g.%ystems ' i °-- f : y_sk ..-; 0 f 0

yoftware + - au_spin_unlock irgre

Research Grq}Jp 0 cleace <ocksd

-

i

Automated Data Partitioning for Highly

Scalable and Strongly Consistent
Transactions

Alexandru Turcu, Roberto Palmieri, Binoy Ravindran

Virginia Tech

SYSTOR 2014

Vireinia

Desirable properties in distribute transactional systems

High availability

Strong consistency High performance

Programmability Great scalability

Fault tolerance Low latency

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

GRANOLA: Transaction model [cowling, Liskov at ATC’12]

(Classical) Distributed coordinated

<
<

e — e —
Repository Repository

time : Request : :

t |

| I >

|

| | |

| . .

log write log write

|

I I Vote !

! } ')

| < '

|]]

I 1 |

) t 1

time

Single Repository

ﬁepositorﬁ

|

Request |

- >
log write

|

Reply

¢

time

l

Distributed Independent

Request

Repository

Repository

Reply

log write

I_!I

Vote

og write

<
¢

c
-5t

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Granola Performance...terrific scalability!

[From Granola at ATC ’12]

Granola ——
Granola (locking)
Sinfonia —¢—

50000

40000

30000

20000

Total Throughput (tps)

10000

1 2 3 4 5 6 7 8 9 10
Repositories
Configuration: TPC-C benchmark; increased number of clients
to maximize throughput; No coordinated transactions; =10% of
transactions are independent; =90% of transactions are single
repository.

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

GRANOLA'’s lesson

o Limited Scalability with coordinated transactions:

o Coordinated distributed transactions are implemented
leveraging the classical two-phase commit

o (Almost) Perfect Scalability exploiting:
o Single repository transactions
o Distributed independent transactions

¥

Data well partitioned

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

TPC-C: Example on the importance of partitioning data

Wa ltemse N

/\

Warehouse 1 Warehouse n

N

District 1 ... District 10 ILEMS District nx10

SO R

Customer 1 Customer 3000 Customer nx30000

New-Order transaction

Select Warehouse(1) -> Select District(6) -> Select
Customer(11000) -> Select Items(1,2,3...) -> Do Updates

lg1 Node 2 Node N

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

GRANOLA'’s limitations are our motivation

o Granola requires programmer’s interventions for executing
transactions e.g.,.

o Data must be manually partitioned for maximizing the chance of
executing single-repository and independent transactions

o Programmer provides the type of each transaction invoked
(either single-repository, independent transactions or
coordinated).

o Programmer provides target partitions (i.e., nodes) for each
transaction invocation.

OUR GOAL

Allowing the exploitation of Granola-like transactions
without involving the programmer in the process of
partitioning data and instrumenting transactions

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Programming Model

o Distributed Software Transactional Memory (DTM)
o High Programmability

» Programmer simply marks set of operations as atomic blocks
(e.g., @Atomic) and the DTM library is responsible for
executing those blocks (i.e., transactions) in parallel but
atomically and with the given consistency level

» Distribution and concurrency are entirely masked
o Composability

» Atomic operations can be composed without breaking
atomicity and isolation

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Partitioning Process

1. Static analysis and bytecode rewriting:

o to collects transaction’s data dependency information for
verifying the compliance of the partitioning scheme with the
appropriate transaction model

o to identify whether an atomic block is abort-free or read-only

o to tag each transactional operation with a unique identifier to
help make associations between the static data dependencies
and the actual objects accessed at run-time

2. Analysis of a representative trace for the current application
workload

3. Generate a graph representation
4. Selection of the transactions’ models

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Managing the partitioning graph

a The partitioning graph is composed of vertexes, which
represent shared objects, and edges, which represent
transaction’s execution flow

o Principles for assigning edges’ weights:

o to fully exploit the Granola transaction model, we

cannot easily allow data dependencies between
partitions

o favor single-repository transactions to any kind of
distributed transactions

o when possible, favor independent transactions to
coordinated transactions

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Runtime behavior

o Placement classifiers, in charge of maintaining the object-to-
partition mapping (keeping track of the exact mapping means
reproducing the entire data-set)

o Routing classifiers, responsible for routing transactions to
correct partitions

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Example

@Atomic {
val src1 = Open[Counter](“A”)
If (src1.value() < 0)
Abort-transaction

val src2 = Open[Counter](“B”)

val temp1 = src2.value() * 2

val src3 = Open[Counter](“C") 9 @
val temp2 = src3.value() * 3

val result = temp1 + temp?2 abort G
src3.value() = result

val src4 = Open[Counter]("D") Static dependency graph

val temp3 = src4.value() + 1

src4.value() = temp3
Commit-transaction

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

An example

.............. Replication edges
------ Light edges
Mid-weight edges
== Heavy edges

abort G

Static dependency graph Resulting partitioning graph

Possible partitioning
(pref. independent txn model)

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

....oummarizing...

