
Distributed Transactional Contention
Management as the Traveling Salesman

Problem

Bo Zhang, Binoy Ravindran, Roberto Palmieri

Virginia Tech

SIROCCO 2014

Lock-based concurrency control
has serious drawbacks

q  Coarse grained locking
q  Simple
q  But no concurrency

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Fine-grained locking is better,
but…

q  Excellent performance
q  Poor programmability

q  Lock problems don’t go
away!
q  Deadlocks, livelocks,

lock-convoying, priority
inversion,….

q  Most significant difficulty –
composition

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Transactional memory

q  Like database transactions
q  Easier to program
q  Composable

q  First HTM, then STM…now HyTM

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Optimistic execution yields performance gains at
the simplicity of coarse-grain, but no silver bullet

STM
Fine-grained

locking

Coarse-grained
locking

Threads

Time

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP)

q  High data dependencies
q  Irrevocable operations
q  Interaction between

transactions and
non-transactions

q  Conditional waiting
q  ……

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Contention management. Which transaction to abort?

 !
 x = x + y;!
 !

 !
 x = x / 25;!
 !

T0 ! T1 !

 !
 x = x / 25;!
 !

q  Contention manager
q  Can cause too many aborts, e.g., when a long running transaction

conflicts with shorter transactions
q  An aborted transaction may wait too long

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

From	 Mul)processor	 to	 Distributed	 Systems	 (from	 STM	 to	 DTM)	

cache cache cache
Bus

shared memory

cache cache cache
Bus

shared memory

q  Mul$processor	 TM:	
Built-‐in	 cache-‐coherence	

support	
q  Intel	 SMP	 MESI	

protocol	 [31]	 	 	
	 	

q  Distributed	 TM:	
q  Message	 passing	

links	
q  Cache-‐coherence	

protocol	 needed	 	 	
	 	 SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

cache cache cache
Bus

shared memory

D-‐STM	 problem	 space	

q  Cache-‐coherence	 protocol	
q  Locate	 and	 move	 objects	 in	 the	 network	
q  Guarantee	 the	 consistency	 over	 mul$ple	 object	 copies	 	
	

q  Conflict	 resolu$on	 	
q  Conserva$ve	 approach	
q  Non-‐conserva$ve	 approach	
q  Key	 property:	 guarantee	 progress	 	
	

q  Fault-‐tolerance	
q  Network	 with	 node	 failures	 	
q  Replica$on	 protocol:	 manage	 object	 replicas	

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Transac)on	 execu)on	 models	 in	 DTM	

q  Control	 flow	
q  Moving	 transac$ons,	 objects	 are	 held	 locally	 	

q  Consistency:	 distributed	 commit	 protocol	

q  Inherit	 the	 database	 transac$onal	 synchroniza$on	

q  Data	 flow	
q  Move	 the	 object	 to	 run	 all	 transac$ons	 locally	

q  Synchroniza$on:	 opmisc	

q  Conflicts	 are	 resolved	 by	 conflict	 resolu$on	 strategy	

q  No	 need	 for	 a	 distributed	 commit	 protocol	

q  Easier	 to	 exploit	 locality	

	
SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

DTM,	 how	 it	 works	

	 	 	 	 	 	 	 Network	

TM	 Proxy	 Local	 Cache	

Conflict	 	
Resolu$on	

TM	 Proxy	 Local	 Cache	

Txn	 reques$ng	 object	 o	 Txn	 holding	 object	 o	

CC.locate(o)	

CC.move(o)	

req(o)	

not	 found	

req(o)	

in	 use	
cmp(A,B)	 CR(A,B)	

q  Processors	 (or	 nodes)	 connected	 by	 message-‐passing	 links	
q  Distributed	 cache-‐coherence	 protocol	 (CC)	

q  Loca$ng	 and	 moving	 objects	 in	 the	 network	
q  Maintaining	 consistency	 among	 mul$ple	 copies	 of	 an	 object	

q  Conflict	 resolu$on	 module	 (CR)	
q  Resolve	 conflicts	 among	 transac$ons	
q  How	 to	 make	 the	 correct/op$mal	 decision?	

A B

A B

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Design	 Goal

q  Input
q  The distributed system: nodes communicate via message

passing links
q  𝒯: a set of n transactions accessing s shared objects in a metric-

space network of m nodes
q  A: conflict resolution strategy
q  C: cache-coherence protocol.

q  Output
q  makespan(A,C): the total time needed to complete the set of

transactions under (A,C).
q  Goal: maximize the throughput by minimizing makespan(A,C)

over all possible combinations of input (A,C).

