurrent Tree

13

Solutions?

Sequential Tree

TM-BEGIN

TM-END

Concurrent Tree

Acquire Semantic Locks

Release Semantic Locks

Transactional Memory Transactional Boosting

General, BUT not optimized.

14

Another Solution:
Optimistic Semantic Synchronization (OSS)

Examples:

– Partitioned Transactions (ParT).

– Consistency Oblivious Programming (COP).

– Optimistic Transactional Boosting (OTB).

15

Two Steps of OSS

● Step 1: Split operation.

16

Two Steps of OSS

● Step 1: Split operation.

Concurrent Operation (add, remove, contains, ...)

17

Two Steps of OSS

● Step 1: Split operation.

Traversal
(long - unmonitored)

Commit
(short - monitored)

Concurrent Operation (add, remove, contains, ...)

18

Two Steps of OSS

● Step 2: Compose phases.

19

Traversal(Op1)

Two Steps of OSS

● Step 2: Compose phases.

Commit(op1)

Traversal(Op2) Commit(op2)

Atomic Block
(Tx)

20

Traversal(Op1)

Two Steps of OSS

● Step 2: Compose phases.

Commit(op1)

Traversal(Op2) Commit(op2)

Atomic Block
(Tx)

Traversal(Op1) Commit(op2)Traversal(Op2) Commit(op1)

Traversal(Tx) Commit(Tx)

21

Low-Level Details

● How to commit (abstract locks, TM, …).

● How to validate.

● How to handle dependent operations in the same transaction.

22

OSS Vs General Approaches

● White-Boxes Vs Black-Boxes

● Optimization Vs Generality.

● Both extend “existing” implementations.

23

The Next Question

● Which concurrent balanced tree design fits OSS?

24

The Next Question

● Which concurrent balanced tree design fits OSS?

Contention-Friendly Tree
Crain, Gramoli, & Raynal'13

25

CF-Tree

10

20

10

20

30

20

30 10

● Example: Insert 30.

26

CF-Tree

10

20

10

20

30

20

30 10

{10, 20} {10, 20, 30} {10, 20, 30}

● Example: Insert 30.

27

CF-Tree

10

20

10

20

30

20

30 10

{10, 20} {10, 20, 30} {10, 20, 30}Semantic Structural

● Example: Insert 30.

28

CF-Tree

10

20

10

20

30

20

30 10

{10, 20} {10, 20, 30} {10, 20, 30}Semantic Structural

● Example: Insert 30.

Application Thread Helper Thread

29

Our Proposal

Transactionalizing CF-Tree using OSS
(TxCF-Tree)

30

TxCF-Tree

10

20

10

20

30

20

30 10

Application Thread Helper Thread

31

TxCF-Tree

10

20

10

20

30

20

30 10

Application Thread Helper Thread

32

TxCF-Tree

10

20

Application Thread

33

TxCF-Tree

10

20

Application Thread

unmonitored
traversal

34

TxCF-Tree

10

20

Application Thread

unmonitored
traversal

Lock &
Validate

35

TxCF-Tree

10

20

30

Application Thread

unmonitored
traversal

Lock &
Validate

Insert

36

TxCF-Tree

10

20

30

Application Thread

unmonitored
traversal

Lock &
Validate

Insert

Commit

Traversal

37

Remove is similar...

20

10

30

10

20(d)

30

10

30

{10, 20, 30} {10, 20} {10, 20}Semantic Structural

Application Thread Helper Thread

38

Remove is similar...

20

10

30

10

20(d)

30

10

30

{10, 20, 30} {10, 20} {10, 20}Semantic Structural

Application Thread Helper Thread

39

Remove is similar...

10

20(d)

30

Application Thread

unmonitored
traversal

Lock &
Validate

Mark as “d”

Commit

Traversal

40

Transactional Interference-less Tree

41

Transactional Interference-less Tree

● How

– Step 1: CF-Tree!!

– Step 2: Always give the highest priority to semantic operations over
structural operations.

42

Transactional Interference-less Tree

● How

– Step 1: CF-Tree!!

– Step 2: Always give the highest priority to semantic operations over
structural operations.

● Why

– In concurrent trees: May be less important!!

– In transactional trees:

● Aborting transactions rolls back all its operations (including the
non-conflicting ones).

● Long transactions are more prone to interfere with the helper thread.

43

Three building blocks

● Structural Locks.

● Structural Invalidation.

● Adaptive Back-off Delay.

44

Structural Locks

45

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

46

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

47

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

T1 observes that “30” is locked
What is the best to do in both cases?

48

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

T1 observes that “30” is locked
What is the best to do in both cases?

Do Nothing Abort

49

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

Solution?

50

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

Structural
Locks

Semantic
Lock

Solution?

Two types of locks

51

Structural Invalidation

52

Structural Invalidation

10

20

30

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent insert(15)

53

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

54

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

T1 observes that the right child of “20” is not NULL
What is the best to do in both cases?

55

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

T1 observes that the right child of “20” is not NULL
What is the best to do in both cases?

Continue
Traversal

Abort

56

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

Solution?

57

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

Solution?

Continue Traversal anyway

58

Adaptive Back-off Delay

● The helper thread repeatedly calls a recursive depth-first
procedure to traverse the entire tree.

59

Adaptive Back-off Delay

● The helper thread repeatedly calls a recursive depth-first
procedure to traverse the entire tree.

● Our Proposal:

– Back-off delay between two iterations.

– Hill-climbing mechanism to increase/decrease the delay.

– Our Metric: number of housekeeping operations in each iteration.

60

Evaluation

AMD 64-cores, 10K, 50% reads, 5 ops/transaction

61

Evaluation

AMD 64-cores, 10K, 32 threads, 50% reads, 5 ops/transaction

62

Other Trees?

● Hand-over-hand locking

– Too much overhead.

● Lock-free

– How to efficiently compose CAS operations.

– Replace it with lock-based + contention manager.

63

Other Trees?

● Hand-over-hand locking

– Too much overhead.

● Lock-free

– How to efficiently compose CAS operations.

– Replace it with lock-based + contention manager.

● “Transactional Acceleration of Concurrent Data structures”
(SPAA'15).

64

Conclusion

● Concurrent Balanced Trees are well-designed and optimized to
reduce the effect of re-balancing

● TxCF-Tree

– Boost the functionality to support the composition of operations

– Reduce the interference of the structural operations (e.g. rotations and
physical deletions.

– Generality Vs Optimization trade-off.

65

Thanks!

Questions?

65

	Slide 1
	Motivation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Thanks!