. Bytecode analysis and re-writing

2. Gather a workload trace (e.g., running the
application on a single machine)

3. Convert the trace into the graph
4. Partition the graph (using standard tools)

5. Train the placement classifiers and evaluate
them (and pick the best!)

6. Train the routing classifiers and evaluate them
(and pick the best!)

/. Run the population of the data-set
8. Run the application!

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Evaluation

o Test-bed:

o FutureGrid public cluster;

o Up to 15 machines;

o Each machine is an 8-core 2.9GHz Intel Xeon with 7GB RAM.
o Benchmark:

o TPC-C, because its optimal partitioning scheme is known and
famous.

o Performance indicators:

Optimality of the partitioning decisions
Misrouted and misplaced objects
Throughput and scalability

Q
a
a
o Partition’s quality Vs Trace Size

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Percent Distributed Txns

Partition and Routing Quality

a

=
Ul

=
S

=
W

=
N

=
=

=
o

O

3 classifiers (Naive Bayes, Multi-layer
Perceptron, C4.5 decision trees)

Best partitioning: each warehouse in its own
partition and all item objects replicated at all
partitions. 10.3% distributed transactions

N
5

N
o

6.0

VT

Ul
=
)

Percent Misrouted Txns
=
(@)]

9)

o
o
U

0.0
Rbayes Rmlp Rj48
Routing Classifiers

Placement Classifiers
B Lbayes

BN Lmlip
[/ Lj48

>
o

Percent Misplaced Objects
AN
9]

w
U

3.0

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Scalability

Percent Distributed Txns

o Throughput and percentage of distributed transactions
increasing the number of nodes and warehouses (and thus
partitions) -- one warehouse per node/partition

10.8— : : : : 45000 : ; : . :
10.7k BN Best Autopa.rt.itio.n 1 40000 | EEEE Auto i
10.6 Bl Manual Partltlonlng_ 35000L| EEE Manual
10.5 5 30000
10.4 § 25000
S 20000

10.3 F 15000
10.2 10000
10.1 5000
10.0 0

3 5 9 12 15 3 5 9 12 15

Nodes/Warehouses # Warehouses

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Partition Quality Vs Size of traces

o 15 warehouses

a

% of misrouted transactions
and distributed transactions
varying the size of the trace
used for computing the

partitioning process and the
training phase of classifiers

The rate used for collecting
samples in the execution

U1 (o)}
o o

o
o

N
o

=
o

Percent Distributed Transactions
w
o

o

d Transactions
= N N w w S I
o o (0] o ul o (0,

Percent Misroute
=
()]

(9

o

12 3.6 5 8.6 11 12 3.6 5 8.6 11
trace Trace Size (k Txns) Trace Size (k Txns)
Tuple-level Creating graph METIS Train placement Compute partitions &

sampling rate from txn trace | partitioning classifiers train routing classifiers
5% 1mb6 26s 22s 2mb1s
10% 3mb5 1mO1s 37s 7Tm30s
20% 9m49 1m44s 1m02s 6m18

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Distributed transactions and partitioning scheme

o Throughput varying the percentage of distributed transactions
(we intentionally modified the transactions’ access pattern to
reproduce a given percentage of distributed transactions)

o This experiment mimics also the performance of a system
with non-accurate partitions

<15% > 15%

13000

12000}
S 11000}
S 10000}
9000}
8000
7009

h

Throu

.0 0.1 0.2 0.3 0.4 0.5
Percent Distributed Txns

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

What about other benchmarks?

o We evaluated also TPC-W, AuctionMark, Epinions, ReTriss
under the Granola-like transaction model to evaluate how
different benchmarks can exploit independent and single-
repository transactions

~
o

! !
A Best Autopartition
[|E@® Manual Partitioning

(o)}
o

N W B U
O O O o
T T T T

Percent Distributed Txns

=
o O

TPC-C TPC-W (2) TPC-W (10) AuctionMark (2) EPinions (2) EPinions (5) ReTwis (2) ReTwis (10)

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

Thanks!

Questions?

Hyflow

ystems
Oftware

Research Gre up

Research project’s web-site: www.hyflow.org

The 7th ACM International Systems and Storage Conference, SYSTOR 2014, June 10-12, 2012, Haifa