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Measures	 of	 Quality

q  Compare with an optimal clairvoyant off-line scheduling
algorithm OPT.
q  OPT has all transactions’ knowledge in advance.
q  Each transaction is scheduled exactly once under OPT.

q  Competitive ratio: evaluate the optimality of makespan(A,C)

q  𝐶𝑅(𝐴,𝐶) = max (𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧(𝐴,𝐶)/(𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧(𝑂𝑃𝑇))

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Problem statement

q  We can consider the transaction scheduling problem for
multiprocessor STM as a subset of the transaction scheduling
problem for DTM. The two problems are equivalent as long as
the communication cost can be ignored, compared with the
local execution time duration.

q  We model contention management as a non-clairvoyant
scheduling problem

q  If all transactions are conflicting each other, then a sequential
schedule is the best solution.

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Towards the optimal: Cost Graph

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

q  Cost Graph:
q  each node in the system is a vertex in the graph
q  each edge (vi, vj) represents the channel to move an object from

node vi to node vj
q  each edge (vi, vj) is weighted with the cost (dij) for moving the

object from node vi to node vj

V1

V4

V2

V3

d12

d23

d34

d14

d13

d24

Towards the optimal: Conflict Graph

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

q  Conflict Graph:
q  each transaction is represented as a numbered node
q  each edge is marked with the object which causes transactions

to conflict
q  we can construct a coloring of the conflict graph
q  since transactions with the same color are not connected, every

set Ci forms an independent set and can be executed in parallel
without facing any conflicts

Towards the optimal: Ordering Conflict Graph

q  An optimal offline schedule Opt determines a k-coloring of the
conflict graph and an execution order (the ordering conflict
graph) such that for any two sets Ci and Cj, where i < j, if T1
and T2 conflict, and T1 is in C1 and T2 in T2, then T2 is
postponed until T1 commits

q  There are k! ordering conflict graphs
q  The ordering conflict graph is weighted:

q  Node’s weight is the transaction’s execution time
q  Arc’s weight is the cost for moving the object from the source

node to the destination node

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

…but the optimal is too complex

q  The commit time of a transaction T is determined by one of
the weighted paths that ends at T

q  The makespan is the weight of the longest weighted path in
the ordering conflict graph

q  The optimal is reached selecting the ordering conflict graph
that minimizes the makespan

q  Finding an optimal contention manager is (NP-) hard
q  If each node issues only one transaction and cost of moving

objects is negligible, then the problem is equivalent to finding the
chromatic number of the conflict graph

q  If the number of shared object is one, the problem is equivalent
to finding the traveling salesman path (TSP) in the cost graph

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Also…

q  When each node generates a sequence of transactions, it is
not always optimal to schedule transactions according to the
ordering conflict graph since the conflict graph evolves over
time, an optimal schedule based on a static conflict graph
may lose potential parallelism in the future.

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Local optimality is not global optimality (2-coloring)

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Not	
Op)mal!	

T1
1

T1
2 T1

3

T1
4

T1
5

T1
6

T1
8

T1
7

O1

O2

O3

O4

O5

O6
 O7

O8

O9

O10

O11

O12
 O13

 O14

T2
8

T2
3

T2
1

T2
6

T2
5 T2

7

T2
4 T2

2

T1
1

T1
3

T1
6

T1
8

T1
2

T1
4

T1
5

T1
7

T2
8

T2
1 T2

3 T2
6

T2
5 T2

2 T2
4 T2

7

Makespan = 4d

Local optimality is not global optimality (4-coloring)

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

T1
1

T1
2 T1

3

T1
4

T1
5

T1
6

T1
8

T1
7

O1

O2

O3

O4

O5

O6
 O7

O8

O9

O10

O11

O12
 O13

 O14

T2
8

T2
3

T2
1

T2
6

T2
5 T2

4

T2
7 T2

2

T1
1

T1
7

T1
2

T1
8

T1
5 T1

4

T2
7

T2
1

T1
3 T1

6

T2
8

T2
2 T2

5

T2
3

T2
4

T2
6

Makespan = 3d

Lower Bounds

q  For	 STM,	 any	 online	 determinis$c	 CM	 is	 Ω(s)-‐compe$$ve,	
where	 s	 is	 the	 number	 of	 objects	 [A[ya	 et	 al.	 	 ’06]	

q  For	 DTM,	 any	 online	 determinis$c	 work	 conserva$ve	 CM	 is	
	
	
op$mal,	 where	 	 	 	 	 is	 the	 normalized	 network	 diameter	

q  When	 the	 normalized	 network	 diameter	 is	 bounded	 (D	 is	 a	
constant),	 it	 can	 only	 provide	 a	 Ω(s2)-‐compe$$ve	 ra$o.	 	

