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Lock-based concurrency control  
has serious drawbacks 

q  Coarse grained locking 
q  Simple 
q  But no concurrency 
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Fine-grained locking is better,  
but… 

q  Excellent performance 
q  Poor programmability 

q  Lock problems don’t go 
away! 
q  Deadlocks, livelocks,      

lock-convoying, priority 
inversion,…. 

q  Most significant difficulty –  
composition 
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Transactional memory 

q  Like database transactions 
q  Easier to program 
q  Composable 

q  First HTM, then STM…now HyTM 
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Optimistic execution yields performance gains at 
the simplicity of coarse-grain, but no silver bullet 

STM 
Fine-grained 

locking 

Coarse-grained 
locking 

Threads 

Time 

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP) 

q  High data dependencies 
q  Irrevocable operations 
q  Interaction between 

transactions and              
non-transactions 

q  Conditional waiting 
q  ……  
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Contention management. Which transaction to abort? 

 !
    x = x + y;!
 !

 !
    x = x / 25;!
 !

T0 ! T1 !

 !
    x = x / 25;!
 !

q  Contention manager 
q  Can cause too many aborts, e.g., when a long running transaction 

conflicts with shorter transactions 
q  An aborted transaction may wait too long 
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From	  Mul)processor	  to	  Distributed	  Systems	  (from	  STM	  to	  DTM)	  

cache cache cache 
Bus 

shared memory 

cache cache cache 
Bus 

shared memory 

q  Mul$processor	  TM:	  
Built-‐in	  cache-‐coherence	  

support	  
q  Intel	  SMP	  MESI	  

protocol	  [31]	  	  	  
	  	  

q  Distributed	  TM:	  
q  Message	  passing	  

links	  
q  Cache-‐coherence	  

protocol	  needed	  	  	  
	  	  SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan 
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D-‐STM	  problem	  space	  

q  Cache-‐coherence	  protocol	  
q  Locate	  and	  move	  objects	  in	  the	  network	  
q  Guarantee	  the	  consistency	  over	  mul$ple	  object	  copies	  	  
	  

q  Conflict	  resolu$on	  	  
q  Conserva$ve	  approach	  
q  Non-‐conserva$ve	  approach	  
q  Key	  property:	  guarantee	  progress	  	  
	  

q  Fault-‐tolerance	  
q  Network	  with	  node	  failures	  	  
q  Replica$on	  protocol:	  manage	  object	  replicas	  
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Transac)on	  execu)on	  models	  in	  DTM	  

q  Control	  flow	  
q  Moving	  transac$ons,	  objects	  are	  held	  locally	  	  

q  Consistency:	  distributed	  commit	  protocol	  

q  Inherit	  the	  database	  transac$onal	  synchroniza$on	  

q  Data	  flow	  
q  Move	  the	  object	  to	  run	  all	  transac$ons	  locally	  

q  Synchroniza$on:	  op$mis$c	  

q  Conflicts	  are	  resolved	  by	  conflict	  resolu$on	  strategy	  

q  No	  need	  for	  a	  distributed	  commit	  protocol	  

q  Easier	  to	  exploit	  locality	  
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DTM,	  how	  it	  works	  

	  	  	  	  	  	  	  Network	  

TM	  Proxy	  Local	  Cache	  

Conflict	  	  
Resolu$on	  

TM	  Proxy	   Local	  Cache	  

Txn	  reques$ng	  object	  o	   Txn	  holding	  object	  o	  

CC.locate(o)	  

CC.move(o)	  

req(o)	  

not	  found	  

req(o)	  

in	  use	  
cmp(A,B)	   CR(A,B)	  

q  Processors	  (or	  nodes)	  connected	  by	  message-‐passing	  links	  
q  Distributed	  cache-‐coherence	  protocol	  (CC)	  

q  Loca$ng	  and	  moving	  objects	  in	  the	  network	  
q  Maintaining	  consistency	  among	  mul$ple	  copies	  of	  an	  object	  

q  Conflict	  resolu$on	  module	  (CR)	  
q  Resolve	  conflicts	  among	  transac$ons	  
q  How	  to	  make	  the	  correct/op$mal	  decision?	  

