
1 / 26

On Closed Nesting in Distributed Software Transactional
Memory

Alex Turcu Binoy Ravindran Mohamed Saad

February 26, 2012

Overview

Overview

Background

System model

N-TFA

Evaluation

Conclusion

2 / 26

■ Background

— Nesting in Transactional Memory

— TFA (Transactional Forwarding Algorithm)

■ System model

■ Nested Transactional Forwarding Algorithm

■ Evaluation

■ Conclusion

Background

Overview

Background

Nesting in TM

TFA

System model

N-TFA

Evaluation

Conclusion

3 / 26

Nesting in Transactional Memory

Overview

Background

Nesting in TM

TFA

System model

N-TFA

Evaluation

Conclusion

4 / 26

■ Three kinds of nesting: flat, closed, open

— Flat nesting is the most common in implementations, does not

support partial rollback

— Closed nesting allow aborting sub-transactions without aborting

the parent

— Open nested sub-transactions commit directly to memory,

releasing isolation

■ Code composability is main reason for nesting. Others:

— Potentially increased concurrency

— Conditional synchronization (retry when precondition is met)

— Fault management (try...orElse)

Transactional Forwarding Algorithm (1/2)

Overview

Background

Nesting in TM

TFA

System model

N-TFA

Evaluation

Conclusion

5 / 26

■ TFA is a protocol for distributed STM

— Based around Transactional Locking II and Lamport clocks

— (distribution model: nodes communicating through a message

passing links)

■ Provides a way to establish ”happens before” relationships

— Each node holds a node-local clock

— Clock value affixed to all messages

— Clock incremented on local transactions’ commits

— When a message from a node with a higher clock is received,

local clock is updated

Transactional Forwarding Algorithm (2/2)

Overview

Background

Nesting in TM

TFA

System model

N-TFA

Evaluation

Conclusion

6 / 26

■ Each txn stores its starting time

■ When a txn communicates with a node with a higher clock:

— Attempt to update txn’s starting time (i.e. transactional

forwarding)

— Must validate read-set before forwarding

▲ Success → update txn starting time and continue

▲ Failure → abort txn

■ Redo log approach (buffered writes), deferred lock acq

■ Properties:

— correctness: opacity

— liveness: strong progressiveness

System model

Overview

Background

System model

Base model

Nesting model

N-TFA

Evaluation

Conclusion

7 / 26

Base model

Overview

Background

System model

Base model

Nesting model

N-TFA

Evaluation

Conclusion

8 / 26

■ n nodes {N1, N2, ...Nn}

■ Nodes communicate via message passing links

■ Objects accessed using transactions {O1, O2, ...}

— Shared registers, get/set

— Each object Oj has an ID, idj

— Each object has an owner, owner(Oj)

— Objects can migrate (i.e. change owners)

■ Transactions {T1, T2, ...}

— Transactions are immobile and execute on a single node from

start to finish

Nesting model

Overview

Background

System model

Base model

Nesting model

N-TFA

Evaluation

Conclusion

9 / 26

■ Sub-txns executed on the same node as parent/root txn

■ A txn can have at most one active child (linear nesting)

■ Operations in closed nesting:

— Sub-txn commit = merge read and write-sets into those of

parent’s

— Read = Find location in read and write-sets from crt txn until

root; read location from memory if not found

■ No changes compared to the flat nesting model:

— Write = add new value to write-set of current txn

— Root txn commit = write to shared memory

— Abort = discard read and write-sets for current txn

Nested Transactional
Forwarding Algorithm

Overview

Background

System model

N-TFA

Introduction

Transactions

Forwarding

Merge commit

Aborts

Evaluation

Conclusion

10 / 26

N-TFA Introduction

Overview

Background

System model

N-TFA

Introduction

Transactions

Forwarding

Merge commit

Aborts

Evaluation

Conclusion

11 / 26

■ Nested Transactional Forwarding Algorithm: an extension of TFA

with support for closed nesting

■ Defines two types of commit, inherited directly form the nesting

model definition:

— merge commit model

— top-level commit model

N-TFA Transactions

Overview

Background

System model

N-TFA

Introduction

Transactions

Forwarding

Merge commit

Aborts

Evaluation

Conclusion

12 / 26

■ Root transaction:

— Stores node-local clock on start

— Increments node-local clock on commit

— Acquires locks on commit

■ Sub-transactions:

— Do not change the shared memory and thus are not globally

important

▲ Do not record their starting time

▲ Do not increment node-local clocks on commit

— Do not acquire any locks

N-TFA Forwarding

Overview

Background

System model

N-TFA

Introduction

Transactions

Forwarding

Merge commit

Aborts

Evaluation

Conclusion

13 / 26

■ When a txn communicates with a node having a higher clock value, it

gets forwarded (read-set is validated; starting time updated)