	
Can	 we	 find	 an	 approximate	 op$mal	 solu$on	 in	

reasonable	 $me?	

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Definition 3 A scheduling algorithm is work conserving if it always runs a
maximal set of non-conflicting transactions.

In [1], Attiya et al. showed that, for multiprocessor STM, a deterministic
work conserving contention manager is ⌦(s)-competitive, if the set of objects
requested by a transaction changes when the transaction restarts. We prove
that for DTM, the performance guarantee is even worse.

Theorem 5 For DTM, any online, work conserving deterministic contention

manager is ⌦(max[s, s

2

D

])-competitive, where D := D

min

G

d

d

ij

is the normalized

diameter of the cost graph G
d

.

Proof. The proof uses s2 transactions with the same local execution duration ⌧ .
A transaction is denoted by T

ij

, where 1i, js. Each transaction T
ij

contains
a sequence of two operations {R

i

,W
i

}, which first reads from object o
i

and then
writes to o

i

. Each transaction T
ij

is issued by node v
ij

at the same time, and
object o

i

is held by node v
i1

when the system starts. For each i, we select a set
of nodes V

i

:= {v
i1

, v
i2

, . . . , v
is

} within the range of the diameter D
i

 D

s

.
Consider the optimal schedule Opt. Note that all transactions form an s⇥ s

matrix, and transactions from the same row ({T
i1

, T
i2

, . . . , T
is

} for 1is) have
the same operations. Therefore, at the start of the execution, Opt selects one
transaction from each row, thus s transactions start to execute. Whenever T

ij

commits, Opt selects one transaction from the rest of the transactions in row i
to execute. Hence, at any time, there are s transactions that run in parallel.

The order that Opt selects transactions from each row is crucial: Opt should
select transactions in the order such that the weight of the longest weighted path
in G⇤

c

(Opt) is optimal. Since transactions from di↵erent rows run in parallel,
we have: makespanOpt = s · ⌧ + max

1is

Tsp(G
d

(o
i

)), where G
d

(o
i

) denotes
the subgraph of G

d

induced by s transactions requesting o
i

, and Tsp(G
d

(o
i

))
denotes the length of the TSP path of G

d

(o
i

), i.e., the shortest path that visits
each node exactly once in Tsp(G

d

(o
i

)).
Now consider an online, work conserving deterministic contention manager

A. Being work conserving, it must select to execute a maximal independent set
of non-conflicting transactions. Since the first access of all transactions is a read,
the contention manager starts to execute all s2 transactions.

After the first read operation, for each row i, all transactions in row i
attempt to write o

i

, but only one of them can commit and the others will
abort. Otherwise, atomicity is violated, since inconsistent states of some trans-
actions may be accessed. When a transaction restarts, the adversary deter-
mines that all transactions change to write to the same object, e.g., {R

i

,W
1

}.
Therefore, the rest s2 � s transactions can only be executed sequentially af-
ter the first s transactions execute in parallel and commit. Then we have:
makespan

A

� (s2 � s+1) · ⌧ +min
G

d

Tsp(G
d

(s2 � s+1)), where G
d

(s2 � s+1)
denotes the subgraph of G

d

induced by a subset of s2 � s+ 1 transactions.
Now, we can compute A’s competitive ratio. We have: makespan

A

makespanOpt
�

max
h
(s

2�s+1)·⌧
s·⌧ ,

min

G

d

Tsp(G
d

(s

2�s+1))

max

1is

Tsp(G
d

(o

i

))

i
� max[s

2�s+1

s

,
(s

2�s+1)·min

G

d

d

ij

(s�1)·D
s

] = ⌦(max[s, s

2

D

]).

The theorem follows.

Definition 3 A scheduling algorithm is work conserving if it always runs a
maximal set of non-conflicting transactions.

In [1], Attiya et al. showed that, for multiprocessor STM, a deterministic
work conserving contention manager is ⌦(s)-competitive, if the set of objects
requested by a transaction changes when the transaction restarts. We prove
that for DTM, the performance guarantee is even worse.

Theorem 5 For DTM, any online, work conserving deterministic contention

manager is ⌦(max[s, s

2

D

])-competitive, where D := D

min

G

d

d

ij

is the normalized

diameter of the cost graph G
d

.