A B 

A B 
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Design	  Goal 

q  Input 
q  The distributed system: nodes communicate via message 

passing links 
q  𝒯: a set of n transactions accessing s shared objects in a metric-

space network of m nodes 
q  A: conflict resolution strategy  
q  C: cache-coherence protocol. 

q  Output  
q  makespan(A,C): the total time needed to complete the set of 

transactions under (A,C). 
q  Goal: maximize the throughput by minimizing makespan(A,C) 

over all possible combinations of input (A,C). 
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Measures	  of	  Quality 

q  Compare with an optimal clairvoyant off-line scheduling 
algorithm OPT. 
q  OPT has all transactions’ knowledge in advance.  
q  Each transaction is scheduled exactly once under OPT. 

q  Competitive ratio: evaluate the optimality of makespan(A,C)  

q  𝐶𝑅(𝐴,𝐶) = max (𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧(𝐴,𝐶)/(𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧(𝑂𝑃𝑇)) 
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Problem statement 

q  We can consider the transaction scheduling problem for 
multiprocessor STM as a subset of the transaction scheduling 
problem for DTM. The two problems are equivalent as long as 
the communication cost can be ignored, compared with the 
local execution time duration. 

q  We model contention management as a non-clairvoyant 
scheduling problem 

q  If all transactions are conflicting each other, then a sequential 
schedule is the best solution. 
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Towards the optimal: Cost Graph 
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q  Cost Graph: 
q  each node in the system is a vertex in the graph 
q  each edge (vi, vj) represents the channel to move an object from 

node vi to node vj 
q  each edge (vi, vj) is weighted with the cost (dij) for moving the 

object from node vi to node vj 

V1 

V4 

V2 

V3 

d12 

d23 

d34 

d14 

d13 

d24 



 

 

 

 

 

 

 

 

 

Towards the optimal: Conflict Graph 
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q  Conflict Graph: 
q  each transaction is represented as a numbered node 
q  each edge is marked with the object which causes transactions 

to conflict 
q  we can construct a coloring of the conflict graph 
q  since transactions with the same color are not connected, every 

set Ci forms an independent set and can be executed in parallel 
without facing any conflicts 



 

 

 

 

 

 

 

 

 

Towards the optimal: Ordering Conflict Graph 

q  An optimal offline schedule Opt determines a k-coloring of the 
conflict graph and an execution order (the ordering conflict 
graph) such that for any two sets Ci and Cj, where i < j, if T1 
and T2 conflict, and T1 is in C1 and T2 in T2, then T2 is 
postponed until T1 commits 

q  There are k! ordering conflict graphs 
q  The ordering conflict graph is weighted: 

q  Node’s weight is the transaction’s execution time 
q  Arc’s weight is the cost for moving the object from the source 

node to the destination node 
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…but the optimal is too complex 

q  The commit time of a transaction T is determined by one of 
the weighted paths that ends at T 

q  The makespan is the weight of the longest weighted path in 
the ordering conflict graph 

q  The optimal is reached selecting the ordering conflict graph 
that minimizes the makespan 

q  Finding an optimal contention manager is (NP-) hard 
q  If each node issues only one transaction and cost of moving 

objects is negligible, then the problem is equivalent to finding the 
chromatic number of the conflict graph 

q  If the number of shared object is one, the problem is equivalent 
to finding the traveling salesman path (TSP) in the cost graph 
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Also… 

q  When each node generates a sequence of transactions, it is 
not always optimal to schedule transactions according to the 
ordering conflict graph since the conflict graph evolves over 
time, an optimal schedule based on a static conflict graph 
may lose potential parallelism in the future. 
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Local optimality is not global optimality (2-coloring) 
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Not	  
Op)mal!	  

T1
1 

T1
2 T1

3 

T1
4 

T1
5 

T1
6 

T1
8 

T1
7 

O1
 

O2
 

O3
 

O4
 

O5
 

O6
 O7

 

O8
 

O9
 

O10
 

O11
 

O12
 O13

 O14
 

T2
8 

T2
3 

T2
1 

T2
6 

T2
5 T2

7 

T2
4 T2

2 

T1
1 

T1
3 

T1
6 

T1
8 

T1
2 

T1
4 

T1
5 

T1
7 

T2
8 

T2
1 T2

3 T2
6 

T2
5 T2

2 T2
4 T2

7 

Makespan = 4d 



 

 

 

 

 

 

 

 

 

Local optimality is not global optimality (4-coloring) 
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Lower Bounds 

q  For	  STM,	  any	  online	  determinis$c	  CM	  is	  Ω(s)-‐compe$$ve,	  
where	  s	  is	  the	  number	  of	  objects	  [A[ya	  et	  al.	  	  ’06]	  

q  For	  DTM,	  any	  online	  determinis$c	  work	  conserva$ve	  CM	  is	  
	  
	  
op$mal,	  where	  	  	  	  	  is	  the	  normalized	  network	  diameter	  

q  When	  the	  normalized	  network	  diameter	  is	  bounded	  (D	  is	  a	  
constant),	  it	  can	  only	  provide	  a	  Ω(s2)-‐compe$$ve	  ra$o.	  	  

