
Automated Data Partitioning for Highly
Scalable and Strongly Consistent

Transactions

Alexandru Turcu, Roberto Palmieri, Binoy Ravindran
Virginia Tech

SYSTOR 2014

Desirable properties in distribute transactional systems

Strong consistency

High availability

Great scalability

High performance

Fault tolerance

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Low latency

Programmability

GRANOLA: Transaction model [Cowling, Liskov at ATC’12]

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Request

Client Repository Repository

Reply

Vote

run run

log write log write

time

Figure 6: Timeline for independent transactions.

a run upcall to the application. Once a transaction
is executed, a COMMIT reply containing the result of
the upcall is sent to the client.

Additional transactions can be processed while awaiting
completion of a stable log write; these requests will be
executed in timestamp order.

The protocol for read-only transactions is the same as
for read-write transactions, except that a stable log write
is not required in Step 2 of the protocol. Since read-only
transactions do not modify the service state, they can be
retried in the case of failure.

4.4 Independent Distributed Transactions
Independent transactions are ordered with respect to all
other transactions without locking or conflicts. Granola
achieves this by executing each independent transaction at
the same timestamp at all transaction participants. We de-
termine the timestamp by using a distributed voting mech-
anism. Each participant nominates a proposed timestamp
for the transaction, the participants exchange these nomi-
nations in VOTE messages, and the transaction is assigned
the highest timestamp from among these votes.

The protocol for transactions that modify data is as
follows; the timeline is shown in Figure 6.

1. The repository selects a proposed timestamp for the
transaction that is higher than highTS (sent by the
client), the timestamp of the most recently executed
transaction at the repository, and the current clock
value.

2. The transaction request and timestamp proposal are
recorded using a stable log write.

3. The repository sends a COMMIT VOTE message con-
taining the proposed timestamp to the other partici-
pants. The repository can process other transactions
after the vote has been sent.

4. The repository waits for votes from other participants.
If it receives a CONFLICT vote, it ceases processing
the transaction and sends this response to the client. A

time

Reply

Vote

Request

Client Repository Repository

commit commit

log write log write

prepare prepare

Figure 7: Timeline for coordinated transactions.

conflict vote will be received only from a participant
that is operating in locking mode, as described in the
next section.

5. Once the repository receives commit responses from
all other participants, it assigns the transaction the
highest timestamp from the votes; this timestamp will
be consistent across all participants. The transaction
is now ready to be executed.

6. The transaction is executed at the assigned timestamp,
in timestamp order, and a reply is sent to the client.

The protocol for read-only transactions is similar, except
that the stable log write is not required. Since these trans-
actions do not modify the service state, the client proxy
can retry a read-only transaction if a participant fails while
executing the protocol.

As mentioned, the repository can process other transac-
tions while waiting for votes. In all cases we, guarantee se-
rializability by executing in timestamp order. A transaction
won’t be executed until after any concurrent transaction
with a lower timestamp at the repository. It is thus possible
for execution of a transaction to be delayed if a transaction
with a lower timestamp has not yet received a full set of
votes. Longer-term delays can occur if a transaction par-
ticipant has failed; recovery from a failed participant is
discussed in Section 5.4.

4.5 Coordinated Distributed Transactions
We now describe the protocol used for coordinated transac-
tions, and the impact on single-repository and independent
transactions when in locking mode. Coordinated transac-
tions require participants to agree whether to commit or
abort. They require locking to support concurrency; other-
wise, one transaction might modify state that was used by
a concurrent transaction to determine its vote.

The protocol for coordinated transactions is as follows;
the timeline is shown in Figure 7.

1. Coordinated transactions first undergo a prepare
phase. This is accomplished by issuing a prepare

Request

Client Repository Repository

Reply

Vote

run run

log write log write

time

Figure 6: Timeline for independent transactions.

a run upcall to the application. Once a transaction
is executed, a COMMIT reply containing the result of
the upcall is sent to the client.