Proof. The proof uses s2 transactions with the same local execution duration ⌧ .
A transaction is denoted by T

ij

, where 1i, js. Each transaction T
ij

contains
a sequence of two operations {R

i

,W
i

}, which first reads from object o
i

and then
writes to o

i

. Each transaction T
ij

is issued by node v
ij

at the same time, and
object o

i

is held by node v
i1

when the system starts. For each i, we select a set
of nodes V

i

:= {v
i1

, v
i2

, . . . , v
is

} within the range of the diameter D
i

 D

s

.
Consider the optimal schedule Opt. Note that all transactions form an s⇥ s

matrix, and transactions from the same row ({T
i1

, T
i2

, . . . , T
is

} for 1is) have
the same operations. Therefore, at the start of the execution, Opt selects one
transaction from each row, thus s transactions start to execute. Whenever T

ij

commits, Opt selects one transaction from the rest of the transactions in row i
to execute. Hence, at any time, there are s transactions that run in parallel.

The order that Opt selects transactions from each row is crucial: Opt should
select transactions in the order such that the weight of the longest weighted path
in G⇤

c

(Opt) is optimal. Since transactions from di↵erent rows run in parallel,
we have: makespanOpt = s · ⌧ + max

1is

Tsp(G
d

(o
i

)), where G
d

(o
i

) denotes
the subgraph of G

d

induced by s transactions requesting o
i

, and Tsp(G
d

(o
i

))
denotes the length of the TSP path of G

d

(o
i

), i.e., the shortest path that visits
each node exactly once in Tsp(G

d

(o
i

)).
Now consider an online, work conserving deterministic contention manager

A. Being work conserving, it must select to execute a maximal independent set
of non-conflicting transactions. Since the first access of all transactions is a read,
the contention manager starts to execute all s2 transactions.

After the first read operation, for each row i, all transactions in row i
attempt to write o

i

, but only one of them can commit and the others will
abort. Otherwise, atomicity is violated, since inconsistent states of some trans-
actions may be accessed. When a transaction restarts, the adversary deter-
mines that all transactions change to write to the same object, e.g., {R

i

,W
1

}.
Therefore, the rest s2 � s transactions can only be executed sequentially af-
ter the first s transactions execute in parallel and commit. Then we have:
makespan

A

� (s2 � s+1) · ⌧ +min
G

d

Tsp(G
d

(s2 � s+1)), where G
d

(s2 � s+1)
denotes the subgraph of G

d

induced by a subset of s2 � s+ 1 transactions.
Now, we can compute A’s competitive ratio. We have: makespan

A

makespanOpt
�

max
h
(s

2�s+1)·⌧
s·⌧ ,

min

G

d

Tsp(G
d

(s

2�s+1))

max

1is

Tsp(G
d

(o

i

))

i
� max[s

2�s+1

s

,
(s

2�s+1)·min

G

d

d

ij

(s�1)·D
s

] = ⌦(max[s, s

2

D

]).

The theorem follows.

CUTTING

q  CUTTING is a randomized scheduling algorithm based on
partitioning the cost graph

q  Assumptions:
q  Transaction Ti knows its required set of objects after it starts
q  We assume that the moving cost is bounded at D

q  Input:
q  A set of transactions with their execution time
q  The conflict graph
q  The cost graph
q  An approximate TSP algorithm (ATSP)

q  Output:
q  A schedule for executing transactions

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Why TSP and why that assumption?

q  T invoked by N1

q  T1 writes objects {o2, o3}
q  N2 stores o2; N3 stores o3

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

N1

N4

N2

N3

d12

d23

d34

d14

d13

d24

Without assumption With assumption

T
Fetch (o2)

N2 2 x d12

Fetch (o3)
N3 2 x d13

(2 x d12) + (2 x d13) = ~4d

T
Fetch (o2, o3)

N2 d12

N3 d13

d12 + d23 + d13 = ~3d

d23

Cutting: how it works

q  The cost graph is partitioned in C partitions such that for any
pair of nodes (vi,vj) belonging to one partition, dij ≤ ATSP/C

q  Within each partition:
q  Nodes are numbered with an integer from 1 to the size of the

partition
q  A binary tree is built following nodes’ numbers

q  Each transaction randomly selects an integer that is used for
deciding the transaction to abort after a conflict

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

v3	 v2	

v1	

P1

v3	 v2	

v1	

P2

v3	 v2	

v1	

PC

…

Cutting: how it works

q  Handling conflicts between two transactions:
q  Phase 1:

Ø Within the same partition and one transaction is an ancestor of the
other in the partition’s binary tree, the node that precedes the other
in the ATPS path aborts the other

Ø Otherwise the transaction with the lesser partition number aborts
the other

q  Phase 2:
Ø Each transaction randomly selects an integer (π) when it starts or

restarts. If one transaction is not an ancestor of the other, the
transaction with the lower π proceeds and the other transaction
aborts.

q  Whenever a transaction is aborted by a remote transaction, the
requested object is moved to the remote transaction
immediately.