■ Sub-transactions do not store their starting time

— Compare remote clock value with root txn’s starting time

— Update root txn’s starting time

■ Must validate read-sets of all transactions using the same starting

time

— Current sub-transaction and all its ancestors

N-TFA Merge Commit Model

Overview

Background

System model

N-TFA

Introduction

Transactions

Forwarding

Merge commit

Aborts

Evaluation

Conclusion

14 / 26

■ When sub-transactions commit, they merge read and write-sets into

those of parent’s

■ Validating read-set at this stage is possible, but not required

■ Validating pros:

— conflicts can be detected earlier

— may need to retry smaller sections of work

■ Validating cons:

— network access cost

■ Choose not to validate (performance always lower with validation

enabled)

N-TFA Aborts

Overview

Background

System model

N-TFA

Introduction

Transactions

Forwarding

Merge commit

Aborts

Evaluation

Conclusion

15 / 26

■ N-TFA benefit comes from partial rollback

— Only applicable for conflicts detected during early validation

— Abort as many sub-transactions as needed to resolve the

conflict

— In DTM, the invalid object needs to be retrieved again from the

network, so transaction that originally opened the object must

retry (there is no automatic re-opening)

Evaluation

Overview

Background

System model

N-TFA

Evaluation

Settings

Summary

Observations

Sample

Conclusion

16 / 26

Experimental settings

Overview

Background

System model

N-TFA

Evaluation

Settings

Summary

Observations

Sample

Conclusion

17 / 26

■ Implemented in HyFlow, a Java DTM framework1

■ Benchmarks: two monetary applications (bank and loan) and three

micro-benchmarks (linked-list, skip-list, and hash-table).

■ Evaluated using up to 48 nodes (AMD Opteron at 1.9GHz) running

Ubuntu Server 10.04

1available at http://hyflow.org

Summary

Overview

Background

System model

N-TFA

Evaluation

Settings

Summary

Observations

Sample

Conclusion

18 / 26

■ Avg improvement 2% compared to flat nesting

■ Max improvement 84% (max degradation 42%)

Observations

Overview

Background

System model

N-TFA

Evaluation

Settings

Summary

Observations

Sample

Conclusion

19 / 26

■ Inconsistent/unreliable parameters:

— Transaction length (in milliseconds)

— Read-only ratio

■ Reliable parameters:

— N-TFA performs best when transactions consist of around 2-5

sub-transactions

Sample plots: hash-table

Overview

Background

System model

N-TFA

Evaluation

Settings

Summary

Observations

Sample

Conclusion

20 / 26

Sample plots: hash-table

Overview

Background

System model

N-TFA

Evaluation

Settings

Summary

Observations

Sample

Conclusion

21 / 26

20% reads

0 10 20 30 40 50
of nodes

0.98

1.00

1.02

1.04

1.06
th

ro
u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

c=2
c=3
c=4
c=8

Sample plots: hash-table

Overview

Background

System model

N-TFA

Evaluation

Settings

Summary

Observations

Sample

Conclusion

22 / 26

50% reads

0 10 20 30 40 50
of nodes

1.00

1.02

1.04

1.06

1.08

th
ro

u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

c=2
c=3
c=4
c=8

Sample plots: hash-table

Overview

Background

System model

N-TFA

Evaluation

Settings

Summary

Observations

Sample

Conclusion

23 / 26

80% reads

0 10 20 30 40 50
of nodes

0.98

1.00

1.02

1.04

1.06

1.08

1.10

th
ro

u
g
h
p
u
t

re
la

ti
v
e
 t

o
 f

la
t

c=2
c=3
c=4
c=8

Conclusion

Overview

Background

System model

N-TFA

Evaluation

Conclusion

24 / 26

Conclusion

Overview

Background

System model

N-TFA

Evaluation

Conclusion

25 / 26

■ N-TFA is a Distributed Transactional Memory protocol with support

for partial rollback through closed nesting

■ N-TFA benefits when invalid objects are detected in the middle of

transaction execution via already existing early validation

■ Can not perform extra validations due to network costs

■ Transaction length and read-only ratio have a benchmark-dependent

influence (can not generalize)

■ Maximum benefit around 2-5 sub-transactions

Questions

Overview

Background

System model

N-TFA

Evaluation

Conclusion

26 / 26

?

	Overview
	Background
	Nesting in Transactional Memory
	Transactional Forwarding Algorithm (1/2)
	Transactional Forwarding Algorithm (2/2)

	System model
	Base model
	Nesting model

	Nested Transactional Forwarding Algorithm
	N-TFA Introduction
	N-TFA Transactions
	N-TFA Forwarding
	N-TFA Merge Commit Model
	N-TFA Aborts

	Evaluation
	Experimental settings
	Summary
	Observations
	Sample plots: hash-table
	Sample plots: hash-table
	Sample plots: hash-table
	Sample plots: hash-table

	Conclusion
	Conclusion
	Questions