	  
Can	  we	  find	  an	  approximate	  op$mal	  solu$on	  in	  

reasonable	  $me?	  
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Definition 3 A scheduling algorithm is work conserving if it always runs a
maximal set of non-conflicting transactions.

In [1], Attiya et al. showed that, for multiprocessor STM, a deterministic
work conserving contention manager is ⌦(s)-competitive, if the set of objects
requested by a transaction changes when the transaction restarts. We prove
that for DTM, the performance guarantee is even worse.

Theorem 5 For DTM, any online, work conserving deterministic contention

manager is ⌦(max[s, s

2

D

])-competitive, where D := D

min

G

d

d

ij

is the normalized

diameter of the cost graph G
d

.

Proof. The proof uses s2 transactions with the same local execution duration ⌧ .
A transaction is denoted by T

ij

, where 1i, js. Each transaction T
ij

contains
a sequence of two operations {R

i

,W
i

}, which first reads from object o
i

and then
writes to o

i

. Each transaction T
ij

is issued by node v
ij

at the same time, and
object o

i

is held by node v
i1

when the system starts. For each i, we select a set
of nodes V

i

:= {v
i1

, v
i2

, . . . , v
is

} within the range of the diameter D
i

 D

s

.
Consider the optimal schedule Opt. Note that all transactions form an s⇥ s

matrix, and transactions from the same row ({T
i1

, T
i2

, . . . , T
is

} for 1is) have
the same operations. Therefore, at the start of the execution, Opt selects one
transaction from each row, thus s transactions start to execute. Whenever T

ij

commits, Opt selects one transaction from the rest of the transactions in row i
to execute. Hence, at any time, there are s transactions that run in parallel.

The order that Opt selects transactions from each row is crucial: Opt should
select transactions in the order such that the weight of the longest weighted path
in G⇤

c

(Opt) is optimal. Since transactions from di↵erent rows run in parallel,
we have: makespanOpt = s · ⌧ + max

1is

Tsp(G
d

(o
i

)), where G
d

(o
i

) denotes
the subgraph of G

d

induced by s transactions requesting o
i

, and Tsp(G
d

(o
i

))
denotes the length of the TSP path of G

d

(o
i

), i.e., the shortest path that visits
each node exactly once in Tsp(G

d

(o
i

)).
Now consider an online, work conserving deterministic contention manager

A. Being work conserving, it must select to execute a maximal independent set
of non-conflicting transactions. Since the first access of all transactions is a read,
the contention manager starts to execute all s2 transactions.

After the first read operation, for each row i, all transactions in row i
attempt to write o

i

, but only one of them can commit and the others will
abort. Otherwise, atomicity is violated, since inconsistent states of some trans-
actions may be accessed. When a transaction restarts, the adversary deter-
mines that all transactions change to write to the same object, e.g., {R

i

,W
1

}.
Therefore, the rest s2 � s transactions can only be executed sequentially af-
ter the first s transactions execute in parallel and commit. Then we have:
makespan

A

� (s2 � s+1) · ⌧ +min
G

d

Tsp(G
d

(s2 � s+1)), where G
d

(s2 � s+1)
denotes the subgraph of G

d

induced by a subset of s2 � s+ 1 transactions.
Now, we can compute A’s competitive ratio. We have: makespan

A

makespanOpt
�

max
h
(s

2�s+1)·⌧
s·⌧ ,

min

G

d

Tsp(G
d

(s

2�s+1))

max

1is

Tsp(G
d

(o

i

))

i
� max[ s

2�s+1

s

,
(s

2�s+1)·min

G

d

d

ij

(s�1)·D
s

] = ⌦(max[s, s

2

D

]).