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

Cutting: analysis

q  The average case competitive ratio of Cutting is

for s objects shared by n transactions invoked
by m nodes

q  This is close to the multiprocessor bound of O(s)

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

By Lemma 7, if we conduct 16e(C + 1) lnn trials, each having a success proba-
bility 1

e(C+1)

, then the probability that the number of successes X is less than

8 lnn becomes: Pr(X < 8 lnn) < e�2 lnn = 1

n

2

.

Now we examine the transaction T l invoked by node v
l 2 P

t

, where v
l

is
the left child of the root node v in Bt(P

t

). When T l conflicts with T , it aborts
and holds o↵ until T commits or aborts. Hence, T l can be aborted by T at most
16e(C+1) lnn times with probability 1� 1

n

2

. On the other hand, T l needs at most
16e(C + 1) lnn to choose the smallest integer among all conflicting transactions
with probability 1� 1

n

2

. Hence, in total, T l needs at most 32e(C + 1) lnn trials
with probability (1� 1

n

2

)2 > (1� 2

n

2

).

Therefore, by induction, the transaction TL invoked by a level-L node v
L

of Bt(P
t

) needs at most (1+ log
2

L) log
2

L ·8e(C+1) lnn trials with probability

at least 1� (1+log

2

L) log

2

L

2n

2

. Now, we can calculate the average number of trials:

E[# of trials a transaction needs to commit] = O
�
C log2 m log n

�
.

Since when the starting point of the ATSP path is randomly selected, the
probability that a transaction is located at level L is 1/2Lmax

�L+1. The lemma
follows.

Lemma 8 The average response time of a transaction is O
�
C log2 m log n · (⌧ +

Atsp
A

C

)
�
.

Proof. From Lemma 6, each transaction needs O
�
C log2 m log n

�
trials, on av-

erage. We now study the duration of a trial, i.e., the time until a transaction
can select a new random number. Note that a transaction can only select a new
random number after it is aborted (locally or remotely). Hence, if a transac-
tion conflicts with a transaction in the same partition, the duration is at most
⌧ + Atsp

A

C

; if it conflicts with a transaction in another partition, the duration is
at most ⌧ +D. Note that a transaction sends its requests of objects simultane-
ously once after it (re)starts. If a transaction conflicts with multiple transactions,
the first conflicting transaction it knows is the transaction closest to it. From
Lemma 6, a transaction can be aborted by transactions from other partitions by
at most 16e(C+1) lnn times. Hence, the expected commit time of a transaction
is O

�
C log2 m log n · (⌧ + Atsp

A

C

)
�
. The lemma follows.

Theorem 9 The average-case competitive ratio of Cutting is O
�
s·�

A

·log2 m log2 n
�
.

Proof. By following the Cherno↵ bound provided by Lemma 7 and Lemma 8,
we can prove that Cutting produces a schedule with average-case makespan
O
�
C log2 m log n · (⌧ + Atsp

A

C

) + (N · log2 m log2 n · ⌧ + Atsp
A

)
�
, where N is

the maximum number of transactions issued by the same node. We then find
that makespanOpt � max

1is

�
⌧ · max[�

i

, N] + Tsp(G
d

(o
i

))
�
, since �

i

trans-
actions concurrently conflict on object o

i

. Hence, at any given time, only one
of them can commit, and the object moves along a certain path to visit �

i

transactions one after another. Then we have: makespanOpt � max
1is

�
⌧ ·

max[�
i

, N] + Tsp(G
d

(o
i

))
� � ⌧ ·max[

P
1is

�

i

s

, N] +
P

1is

Tsp(G
d

(o

i

))

s

. There-

fore, the competitive ratio of Cutting is: makespanCutting

makespanOpt
= s · log2 m log2 n ·

Other results on Cutting

q  A transaction T needs:

trials from the moment it is invoked until it commits, on
average

q  The average response time of a transaction is:

q  The average-case competitive ratio of Cutting is

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

The conflict resolution also has two phases. In the first phase, Cutting
assigns each transaction a partition index. When two transactions T

1

(invoked by
node vj1) and T

2

(invoked by node vj2) conflict, the algorithm checks: 1) whether
they are from the same partition P

t

; 2) If so, whether 9 integer ⌫ � 1 such

that bmax{ (vj

1

), (v

j

2

)}
2

⌫

c = min{ (vj1), (vj2)}. Note that by checking these
two conditions, an underlying binary tree Bt(P

t

) is constructed in P
t

as follows:
1. Set vj0 as the root of Bt(P

t

) (level 1), where (vj0 = 0), i.e., the first node
added to P

t

.
2. Node vj0 ’s left pointer points to vj0+1 and right pointer points to vj0+2.

