=
¥

.
F

e

!%ystems *- °-- 2 y_sk_free Oxf/0

oftware & , e 2u_spin_unlock_irqre

Research G;(?}Jp | 0 cleace <ocksd

Distributed Transactional Contention

Management as the Traveling Salesman
Problem

Bo Zhang, Binoy Ravindran, Roberto Palmieri
Virginia Tech

SIROCCO 2014
Virginia

Lock-based concurrency control
has serious drawbacks

o Coarse grained locking

public boolean add(int item) {

0 Simple Node pred, curr;
lock.lock();
o But no concurrency try {
pred = head;

curr = pred.next;

while (curr.val < item) {
pred = curr;
curr = curr.next;

}

if (item == currval) {
return false;

} else {
-ﬁi--é-ﬁi--é Node node = new Node(item);
node.next = curr;

pred.next = node;
return true;
}
} finally {
lock.unlock();

}
}

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Fine-grained locking is better,
but...

Q

a

Excellent performance
Poor programmability

Lock problems don't go
away!
o Deadlocks, livelocks,
lock-convoying, priority
inversion,....

Most significant difficulty —
composition

public boolean add(int item) {
head.lock();
Node pred = head;
try {
Node curr = pred.next;
curr.lock();
try {
while (currval < item) {
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
if (currkey == key) {
return false;
}
Node newNode = new Node(item);
newNode.next = curr;
pred.next = newNode;
return true;
} finally {
curr.unlock();
}
} finally {
pred.unlock();
}
}

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Transactional memory

o Like database transactions

public boolean add(int item) {

o Easier to program Node pred, curr;
atomic {
o Composable pred = head;

curr = pred.next;

while (currval < item) {
] pred = curr;

o First HTM, then STM...now HyTM Curr = curr.next;

}

if (item == currval) {
return false;
} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Optimistic execution yields performance gains at
the simplicity of coarse-grain, but no silver bullet

o High data dependencies

Time Coarse-grained
A locking
o lIrrevocable operations
o Interaction between

STM transactions and
/ Fine-grained non-transactions

locking o Conditional waiting

————

‘>
Threads

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP)

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Contention management. Which transaction to abort?

TO T1

X =X + y; x =x / 25;

x X = x / 25;

o Contention manager

o Can cause too many aborts, e€.g., when a long running transaction
conflicts with shorter transactions

o An aborted transaction may wait too long

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

From Multiprocessor to Distributed Systems (from STM to DTM)

FiEFS

cache
Bus

cache cache

A N

<

)

N L4

FiE S

)

cache || cache || cache

A

Bus

N

L

)

N

|4

shared memory

shared memory

o Multiprocessor TM:

F iR

o Distributed TM:

Built-in cache-coherence

cache || cache || cache

0 Message passing

A

Bus

N

<

)

support

N

links

L4

o Intel SMP MESI

shared memory

0 Cache-coherence

protocol [31]

protocol needed

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

D-STM problem space

o Cache-coherence protocol
0 Locate and move objects in the network
0 Guarantee the consistency over multiple object copies

0 Conflict resolution
o Conservative approach
o Non-conservative approach
0 Key property: guarantee progress

o Fault-tolerance
o Network with node failures
0 Replication protocol: manage object replicas

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Transaction execution models in DTM

o Control flow
o Moving transactions, objects are held locally
o Consistency: distributed commit protocol

0 Inherit the database transactional synchronization

o Data flow
0 Move the object to run all transactions locally
0 Synchronization: optimistic
o Conflicts are resolved by conflict resolution strategy
0 No need for a distributed commit protocol

o Easier to exploit locality

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

DTM, how it works

@ Txn requesting object o

/

TM Proxy

CC.locate(o)
C

Ifeq(0)>

Local Cache

Local Cache

<€

Txn holding object o

)3

C.move(0)

req(o)

not found

o Processors (or nodes) connected by message-passing links
o Distributed cache-coherence protocol (CC)
o Locating and moving objects in the network
o Maintaining consistency among multiple copies of an object
o Conflict resolution module (CR)

o Resolve conflicts among transactions

o How to make the correct/optimal decision?

>

TM Proxy

in use
cmp(A,B)l, TCR(A,B)

Conflict
Resolution

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Design Goal

o Input
o The distributed system: nodes communicate via message
passing links
o T a set of n transactions accessing s shared objects in a metric-
space network of m nodes
o A: conflict resolution strategy
o C: cache-coherence protocol.

o Output
o makespan(A,C): the total time needed to complete the set of
transactions under (A,C).
o Goal: maximize the throughput by minimizing makespan(A,C)
over all possible combinations of input (A,C).

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Measures of Quality

o Compare with an optimal clairvoyant off-line scheduling
algorithm OPT.

o OPT has all transactions’ knowledge in advance.
o Each transaction is scheduled exactly once under OPT.

o Competitive ratio: evaluate the optimality of makespan(A,C)

o CR(A,C) = max (makespan(A4,C)/(makespan(OPT))

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Problem statement

o We can consider the transaction scheduling problem for
multiprocessor STM as a subset of the transaction scheduling
problem for DTM. The two problems are equivalent as long as

the communication cost can be ignored, compared with the
local execution time duration.

o We model contention management as a non-clairvoyant
scheduling problem

o If all transactions are conflicting each other, then a sequential
schedule is the best solution.