Additional transactions can be processed while awaiting
completion of a stable log write; these requests will be
executed in timestamp order.

The protocol for read-only transactions is the same as
for read-write transactions, except that a stable log write
is not required in Step 2 of the protocol. Since read-only
transactions do not modify the service state, they can be
retried in the case of failure.

4.4 Independent Distributed Transactions
Independent transactions are ordered with respect to all
other transactions without locking or conflicts. Granola
achieves this by executing each independent transaction at
the same timestamp at all transaction participants. We de-
termine the timestamp by using a distributed voting mech-
anism. Each participant nominates a proposed timestamp
for the transaction, the participants exchange these nomi-
nations in VOTE messages, and the transaction is assigned
the highest timestamp from among these votes.

The protocol for transactions that modify data is as
follows; the timeline is shown in Figure 6.

1. The repository selects a proposed timestamp for the
transaction that is higher than highTS (sent by the
client), the timestamp of the most recently executed
transaction at the repository, and the current clock
value.

2. The transaction request and timestamp proposal are
recorded using a stable log write.

3. The repository sends a COMMIT VOTE message con-
taining the proposed timestamp to the other partici-
pants. The repository can process other transactions
after the vote has been sent.

4. The repository waits for votes from other participants.
If it receives a CONFLICT vote, it ceases processing
the transaction and sends this response to the client. A

time

Reply

Vote

Request

Client Repository Repository

commit commit

log write log write

prepare prepare

Figure 7: Timeline for coordinated transactions.

conflict vote will be received only from a participant
that is operating in locking mode, as described in the
next section.

5. Once the repository receives commit responses from
all other participants, it assigns the transaction the
highest timestamp from the votes; this timestamp will
be consistent across all participants. The transaction
is now ready to be executed.

6. The transaction is executed at the assigned timestamp,
in timestamp order, and a reply is sent to the client.

The protocol for read-only transactions is similar, except
that the stable log write is not required. Since these trans-
actions do not modify the service state, the client proxy
can retry a read-only transaction if a participant fails while
executing the protocol.

As mentioned, the repository can process other transac-
tions while waiting for votes. In all cases we, guarantee se-
rializability by executing in timestamp order. A transaction
won’t be executed until after any concurrent transaction
with a lower timestamp at the repository. It is thus possible
for execution of a transaction to be delayed if a transaction
with a lower timestamp has not yet received a full set of
votes. Longer-term delays can occur if a transaction par-
ticipant has failed; recovery from a failed participant is
discussed in Section 5.4.

4.5 Coordinated Distributed Transactions
We now describe the protocol used for coordinated transac-
tions, and the impact on single-repository and independent
transactions when in locking mode. Coordinated transac-
tions require participants to agree whether to commit or
abort. They require locking to support concurrency; other-
wise, one transaction might modify state that was used by
a concurrent transaction to determine its vote.

The protocol for coordinated transactions is as follows;
the timeline is shown in Figure 7.

1. Coordinated transactions first undergo a prepare
phase. This is accomplished by issuing a prepare

(Classical) Distributed coordinated

Distributed Independent Single Repository

Independent Interface

// executes transaction to completion.

// returns false if lock conflict

boolean run(ByteBuffer op, ByteBuffer result);

Coordinated Interface

// runs to commit point and acquires locks.

// returns COMMIT/ABORT vote or CONFLICT

// result is empty unless returning ABORT

AbortType prepare(ByteBuffer op, long tid,

ByteBuffer result);

// commits trans and releases locks

void commit(long tid, ByteBuffer result);

// aborts trans and releases locks

void abort(long tid);

Recovery Interface

// force-acquires any locks that could be

// required at any point in the serial order

// returns true if no conflict

boolean forcePrepare(ByteBuffer request,

long tid);

Figure 4: Server API.

stamp mode, all transactions are executed using the run
upcall, which executes the transaction to completion. The
prepare upcall is used for distributed transactions when
in locking mode, to acquire locks on the transaction and
determine the commit or abort vote. The response to the
prepare upcall can indicate COMMIT, ABORT, or CON-
FLICT. COMMIT indicates that the application has acquired
the locks needed by the request while CONFLICT means
that some locks cannot be acquired and therefore the client
should retry the transaction. ABORT means that the appli-
cation has decided to abort the transaction based on appli-
cation logic, e.g., the application refuses to decrement an
account balance because the balance is too small. If the
application returns ABORT it can also include additional in-
formation for the client in the result buffer. The ABORT
response occurs only for coordinated transaction requests.

