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Desirable properties in distribute transactional systems

High availability

Strong consistency High performance

Programmability Great scalability

Fault tolerance Low latency
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GRANOLA: Transaction model [cowling, Liskov at ATC’12]
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Granola Performance...terrific scalability!

[From Granola at ATC ’12]

Granola ——
Granola (locking)
Sinfonia —¢—

50000

40000

30000

20000

Total Throughput (tps)

10000

1 2 3 4 5 6 7 8 9 10
Repositories
Configuration: TPC-C benchmark; increased number of clients
to maximize throughput; No coordinated transactions; =10% of
transactions are independent; =90% of transactions are single
repository.
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GRANOLA'’s lesson

o Limited Scalability with coordinated transactions:

o Coordinated distributed transactions are implemented
leveraging the classical two-phase commit

o (Almost) Perfect Scalability exploiting:
o Single repository transactions
o Distributed independent transactions

¥

Data well partitioned
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TPC-C: Example on the importance of partitioning data

Wa ltemse N

/\

Warehouse 1 Warehouse n

N

District 1 ... District 10 ILEMS District nx10

SO R

Customer 1 Customer 3000 Customer nx30000

New-Order transaction

Select Warehouse(1) -> Select District(6) -> Select
Customer(11000) -> Select Items(1,2,3...) -> Do Updates

lg1 Node 2 Node N
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GRANOLA'’s limitations are our motivation

o Granola requires programmer’s interventions for executing
transactions e.g.,.

o Data must be manually partitioned for maximizing the chance of
executing single-repository and independent transactions

o Programmer provides the type of each transaction invoked
(either single-repository, independent transactions or
coordinated).

o Programmer provides target partitions (i.e., nodes) for each
transaction invocation.

OUR GOAL

Allowing the exploitation of Granola-like transactions
without involving the programmer in the process of
partitioning data and instrumenting transactions
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Programming Model

o Distributed Software Transactional Memory (DTM)
o High Programmability

» Programmer simply marks set of operations as atomic blocks
(e.g., @Atomic) and the DTM library is responsible for
executing those blocks (i.e., transactions) in parallel but
atomically and with the given consistency level

» Distribution and concurrency are entirely masked
o Composability

» Atomic operations can be composed without breaking
atomicity and isolation
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Partitioning Process

1. Static analysis and bytecode rewriting:

o to collects transaction’s data dependency information for
verifying the compliance of the partitioning scheme with the
appropriate transaction model

o to identify whether an atomic block is abort-free or read-only

o to tag each transactional operation with a unique identifier to
help make associations between the static data dependencies
and the actual objects accessed at run-time

2. Analysis of a representative trace for the current application
workload

3. Generate a graph representation
4. Selection of the transactions’ models
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Managing the partitioning graph

a The partitioning graph is composed of vertexes, which
represent shared objects, and edges, which represent
transaction’s execution flow

o Principles for assigning edges’ weights:

o to fully exploit the Granola transaction model, we

cannot easily allow data dependencies between
partitions

o favor single-repository transactions to any kind of
distributed transactions

o when possible, favor independent transactions to
coordinated transactions
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Runtime behavior

o Placement classifiers, in charge of maintaining the object-to-
partition mapping (keeping track of the exact mapping means
reproducing the entire data-set)

o Routing classifiers, responsible for routing transactions to
correct partitions
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Example

@Atomic {
val src1 = Open[Counter](“A”)
If (src1.value() < 0)
Abort-transaction

val src2 = Open[Counter](“B”)

val temp1 = src2.value() * 2

val src3 = Open[Counter](“C") 9 @
val temp2 = src3.value() * 3

val result = temp1 + temp?2 abort G
src3.value() = result

val src4 = Open[Counter]("D") Static dependency graph

val temp3 = src4.value() + 1

src4.value() = temp3
Commit-transaction
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An example

.............. Replication edges
------ Light edges
Mid-weight edges
== Heavy edges

abort G

Static dependency graph Resulting partitioning graph

Possible partitioning
(pref. independent txn model)
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....oummarizing...

. Bytecode analysis and re-writing

2. Gather a workload trace (e.g., running the
application on a single machine)

3. Convert the trace into the graph
4. Partition the graph (using standard tools)

5. Train the placement classifiers and evaluate
them (and pick the best!)

6. Train the routing classifiers and evaluate them
(and pick the best!)

/. Run the population of the data-set
8. Run the application!
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Evaluation

o Test-bed:

o FutureGrid public cluster;

o Up to 15 machines;

o Each machine is an 8-core 2.9GHz Intel Xeon with 7GB RAM.
o Benchmark:

o TPC-C, because its optimal partitioning scheme is known and
famous.

o Performance indicators:

Optimality of the partitioning decisions
Misrouted and misplaced objects
Throughput and scalability

Q
a
a
o Partition’s quality Vs Trace Size
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Percent Distributed Txns
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Scalability

Percent Distributed Txns

o Throughput and percentage of distributed transactions
increasing the number of nodes and warehouses (and thus
partitions) -- one warehouse per node/partition
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Partition Quality Vs Size of traces

o 15 warehouses

a

% of misrouted transactions
and distributed transactions
varying the size of the trace
used for computing the

partitioning process and the
training phase of classifiers

The rate used for collecting
samples in the execution
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Distributed transactions and partitioning scheme

o Throughput varying the percentage of distributed transactions
(we intentionally modified the transactions’ access pattern to
reproduce a given percentage of distributed transactions)

o This experiment mimics also the performance of a system
with non-accurate partitions
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What about other benchmarks?

o We evaluated also TPC-W, AuctionMark, Epinions, ReTriss
under the Granola-like transaction model to evaluate how
different benchmarks can exploit independent and single-
repository transactions
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Thanks!

Questions?

Hyflow

ystems
Oftware

Research Gre up

Research project’s web-site: www.hyflow.org
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