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Concurrent Balanced Trees

● Wide spectrum in literature
– Lock-Based

● Traversal: Hand-over-hand-locking, unmonitored, ...

● Balancing: strict, relaxed

– Non-Blocking

● Obstruction-free, lock-free,  wait-free...
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An Orthogonal Extension

● Transactional Interference-less Balanced Trees.
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An Orthogonal Extension

● Transactional Interference-less Balanced Trees.

– Transactional: Functionality (e.g. Stamp).

– Interference-less: Performance.
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Transactional Interference-less Balanced Tree
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Transactional Interference-less Tree

● Concurrent Trees:

– Atomic operations: e.g., add; remove; contains.

● Transactional Trees:

Shared data: Tree

atomicFoo()
{

Tree.add(x);
Tree.add(y);

}

Composability

Shared data: Tree1, Tree2

atomicFoo()
{

Tree1.remove(x);
Tree2.add(x);

}
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Solutions?
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Solutions?

Sequential Tree

TM-BEGIN

TM-END

Concurrent Tree

Acquire Semantic Locks

Release Semantic Locks

Transactional Memory Transactional Boosting

General, BUT not optimized.
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Another Solution: 
Optimistic Semantic Synchronization (OSS)

Examples:

– Partitioned Transactions (ParT).

– Consistency Oblivious Programming (COP).

– Optimistic Transactional Boosting (OTB).
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Two Steps of OSS

● Step 1: Split operation.
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Two Steps of OSS

● Step 1: Split operation.

Traversal 
(long - unmonitored) 

Commit 
(short - monitored) 

Concurrent Operation (add, remove, contains, ...)
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Two Steps of OSS

● Step 2: Compose phases.
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Traversal(Op1)

Two Steps of OSS

● Step 2: Compose phases.

Commit(op1)

Traversal(Op2) Commit(op2)

Atomic Block
(Tx)
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Traversal(Op1)

Two Steps of OSS

● Step 2: Compose phases.

Commit(op1)

Traversal(Op2) Commit(op2)

Atomic Block
(Tx)

Traversal(Op1) Commit(op2)Traversal(Op2) Commit(op1)

Traversal(Tx) Commit(Tx)
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Low-Level Details

● How to commit (abstract locks, TM, … ).

● How to validate.

● How to handle dependent operations in the same transaction.
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OSS Vs General Approaches 

● White-Boxes Vs Black-Boxes

● Optimization Vs Generality.

● Both extend “existing” implementations.
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The Next Question

● Which concurrent balanced tree design fits OSS?
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The Next Question

● Which concurrent balanced tree design fits OSS?

Contention-Friendly Tree
Crain, Gramoli, & Raynal'13
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CF-Tree
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CF-Tree
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● Example: Insert 30.

Application Thread Helper Thread
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Our Proposal

Transactionalizing CF-Tree using OSS
(TxCF-Tree)
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TxCF-Tree
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Remove is similar...
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Remove is similar...

10

20(d)

30

Application Thread

unmonitored 
traversal

Lock &
Validate

Mark as “d”

Commit

Traversal



40

Transactional Interference-less Tree
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Transactional Interference-less Tree

● How

– Step 1: CF-Tree!!

– Step 2: Always give the highest priority to semantic operations over 
structural operations.
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Transactional Interference-less Tree

● How

– Step 1: CF-Tree!!

– Step 2: Always give the highest priority to semantic operations over 
structural operations.

● Why

– In concurrent trees: May be less important!!

– In transactional trees:

● Aborting transactions rolls back all its operations (including the 
non-conflicting ones).

● Long transactions are more prone to interfere with the helper thread.
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Three building blocks

● Structural Locks.

● Structural Invalidation.

● Adaptive Back-off Delay.
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Structural Locks
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Structural Locks
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Structural Locks
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Structural Locks
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● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

T1 observes that “30” is locked
What is the best to do in both cases?

Do Nothing Abort



49

Structural Locks
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Structural Locks

10
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● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

Structural 
Locks

Semantic 
Lock

Solution?

Two types of locks
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Structural Invalidation
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Structural Invalidation

● Transaction T1 wants to insert 15. 

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

T1 observes that the right child of “20” is not NULL
What is the best to do in both cases?
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Structural Invalidation

● Transaction T1 wants to insert 15. 

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

T1 observes that the right child of “20” is not NULL
What is the best to do in both cases?

Continue
Traversal

Abort
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Structural Invalidation

● Transaction T1 wants to insert 15. 

● after traversal and before commit, assume 2 scenarios

A concurrent rotation
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Structural Invalidation

● Transaction T1 wants to insert 15. 

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

Solution?

Continue Traversal anyway
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Adaptive Back-off Delay

● The helper thread repeatedly calls a recursive depth-first 
procedure to traverse the entire tree.
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Adaptive Back-off Delay

● The helper thread repeatedly calls a recursive depth-first 
procedure to traverse the entire tree.

● Our Proposal:

– Back-off delay between two iterations. 

– Hill-climbing mechanism to increase/decrease the delay.

– Our Metric: number of housekeeping operations in each iteration.
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Evaluation

AMD 64-cores, 10K, 50% reads, 5 ops/transaction
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Evaluation

AMD 64-cores, 10K, 32 threads, 50% reads, 5 ops/transaction
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Other Trees?

● Hand-over-hand locking

– Too much overhead.

● Lock-free

– How to efficiently compose CAS operations.

– Replace it with lock-based + contention manager.
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Other Trees?

● Hand-over-hand locking

– Too much overhead.

● Lock-free

– How to efficiently compose CAS operations.

– Replace it with lock-based + contention manager.

● “Transactional Acceleration of Concurrent Data structures” 
(SPAA'15).
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Conclusion

● Concurrent Balanced Trees are well-designed and optimized to 
reduce the effect of re-balancing

● TxCF-Tree

– Boost the functionality to support the composition of operations

– Reduce the interference of the structural operations (e.g. rotations and 
physical deletions.

– Generality Vs Optimization trade-off.
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Thanks!

Questions?
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