In the following description we note where a stable log
write is required. This step involves the primary replica
executing state machine replication, as described in Sec-
tion 5.1. Unless specified, no other replication occurs and
communication is solely between the primary replicas at
each repository.

4.1 Timestamps
Granola uses timestamps to order distributed transactions
without locking. Each transaction is assigned a timestamp,
which defines its position in the global serial order. A
transaction is ordered before any transaction with a larger
timestamp; if two transactions have the same timestamp,
the transaction with the lower TID is ordered first.

time

Reply

Request

Client Repository

run

log write

Figure 5: Timeline for single-repository transactions.

Repositories select the timestamp for each transaction
based on their clock. Repositories exchange timestamps
before committing a given transaction, to ensure that they
all assign it the same timestamp. Each transaction result
sent to the client contains the timestamp for that trans-
action, and each request from the client contains the latest
timestamp observed by the client, ensuring that timestamp
dependencies are maintained. We explain how timestamps
are used in the following sections.

4.2 Client Protocol
The client proxy receives transaction invocation requests
from the client application via the interface specified in
Figure 3. Each client proxy maintains highTS, the highest
timestamp it has observed in a transaction response, ini-
tially 0. The client proxy issues a transaction REQUEST to
the repositories specified by the client application, along
with the highTS value and the TID.

The client proxy then waits for REPLY messages from
the participants. If it receives COMMITs from all partic-
ipants, it returns the results to the client application. If
the proxy receives an ABORT response from some repos-
itory, it returns false; if it receives a CONFLICT response,
it retries the transaction with a new TID, after waiting a
random backoff.

4.3 Single-Repository Transactions
The basic protocol for single-repository transactions has
much in common with how existing single-node storage
systems work. The protocol timeline is shown in Figure 5.

The protocol for read-write transactions is as follows:

1. When a repository receives a client REQUEST it as-
signs it a timestamp that is greater than the highTS
sent by the client, the timestamp of the most recently
executed transaction at the repository, and the current
clock value.

2. The repository performs a stable log write to record
both the request and the assigned timestamp, so that
this information will persist across failures.

3. The transaction is now ready to be executed. Trans-
actions are executed in timestamp order, by making

Granola Performance…terrific scalability!

of a single coordinator, which serves as a bottleneck. Sin-
fonia achieves slightly higher throughput than Granola
in locking mode when there is high contention, since the
coordinator presents a consistent transaction ordering to
repositories, unlike in Granola where transactions may be
received by repositories in conflicting orders. We evaluated
an extension to Granola to support the use of lightweight
coordinator nodes, but observed minimal benefit in typical
workloads [13].

6.2 Transaction Processing Benchmark
We evaluate performance on an application based on the
TPC-C transaction processing benchmark [6]. This bench-
mark models a large order-processing workload, with com-
plex queries distributed across multiple repositories. Our
implementation stores the TPC-C dataset in-memory and
executes transactions as single-round stored procedures.

We used the C++ implementation of TPC-C from the
H-Store project [32] for our client and server application
code.2 The codebase that we used was designed for a
single node deployment and had no explicit support for
distributed transactions. By interposing the Granola plat-
form between the TPC-C client and server, we were able
to build a scalable distributed database with minimal code
changes; code modifications were constrained to calling
the Java ClientProxy from the C++ client, responding to
transaction requests from the GranolaApplication server,
and translating warehouse numbers to repository IDs.