Nodes vj0+1 and vj0+2 belong to level 2.
3. Repeat Step 2 by adding nodes sequentially to each level from left to right.

In the end, O(log
2

m) levels are constructed.
Note that by satisfying these two conditions, the transaction with the smaller
partition index must be an ancestor of the other transaction in Bt(P

t

). There-
fore, a transaction may conflict with at most O(log

2

m) ancestors in this case.
Cutting resolves the conflict greedily so that the transaction with the smaller
partition index always aborts the other transaction.

In the second phase, each transaction selects an integer ⇡ 2 [1,m] randomly
when it starts or restarts. If one transaction is not an ancestor of another transac-
tion, the transaction with the lower ⇡ proceeds and the other transaction aborts.
Whenever a transaction is aborted by a remote transaction, the requested object
is moved to the remote transaction immediately.

3.2 Analysis

We now study two e�ciency measures of Cutting from the average-case per-
spective: the average response time (how long it takes for a transaction to commit
on average) and the average makespan.

Lemma 6 A transaction T needs O
�
C log2 m log n

�
trials from the moment it

is invoked until it commits, on average.

Proof. We start from a transaction T invoked by the root node v 2 Bt(P
t

).
Since v is the root, T cannot be aborted by another ancestor in Bt(P

t

). Hence,
T can only be aborted when it chooses a larger ⇡ than ⇡0, which is the integer
chosen by a conflicting transaction T 0 invoked by node v

0 2 P
t

0 . The probability
that for transaction T , no transaction T 0 2 N

T

selects the same random number
⇡0 = ⇡ is: Pr(@T 0 2 N

T

|⇡0 = ⇡) =
Q

T

02N

T

(1� 1

m

) � (1� 1

m

)�(T) � (1� 1

m

)m �
1

e

. Note that �(T) C m. On the other hand, the probability that ⇡ is at
least as small as ⇡0 for any conflicting transaction T 0 is at least 1

(C+1)

. Thus, the

probability that ⇡ is the smallest among all its neighbors is at least 1

e(C+1)

.

We use the following Cherno↵ bound:

Lemma 7 Let X
1

, X
2

, . . . , X
n

be independent Poisson trials such that, for 1
i n, Pr(X

i

= 1) = p
i

, where 0 p
i

 1. Then, for X =
P

n

i=1

X
i

, µ = E[X] =P
n

i=1

p
i

, and any � 2 (0, 1], Pr(X < (1� �)µ) < e��
2

µ/2.

By Lemma 7, if we conduct 16e(C + 1) lnn trials, each having a success proba-
bility 1

e(C+1)

, then the probability that the number of successes X is less than

8 lnn becomes: Pr(X < 8 lnn) < e�2 lnn = 1

n

2

.

Now we examine the transaction T l invoked by node v
l 2 P

t

, where v
l

is
the left child of the root node v in Bt(P

t

). When T l conflicts with T , it aborts
and holds o↵ until T commits or aborts. Hence, T l can be aborted by T at most
16e(C+1) lnn times with probability 1� 1

n

2

. On the other hand, T l needs at most
16e(C + 1) lnn to choose the smallest integer among all conflicting transactions
with probability 1� 1

n

2

. Hence, in total, T l needs at most 32e(C + 1) lnn trials
with probability (1� 1

n

2

)2 > (1� 2

n

2

).

Therefore, by induction, the transaction TL invoked by a level-L node v
L

of Bt(P
t

) needs at most (1+ log
2

L) log
2

L ·8e(C+1) lnn trials with probability

at least 1� (1+log

2

L) log

2

L

2n

2

. Now, we can calculate the average number of trials:

E[# of trials a transaction needs to commit] = O
�
C log2 m log n

�
.

Since when the starting point of the ATSP path is randomly selected, the
probability that a transaction is located at level L is 1/2Lmax

�L+1. The lemma
follows.

Lemma 8 The average response time of a transaction is O
�
C log2 m log n · (⌧ +

Atsp
A

C

)
�
.

