
VM-based STM

• Is changing the VM acceptable?
• Benefits

– Direct memory access

– Full control over garbage collector (GC)

– Full control over bytecode instructions behavior

– Can manipulate thread’s header

– HTM compatible

1

ByteSTM

• Implicit transaction

atomic{
 A = B;
 B++;
}

Or:

stm.STM.xBegin();
 A = B;
 B++;
stm.STM.xCommit();

Implicit transaction

Transaction T;
T.begin()
do{
 A.txWrite(B.txRead());
 B.txWrite(B.txRead() + 1);
}while(! T.commit());

Explicit transaction

2

ByteSTM
• No special transactional instructions

– Bytecode instructions have two modes
• Transactional

• Non-transactional

– Two new bytecode instructions only

– One copy of the code

• Works on all data types
– Memory access is monitored at the bytecode

instructions level

• Supports external libraries 3

ByteSTM

• Atomic blocks anywhere in the code
– Saves program state at transaction start

– Restores the saved state when transaction
aborted

– Monitors less objects
int c=10;
c = a + 5;
atomic{
 c = c / 2;
 a = c;
}

@Atomic
void method(int c){
 c = c / 2;
 a = c
}

4

ByteSTM
• Memory model

– Direct memory access
• Faster write back

– Raw memory model
• One code to handle all cases

• Moving GC compatible (Absolute address is not used)
Instance field: Object address + field offset
Static field: Static memory address + field offset
Array element: Array address + element size x element index

Absolut e
address

Data Type Base Object offset Value Size

int Obj1 0 20 4

double Obj1 4 46 4

Object
(reference)

Obj2 0 0
(index)

4

Raw
memory
model

5

Obj1.x

Obj1.y

Obj2.obj

ByteSTM
• Write-set

– Arrays of Primitive + Open Addressing Hashing

6

ByteSTM

• Metadata in the thread header
– Faster than Java standard ThreadLocal

• No GC overhead
– Manually allocates and recycles memory for

transactional metadata
– Directly fix write-set only referenced objects

7

Related Work
Library-based VM-basedCompiler-

based

8

Performance

• Linked List

Performance

• Vacation

	VM-based STM
	ByteSTM
	ByteSTM
	ByteSTM
	ByteSTM
	ByteSTM
	ByteSTM
	Contribution
	Performance
	Performance