We adopt the data partitioning strategy proposed in H-
Store. This partitioning ensures that all transactions can
be expressed as either single-repository or independent
transactions. We were able to disable locking and undo
logging when evaluating Granola, since TPC-C involves
no coordinated transactions. We also compare Granola
and Sinfonia against a version of Granola that is set to
always operate in locking mode, to measure the impact of
lock-based concurrency control.

Scalability. We examine scalability in Figure 12. This
experiment uses a single TPC-C warehouse per repository,
and increases the number of clients to maximize through-
put. 10.7% of transactions in this benchmark are issued to
multiple participants.

All systems exhibit the same throughput in a single-
repository configuration, since they both have similar over-
head in the absence of locking or distributed transactions.
Throughput drops for the lock-based protocols on multiple
nodes, however. The TPC-C implementation is highly opti-
mized and executes transactions efficiently, hence the lock
overhead imposes a significant relative penalty; the over-
head of locking and allocating undo records was approx-

2This implementation does not strictly adhere to the TPC-C spec.,
e.g., does not implement client “wait times” between requests [19].

Figure 12: Scalability of TPC-C implementation.

Figure 13: TPC-C throughput new order transactions.

imately equal to the cost of executing each operation, in
line with similar measurements on the same workload [20].
Throughput reduction is also heavily impacted by the cost
of retrying transactions that abort due to lock conflicts. Sin-
fonia offers slightly lower performance than Granola in
locking mode, due to the additional overhead and latency
of communicating with the coordinator.

We observe a relatively constant latency regardless of
system size, with average distributed transaction latencies
of 2.9, 3.2, and 4.9 ms for Granola, Granola (locking) and
Sinfonia respectively. Sinfonia encounters higher latency
due to the additional communication delay.

Distributed Transactions. We further examine coordi-
nation overhead by modifying TPC-C to vary the pro-
portion of distributed transactions. This workload is com-
posed entirely of new order transactions and we adjust
the likelihood that an item in the order will come from a
remote warehouse [20]. The results for this benchmark are
shown in Figure 13, for a two warehouse configuration on
two repositories.

These results echo the previous benchmark, with the
performance difference dominated by lock conflicts and
lock management overhead. Granola achieves better re-
silience to distributed transactions in this benchmark than
in our microbenchmarks, since overhead in TPC-C is dom-
inated by transaction execution costs rather than proto-

[From Granola at ATC ’12]

Configuration: TPC-C benchmark; increased number of clients
to maximize throughput; No coordinated transactions; ≈10% of
transactions are independent; ≈90% of transactions are single
repository.

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

GRANOLA’s lesson

q  Limited Scalability with coordinated transactions:
q  Coordinated distributed transactions are implemented

leveraging the classical two-phase commit
q  (Almost) Perfect Scalability exploiting:

q  Single repository transactions
q  Distributed independent transactions

Data well partitioned

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

 Node 1

TPC-C: Example on the importance of partitioning data

…

New-Order transaction
Select Warehouse(1) -> Select District(6) -> Select
Customer(11000) -> -> Do Updates

 White Paper ~Benchmark Overview TPC-C Version: 1.2, October 2003

The TPC-C benchmark – An overview
The TPC-C benchmark measures the performance of online transaction processing systems or OLTP and is
based on a complex database and a number of different transaction types that are executed on it. TPC-C is
not only a hardware-independent but also a software-independent benchmark and can thus be run on every
test platform, i.e. proprietary or open. In addition to the results of the measurement, all the details of the
systems measured and the measuring method must also be explained in a measurement report (Full
Disclosure Report or FDR). Consequently, this ensures that the measurement meets all benchmark
requirements and is reproducible. TPC-C does not just measure an individual server, but a rather extensive
system configuration. Keys to performance in this respect are the user interface, network communication and
disk I/O as well as the critical factors of backup and recovery.