Proof. From Lemma 6, each transaction needs O
�
C log2 m log n

�
trials, on av-

erage. We now study the duration of a trial, i.e., the time until a transaction
can select a new random number. Note that a transaction can only select a new
random number after it is aborted (locally or remotely). Hence, if a transac-
tion conflicts with a transaction in the same partition, the duration is at most
⌧ + Atsp

A

C

; if it conflicts with a transaction in another partition, the duration is
at most ⌧ +D. Note that a transaction sends its requests of objects simultane-
ously once after it (re)starts. If a transaction conflicts with multiple transactions,
the first conflicting transaction it knows is the transaction closest to it. From
Lemma 6, a transaction can be aborted by transactions from other partitions by
at most 16e(C+1) lnn times. Hence, the expected commit time of a transaction
is O

�
C log2 m log n · (⌧ + Atsp

A

C

)
�
. The lemma follows.

Theorem 9 The average-case competitive ratio of Cutting is O
�
s·�

A

·log2 m log2 n
�
.

Proof. By following the Cherno↵ bound provided by Lemma 7 and Lemma 8,
we can prove that Cutting produces a schedule with average-case makespan
O
�
C log2 m log n · (⌧ + Atsp

A

C

) + (N · log2 m log2 n · ⌧ + Atsp
A

)
�
, where N is

the maximum number of transactions issued by the same node. We then find
that makespanOpt � max

1is

�
⌧ · max[�

i

, N] + Tsp(G
d

(o
i

))
�
, since �

i

trans-
actions concurrently conflict on object o

i

. Hence, at any given time, only one
of them can commit, and the object moves along a certain path to visit �

i

transactions one after another. Then we have: makespanOpt � max
1is

�
⌧ ·

max[�
i

, N] + Tsp(G
d

(o
i

))
� � ⌧ ·max[

P
1is

�

i

s

, N] +
P

1is

Tsp(G
d

(o

i

))

s

. There-

fore, the competitive ratio of Cutting is: makespanCutting

makespanOpt
= s · log2 m log2 n ·

By Lemma 7, if we conduct 16e(C + 1) lnn trials, each having a success proba-
bility 1

e(C+1)

, then the probability that the number of successes X is less than

8 lnn becomes: Pr(X < 8 lnn) < e�2 lnn = 1

n

2

.

Now we examine the transaction T l invoked by node v
l 2 P

t

, where v
l

is
the left child of the root node v in Bt(P

t

). When T l conflicts with T , it aborts
and holds o↵ until T commits or aborts. Hence, T l can be aborted by T at most
16e(C+1) lnn times with probability 1� 1

n

2

. On the other hand, T l needs at most
16e(C + 1) lnn to choose the smallest integer among all conflicting transactions
with probability 1� 1

n

2

. Hence, in total, T l needs at most 32e(C + 1) lnn trials
with probability (1� 1

n

2

)2 > (1� 2

n

2

).

Therefore, by induction, the transaction TL invoked by a level-L node v
L

of Bt(P
t

) needs at most (1+ log
2

L) log
2

L ·8e(C+1) lnn trials with probability

at least 1� (1+log

2

L) log

2

L

2n

2

. Now, we can calculate the average number of trials:

E[# of trials a transaction needs to commit] = O
�
C log2 m log n

�
.

Since when the starting point of the ATSP path is randomly selected, the
probability that a transaction is located at level L is 1/2Lmax

�L+1. The lemma
follows.

Lemma 8 The average response time of a transaction is O
�
C log2 m log n · (⌧ +

Atsp
A

C

)
�
.

Proof. From Lemma 6, each transaction needs O
�
C log2 m log n

�
trials, on av-

erage. We now study the duration of a trial, i.e., the time until a transaction
can select a new random number. Note that a transaction can only select a new
random number after it is aborted (locally or remotely). Hence, if a transac-
tion conflicts with a transaction in the same partition, the duration is at most
⌧ + Atsp

A

C

; if it conflicts with a transaction in another partition, the duration is
at most ⌧ +D. Note that a transaction sends its requests of objects simultane-
ously once after it (re)starts. If a transaction conflicts with multiple transactions,
the first conflicting transaction it knows is the transaction closest to it. From
Lemma 6, a transaction can be aborted by transactions from other partitions by
at most 16e(C+1) lnn times. Hence, the expected commit time of a transaction
is O

�
C log2 m log n · (⌧ + Atsp

A

C

)
�
. The lemma follows.

Theorem 9 The average-case competitive ratio of Cutting is O
�
s·�

A

·log2 m log2 n
�
.