The theorem follows.
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CUTTING 

q  CUTTING is a randomized scheduling algorithm based on 
partitioning the cost graph 

q  Assumptions: 
q  Transaction Ti knows its required set of objects after it starts 
q  We assume that the moving cost is bounded at D 

q  Input: 
q  A set of transactions with their execution time 
q  The conflict graph 
q  The cost graph 
q  An approximate TSP algorithm (ATSP) 

q  Output: 
q  A schedule for executing transactions 
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Why TSP and why that assumption? 

q  T invoked by N1 

q  T1 writes objects {o2, o3} 
q  N2 stores o2; N3 stores o3 
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N1 

N4 

N2 

N3 

d12 

d23 

d34 

d14 

d13 

d24 

Without assumption With assumption 

T  
Fetch (o2) 

N2 2 x d12 

Fetch (o3) 
N3 2 x d13 

(2 x d12) + (2 x d13) = ~4d 

T  
Fetch (o2, o3) 

N2 d12 

N3 d13 

d12 + d23 + d13 = ~3d 
 

d23 



 

 

 

 

 

 

 

 

 

Cutting: how it works 

q  The cost graph is partitioned in C partitions such that for any 
pair of nodes (vi,vj) belonging to one partition, dij ≤ ATSP/C 

q  Within each partition: 
q  Nodes are numbered with an integer from 1 to the size of the 

partition 
q  A binary tree is built following nodes’ numbers 

q  Each transaction randomly selects an integer that is used for 
deciding the transaction to abort after a conflict 
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v3	  v2	  

v1	  

P1 

v3	  v2	  

v1	  

P2 
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Cutting: how it works 

q  Handling conflicts between two transactions: 
q  Phase 1: 

Ø Within the same partition and one transaction is an ancestor of the 
other in the partition’s binary tree, the node that precedes the other 
in the ATPS path aborts the other 

Ø Otherwise the transaction with the lesser partition number aborts 
the other 

q  Phase 2: 
Ø Each transaction randomly selects an integer (π) when it starts or 

restarts. If one transaction is not an ancestor of the other, the 
transaction with the lower π proceeds and the other transaction 
aborts. 

q  Whenever a transaction is aborted by a remote transaction, the 
requested object is moved to the remote transaction 
immediately. 
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Cutting: analysis 

q  The average case competitive ratio of Cutting is  
 
 

for s objects shared by n transactions invoked 
by m nodes 

q  This is close to the multiprocessor bound of O(s) 
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By Lemma 7, if we conduct 16e(C + 1) lnn trials, each having a success proba-
bility 1

e(C+1)

, then the probability that the number of successes X is less than

8 lnn becomes: Pr(X < 8 lnn) < e�2 lnn = 1

n

2

.

Now we examine the transaction T l invoked by node v 
l 2 P

t

, where v 
l

is
the left child of the root node v in Bt(P

t

). When T l conflicts with T , it aborts
and holds o↵ until T commits or aborts. Hence, T l can be aborted by T at most
16e(C+1) lnn times with probability 1� 1

n

2

. On the other hand, T l needs at most
16e(C + 1) lnn to choose the smallest integer among all conflicting transactions
with probability 1� 1

n

2

. Hence, in total, T l needs at most 32e(C + 1) lnn trials
with probability (1� 1

n

2

)2 > (1� 2

n

2

).

Therefore, by induction, the transaction TL invoked by a level-L node v 
L

of Bt(P
t

) needs at most (1+ log
2

L) log
2

L ·8e(C+1) lnn trials with probability

at least 1� (1+log

2

L) log

2

L

2n

2

. Now, we can calculate the average number of trials:

E[# of trials a transaction needs to commit ] = O
�
C log2 m log n

�
.

Since when the starting point of the ATSP path is randomly selected, the
probability that a transaction is located at level L is 1/2Lmax

�L+1. The lemma
follows.

Lemma 8 The average response time of a transaction is O
�
C log2 m log n · (⌧ +

Atsp
A

C

)
�
.

Proof. From Lemma 6, each transaction needs O
�
C log2 m log n

�
trials, on av-

erage. We now study the duration of a trial, i.e., the time until a transaction
can select a new random number. Note that a transaction can only select a new
random number after it is aborted (locally or remotely). Hence, if a transac-
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The conflict resolution also has two phases. In the first phase, Cutting
assigns each transaction a partition index. When two transactions T
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the left child of the root node v in Bt(P

t

). When T l conflicts with T , it aborts
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