The benchmark model
TPC-C simulates an environment in which the operator performs various transactions against a database.
The central elements of the benchmark are the typical transactions of a wholesale company concerning
order entries (order acceptance, delivery, recording payments, checking the status of orders and monitoring
stock levels). The simulated company operates out of a number of warehouses and their allocated districts.
TPC-C is designed in such a way that the size of the company (i.e. the number of its warehouses) may vary.
Set parameters on the other hand are the 100,000 items as well as ten sales districts per warehouse and
3,000 customers per district. Every operator can at any time implement one of five transactions on the
company’s goods ordering system. Both the transactions and their frequency are based on a realistic
scenario.

Company

 Warehouse 1 ... Warehouse n

 District 1 ... District 10 ... District nx10

Customer 1 Customer 3000 ... Customer 30000 ... Customer nx30000

The most frequent transaction is the new order, which on average comprises 10 different items. Each
warehouse attempts, if possible, to deal with the delivery from its own stock. Since this is hardly realistic with
such a large number of items, delivery in virtually 10% of all cases is effected via the company’s other
warehouses. Another frequent transaction is the recording of a payment. Order status queries, the
processing of delivery orders and checking of local stock levels for possible bottlenecks are less frequent.
The entire business activity is modeled on the basis of these five transactions.
In order to maintain TPC-C’s applicability to systems of differing capacity, TPC-C implementations must
scale both the number of terminals and the size of the database proportionally to the computing power of the
system to be measured. In addition to performance, the definitive data security aspects of a fully production-
ready system are also tested. The system features required in this regard are denoted as “ACID” properties
(Atomicity, Consistency, Isolation and Durability). In order to furnish proof of the accuracy of the benchmark
results it is necessary for the measurement configuration and procedure to be documented in its entirety in a
full disclosure report (FDR) so that reproducibility by third parties is ensured.

Performance metrics
The unit used in TPC-C to measure performance specifies the number of processed new-order transactions
per minute and is expressed in tpmC. The measured performance must always be reported together with the
cost of ownership and the report date. The total system configuration costs are the actual retail prices that
are definitive for the customer. They include all hardware and software components, maintenance
expenditure over a period of three years and the storage capacities required maintaining the documented

 © Fujitsu Technology Solutions 2009 Page 2 (5)

Select Items(1,2,3…)

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

?
Items Items Items

Warehouse 1 Warehouse 2 Warehouse N Items

Node 2 Node N

GRANOLA’s limitations are our motivation

q  Granola requires programmer’s interventions for executing
transactions e.g.,:
q  Data must be manually partitioned for maximizing the chance of

executing single-repository and independent transactions
q  Programmer provides the type of each transaction invoked

(either single-repository, independent transactions or
coordinated).

q  Programmer provides target partitions (i.e., nodes) for each
transaction invocation.

OUR GOAL
Allowing the exploitation of Granola-like transactions
without involving the programmer in the process of

partitioning data and instrumenting transactions

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Programming Model

q  Distributed Software Transactional Memory (DTM)
q  High Programmability

Ø Programmer simply marks set of operations as atomic blocks
(e.g., @Atomic) and the DTM library is responsible for
executing those blocks (i.e., transactions) in parallel but
atomically and with the given consistency level

Ø Distribution and concurrency are entirely masked
q  Composability

Ø Atomic operations can be composed without breaking
atomicity and isolation

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Partitioning Process

1.  Static analysis and bytecode rewriting:
q  to collects transaction’s data dependency information for

verifying the compliance of the partitioning scheme with the
appropriate transaction model

q  to identify whether an atomic block is abort-free or read-only
q  to tag each transactional operation with a unique identifier to

help make associations between the static data dependencies
and the actual objects accessed at run-time