Proof. By following the Cherno↵ bound provided by Lemma 7 and Lemma 8,
we can prove that Cutting produces a schedule with average-case makespan
O
�
C log2 m log n · (⌧ + Atsp

A

C

) + (N · log2 m log2 n · ⌧ + Atsp
A

)
�
, where N is

the maximum number of transactions issued by the same node. We then find
that makespanOpt � max

1is

�
⌧ · max[�

i

, N] + Tsp(G
d

(o
i

))
�
, since �

i

trans-
actions concurrently conflict on object o

i

. Hence, at any given time, only one
of them can commit, and the object moves along a certain path to visit �

i

transactions one after another. Then we have: makespanOpt � max
1is

�
⌧ ·

max[�
i

, N] + Tsp(G
d

(o
i

))
� � ⌧ ·max[

P
1is

�

i

s

, N] +
P

1is

Tsp(G
d

(o

i

))

s

. There-

fore, the competitive ratio of Cutting is: makespanCutting

makespanOpt
= s · log2 m log2 n ·

By Lemma 7, if we conduct 16e(C + 1) lnn trials, each having a success proba-
bility 1

e(C+1)

, then the probability that the number of successes X is less than

8 lnn becomes: Pr(X < 8 lnn) < e�2 lnn = 1

n

2

.

Now we examine the transaction T l invoked by node v
l 2 P

t

, where v
l

is
the left child of the root node v in Bt(P

t

). When T l conflicts with T , it aborts
and holds o↵ until T commits or aborts. Hence, T l can be aborted by T at most
16e(C+1) lnn times with probability 1� 1

n

2

. On the other hand, T l needs at most
16e(C + 1) lnn to choose the smallest integer among all conflicting transactions
with probability 1� 1

n

2

. Hence, in total, T l needs at most 32e(C + 1) lnn trials
with probability (1� 1

n

2

)2 > (1� 2

n

2

).

Therefore, by induction, the transaction TL invoked by a level-L node v
L

of Bt(P
t

) needs at most (1+ log
2

L) log
2

L ·8e(C+1) lnn trials with probability

at least 1� (1+log

2

L) log

2

L

2n

2

. Now, we can calculate the average number of trials:

E[# of trials a transaction needs to commit] = O
�
C log2 m log n

�
.

Since when the starting point of the ATSP path is randomly selected, the
probability that a transaction is located at level L is 1/2Lmax

�L+1. The lemma
follows.

Lemma 8 The average response time of a transaction is O
�
C log2 m log n · (⌧ +

Atsp
A

C

)
�
.

Proof. From Lemma 6, each transaction needs O
�
C log2 m log n

�
trials, on av-

erage. We now study the duration of a trial, i.e., the time until a transaction
can select a new random number. Note that a transaction can only select a new
random number after it is aborted (locally or remotely). Hence, if a transac-
tion conflicts with a transaction in the same partition, the duration is at most
⌧ + Atsp

A

C

; if it conflicts with a transaction in another partition, the duration is
at most ⌧ +D. Note that a transaction sends its requests of objects simultane-
ously once after it (re)starts. If a transaction conflicts with multiple transactions,
the first conflicting transaction it knows is the transaction closest to it. From
Lemma 6, a transaction can be aborted by transactions from other partitions by
at most 16e(C+1) lnn times. Hence, the expected commit time of a transaction
is O

�
C log2 m log n · (⌧ + Atsp

A

C

)
�
. The lemma follows.

Theorem 9 The average-case competitive ratio of Cutting is O
�
s·�

A

·log2 m log2 n
�
.

Proof. By following the Cherno↵ bound provided by Lemma 7 and Lemma 8,
we can prove that Cutting produces a schedule with average-case makespan
O
�
C log2 m log n · (⌧ + Atsp

A

C

) + (N · log2 m log2 n · ⌧ + Atsp
A

)
�
, where N is

the maximum number of transactions issued by the same node. We then find
that makespanOpt � max

1is

�
⌧ · max[�

i

, N] + Tsp(G
d

(o
i

))
�
, since �

i

trans-
actions concurrently conflict on object o

i

. Hence, at any given time, only one
of them can commit, and the object moves along a certain path to visit �

i

transactions one after another. Then we have: makespanOpt � max
1is

�
⌧ ·

max[�
i

, N] + Tsp(G
d

(o
i

))
� � ⌧ ·max[

P
1is

�

i

s

, N] +
P

1is

Tsp(G
d

(o

i

))

s

. There-

fore, the competitive ratio of Cutting is: makespanCutting

makespanOpt
= s · log2 m log2 n ·

Thanks!

Questions?

Research project’s web-site: www.hyflow.org

SIROCCO 2014, July 23 - 25, 2014, Hida Takayama, Japan