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Towards the optimal: Cost Graph

o Cost Graph:
o each node in the system is a vertex in the graph

o each edge (v, v)) represents the channel to move an object from
node v; to node v;

o each edge (v, v)) is weighted with the cost (d;) for moving the
object from node v; to node v;

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Towards the optimal: Conflict Graph

o Conflict Graph:
o each transaction is represented as a numbered node
o each edge is marked with the object which causes transactions
to conflict
o we can construct a coloring of the conflict graph

o since transactions with the same color are not connected, every
set Ci forms an independent set and can be executed in parallel
witho ' '

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Towards the optimal: Ordering Conflict Graph

o An optimal offline schedule Opt determines a k-coloring of the
conflict graph and an execution order (the ordering conflict
graph) such that for any two sets C;and C;, where i <, if T,
and T, conflict,and T,isinC,and T, in T,, then T, is
postponed until T, commits

o There are k! ordering conflict graphs

o The ordering conflict graph is weighted:
o Node’s weight is the transaction’s execution time

o Arc’s weight is the cost for moving the object from the source
node to the destination node

.S S .S

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

...but the optimal is too complex

The commit time of a transaction T is determined by one of
the weighted paths thatends at T

The makespan is the weight of the longest weighted path in
the ordering conflict graph

The optimal is reached selecting the ordering conflict graph
that minimizes the makespan
Finding an optimal contention manager is (NP-) hard

o If each node issues only one transaction and cost of moving
objects is negligible, then the problem is equivalent to finding the
chromatic number of the conflict graph

o If the number of shared object is one, the problem is equivalent
to finding the traveling salesman path (TSP) in the cost graph

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Also...

o When each node generates a sequence of transactions, it is
not always optimal to schedule transactions according to the
ordering conflict graph since the conflict graph evolves over
time, an optimal schedule based on a static conflict graph
may lose potential parallelism in the future.

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Local optimality is not global optimality (2-coloring)

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Local optimality is not global optimality (4-coloring)

Oy, wump

@-O-0-0-0-0O

Makespan = 3d

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Lower Bounds

d

For STM, any online deterministic CM is Q(s)-competitive,
where s is the number of objects [Attiya et al. *06]

For DTM, any online deterministic work conservative CM is

2
2(max(s, £2))
optimal, where D is the normalized network diameter

When the normalized network diameter is bounded (D is a
constant), it can only provide a Q(s?)-competitive ratio.

Can we find an approximate optimal solution in
reasonable time?

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

CUTTING

o CUTTING is a randomized scheduling algorithm based on
partitioning the cost graph
o Assumptions:
o Transaction T, knows its required set of objects after it starts
o We assume that the moving cost is bounded at D
o Input:
o A set of transactions with their execution time
o The conflict graph
a The cost graph
o An approximate TSP algorithm (ATSP)
o Output:
o A schedule for executing transactions

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Why TSP and why that assumption?

o T invoked by N,
o T, writes objects {0,, 03}

o N, stores 0,; N3 stores 0,4

Without assumption

Fetch (0,)

2xd,, { < ~ N,
Fetch (0,)

2xdy, { < ~ N,

(2xd,,) +(2xd,3) =~4d

With assumption

T
Fetch (o,, 03)
d;, { >d N\f
23
d13 { & N3

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Cutting: how it works

o The cost graph is partitioned in C partitions such that for any
pair of nodes (v, v;) belonging to one partition, d; = ATSP/C
o Within each partition:

o Nodes are numbered with an integer from 1 to the size of the
partition

o A binary tree is built following nodes’ numbers

o Each transaction randomly selects an integer that is used for
deciding the transaction to abort after a conflict

\h—, \ﬁ—’ ~ -

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Cutting: how it works

o Handling conflicts between two transactions:

o Phase 1:

» Within the same partition and one transaction is an ancestor of the
other in the partition’s binary tree, the node that precedes the other
in the ATPS path aborts the other

» Otherwise the transaction with the lesser partition number aborts
the other
o Phase 2:

» Each transaction randomly selects an integer (17) when it starts or
restarts. If one transaction is not an ancestor of the other, the
transaction with the lower proceeds and the other transaction
aborts.

o Whenever a transaction is aborted by a remote transaction, the
requested object is moved to the remote transaction
immediately.

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Cutting: analysis

o The average case competitive ratio of Cutting is

@, (s-gbA-log2 m log? n)

for s objects shared by n transactions invoked
by m nodes

o This is close to the multiprocessor bound of O(s)

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Other results on Cutting

o A transaction T needs:
O(C’ log? mlog n)

trials from the moment it is invoked until it commits, on
average

o The average response time of a transaction is:
O(C’log2 mlogn- (T4 ATS%))
o The average-case competitive ratio of Cutting is

O (s-qu-log2 m log? n)

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Thanks!

Questions?

Hyflow

ystems
Oftware

Research Gre up

Research project’s web-site: www.hyflow.org

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