2.  Analysis of a representative trace for the current application
workload

3.  Generate a graph representation
4.  Selection of the transactions’ models

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Managing the partitioning graph

q  The partitioning graph is composed of vertexes, which
represent shared objects, and edges, which represent
transaction’s execution flow

q  Principles for assigning edges’ weights:
q  to fully exploit the Granola transaction model, we

cannot easily allow data dependencies between
partitions

q  favor single-repository transactions to any kind of
distributed transactions

q  when possible, favor independent transactions to
coordinated transactions

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Runtime behavior

q  Placement classifiers, in charge of maintaining the object-to-
partition mapping (keeping track of the exact mapping means
reproducing the entire data-set)

q  Routing classifiers, responsible for routing transactions to
correct partitions

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Example

@Atomic {
val src1 = Open[Counter](“A”)
If (src1.value() < 0)

Abort-transaction
val src2 = Open[Counter](“B”)
val temp1 = src2.value() * 2
val src3 = Open[Counter](“C”)
val temp2 = src3.value() * 3
val result = temp1 + temp2
src3.value() = result
val src4 = Open[Counter](“D”)
val temp3 = src4.value() + 1
src4.value() = temp3
Commit-transaction

}

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Static dependency graph

An example

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Static dependency graph

D

A

C

B

AR AR AR

Legend:
Replication edges
Light edges
Mid-weight edges
Heavy edges

Resulting partitioning graph

D

A

C

B

AR AR AR

Possible partitioning
(pref. independent txn model)

….Summarizing…

1.  Bytecode analysis and re-writing
2.  Gather a workload trace (e.g., running the

application on a single machine)
3.  Convert the trace into the graph
4.  Partition the graph (using standard tools)
5.  Train the placement classifiers and evaluate

them (and pick the best!)
6.  Train the routing classifiers and evaluate them

(and pick the best!)
7.  Run the population of the data-set
8.  Run the application!

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Evaluation

q  Test-bed:
q  FutureGrid public cluster;
q  Up to 15 machines;
q  Each machine is an 8-core 2.9GHz Intel Xeon with 7GB RAM.

q  Benchmark:
q  TPC-C, because its optimal partitioning scheme is known and

famous.
q  Performance indicators:

q  Optimality of the partitioning decisions
q  Misrouted and misplaced objects
q  Throughput and scalability
q  Partition’s quality Vs Trace Size

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Partition and Routing Quality

q  3 classifiers (Naive Bayes, Multi-layer
Perceptron, C4.5 decision trees)

q  Best partitioning: each warehouse in its own
partition and all item objects replicated at all
partitions. 10.3% distributed transactions

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Scalability

q  Throughput and percentage of distributed transactions
increasing the number of nodes and warehouses (and thus
partitions) -- one warehouse per node/partition

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Partition Quality Vs Size of traces

q  15 warehouses
q  % of misrouted transactions

and distributed transactions
varying the size of the trace
used for computing the
partitioning process and the
training phase of classifiers

q  The rate used for collecting
samples in the execution
trace

Tuple-level Creating graph METIS Train placement Compute partitions &
sampling rate from txn trace partitioning classifiers train routing classifiers

5% 1m56 26s 22s 2m51s
10% 3m55 1m01s 37s 7m30s
20% 9m49 1m44s 1m02s 6m18

Table 2: Per phase running time, with 15 warehouses and a 89MB input trace containing 42k transactions.

Figure 11: Total transactional throughput (3 ware-
houses), with a varying fraction of distributed txns.

To show how our process scales as we increase the graph
size, we present running times for the various phases in Ta-
ble 2. We varied the graph size by adjusting the tuple-level
sampling factor (i.e., the ratio of data items present in the
transaction trace that we represent as nodes in the graph,
the remaining data items are ignored). We notice that a
majority of the time is spent in the graph representation
and evaluation phase. In the evaluation phase, most time is
spent computing routing information for each transaction in
the input trace (training the routing classifiers is relatively
fast). We believe these two most time-consuming operations
could benefit from further optimization.

Figure 10 shows transactional throughput measurements,
compared to manual partitioning and routing. Experiments
were allowed su�cient time for warming-up before measure-
ments were started. Data points represent the average across
eight measurements, and also relay standard deviation and
the maximum value. We observed that enabling automatic
routing and partitioning lead to 9-27% slow-down. The CPU
time spent in additional code was measured to be negligible,
and the total CPU load is light. By recording the execution
time of the various routines and the communication latency,
we observed the standard deviation becomes disproportion-
ately larger than the average. This indicates the presence of
large periodic breaks. It makes us believe the loss in perfor-
mance is an indirect e↵ect of the increased garbage collector
(stop-the-world) activity caused by garbage generation in
the classification code. This can be solved by careful mem-
ory optimization (e.g., object pooling), or using a di↵erent
machine learning library.

We additionally varied the fraction of distributed trans-
actions in a TPC-C workload to simulate the e↵ect of par-
tition quality has on throughput. Results are shown in Fig-
ure 11. Fewer distributed transactions clearly lead to better
performance. It is noticeable how the e↵ect is strongest
when distributed transactions account for less than about
10-15% of the total workload. Thus, optimizing the qual-
ity of partitioning can bring large benefits and is especially
important for workloads with less than 10-15% distributed
transactions.

8. RELATED WORK
In the last decade, several proposals for scalable transac-

tional storage [10, 1, 5, 3] are presented. Some of them target
large scalability relaxing strong consistency [10, 5] ensuring
respectively eventual and timeline consistency. Megastore
in [3] is designed for very large scale on the Internet and it
is based on state machine replication. Sinfonia [1] is similar
to Granola but it requires a-priori knowledge of lock-set and
it does not support independent transactions.
In context of DTM, a number of papers recently appeared [23,

24, 21, 27]. They provide new protocols optimizing particu-
lar scenarios but none of them reaches performance compa-
rable to Granola. Additionally, some of them are based on
partial replication where data is always stored manually over
the nodes without exploiting any automation that allows op-
timizing the application access pattern. Our new automatic
framework for partitioning data, although it is suited for the
Granola [8] model, can be adopted (partially or totally) by
any of previous published works for improving the locality
of transactional accesses.
Partitioning techniques have been widely studied in con-

text of DBMS where the typical approach is to enumerate
possible partition schemes and evaluate them using di↵er-
ent methodologies. In [31] the authors propose a stochastic
approach for clustering data in object oriented DBMS. In
context of distributed storage systems, in [4] and [5] are pro-
posed systems acting with continuously re-partition data to
increase the balancing. Unfortunately these strategies can-
not be easily ported in transaction processing due to the
presence of incoming transactional requests. AutoPart [22]
is an automated scheme designed for multi-terabyte datasets,
without any OLTP requirements. A dynamic vertical parti-
tioning approach based on query patterns was recently pro-
posed in [26]. However it is better suited for applications
where such information does not tend to change over time.
Autoplacer [20] approaches data placement in distributed
key-value stores as an optimization problem.

9. CONCLUSION
We have developed a methodology for using automatic

data partitioning in a Granola-based Distributed Transac-
tional Memory. We perform static byte-code analysis to de-
termine transaction classes that can be executed using the
independent transaction model. We also use the analysis re-
sults to propose partitions that promote independent trans-
actions. Due to our DTM focus, we take a machine-learning
approach for routing transactions to the appropriate parti-
tions.

10. ACKNOWLEDGMENTS
This work is supported in part by US National Science

Foundation under grant CNS-1217385.

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Distributed transactions and partitioning scheme

q  Throughput varying the percentage of distributed transactions
(we intentionally modified the transactions’ access pattern to
reproduce a given percentage of distributed transactions)

q  This experiment mimics also the performance of a system
with non-accurate partitions

< 15% > 15%

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

What about other benchmarks?

q  We evaluated also TPC-W, AuctionMark, Epinions, ReTriss
under the Granola-like transaction model to evaluate how
different benchmarks can exploit independent and single-
repository transactions

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Thanks!

Questions?

Research project’s web-site: www.hyflow.org

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

