
10th International Conference on Principles and Practices of Programming on JAVA platform 1 / 26

Hyflow2: A High-Performance Distributed

Transactional Memory Framework in Scala

Alexandru Turcu, Binoy Ravindran, Roberto Palmieri*
talex@vt.edu, binoy@vt.edu, robertop@vt.edu

Electrical and Computer Engineering Department
Virginia Tech (USA)

PPPJ 2013

September 11, 2013



Overview

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 2 / 26

■ Introduction
■ Hyflow2 API
■ Nested Transactions
■ Java Compatibility
■ Implementation
■ Conclusions



Introduction

Overview

Introduction

Locking

STM

D. Concurrency

DTM

DTM Transactions

TFA

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 3 / 26



Lock-based concurrency control has serious drawbacks

Overview

Introduction

Locking

STM

D. Concurrency

DTM

DTM Transactions

TFA

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 4 / 26

■ Coarse-grained locking

◆ Simple.
◆ But no concurrency.

■ Fine-grained locking

◆ Excellent performance.
◆ Poor programmability.
◆ No composition.
◆ Lock problems dont go away! Deadlocks,

livelocks, lock-convoying, priority inversion, ...



Software Transactional Memory

Overview

Introduction

Locking

STM

D. Concurrency

DTM

DTM Transactions

TFA

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 5 / 26

■ Like database transactions
■ ACI properties (no D)
■ Easier to program
■ Composable
■ First HTM, then STM, later HyTM

STM 

Fine-grained 

locking 

Coarse-grained 

locking 

Threads 

Time 



Distributed Concurrency

Overview

Introduction

Locking

STM

D. Concurrency

DTM

DTM Transactions

TFA

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 6 / 26

■ Shared memory

◆ Ensure safety using distributed locks.
◆ Locks have problems: deadlocks, race conditions.
◆ Difficult to debug (especially distributed).

■ Traditional database transactions

◆ Heavy-weight, slow, complex to set up.
◆ Cumbersome to program (SQL).

■ Actor model (message passing)

◆ Promising, but not a silver bullet.

■ Novel approaches:

◆ NewSQL, main-memory DB, txn storage.
◆ Distributed Transactional Memory (DTM)



Distributed Transactional Memory

Overview

Introduction

Locking

STM

D. Concurrency

DTM

DTM Transactions

TFA

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 7 / 26

■ Promising new model for programming distributed
concurrency

◆ Abstracts away lock usage.
◆ Programming concurrency using a TM library is

easy: atomic blocks.



Introducing DTM Transactions

Overview

Introduction

Locking

STM

D. Concurrency

DTM

DTM Transactions

TFA

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 8 / 26

■ Successful abstraction originating in the database
community.

■ Provides failure atomicity, consistency, isolation
(possibly even durability).

■ Code generally not sand-boxed: TM opacity vs. DB
serializability.

■ Two main approaches: redo-log and undo-log.



Transactional Forwarding Algorithm

Overview

Introduction

Locking

STM

D. Concurrency

DTM

DTM Transactions

TFA

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 9 / 26

■ TFA is an existing protocol for distributed STM:

◆ Transactional Locking II
◆ Lamport clocks

■ Early Validation

◆ Validate read-set upon remote object access.
◆ Txns are not allowed to become invalid.
◆ Provides opacity.

■ Objects migrate on commit (data-flow model)



Hyflow2

Overview

Introduction

Hyflow2

Motivation

Hyflow2

API

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 10 / 26



Motivation

Overview

Introduction

Hyflow2

Motivation

Hyflow2

API

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 11 / 26

■ HyFlow is our previous DTM framework. It was hard
to maintain:

◆ Poorly designed component interfaces encouraged
hard-coded links between modules.

◆ Annotation based API required bytecode
rewriting, slowing down development of new
features.

■ Bytecode rewriting makes centralized STM fast.

◆ However in DTM, local execution costs are small
in comparison to the cost of distribution.

◆ Supporting bytecode rewriting is misplaced effort.



Hyflow2

Overview

Introduction

Hyflow2

Motivation

Hyflow2

API

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 12 / 26

■ Our second generation Distributed Transactional
Memory framework.

■ Written in Scala, for the JVM (Java, Scala, etc.)

■ Library based approach. Most features run on stock
JVM, without byte-code rewriting.



API

Overview

Introduction

Hyflow2

Motivation

Hyflow2

API

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 13 / 26

■ Clean API, based on ScalaSTM



API

Overview

Introduction

Hyflow2

Motivation

Hyflow2

API

Nested Transactions
and Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 14 / 26

■ Refs are containers for transactional data.

◆ Get value using ref.get() or ref.apply()
◆ Set value using ref.set() or ref.update()
◆ Scala syntactic sugar for the latter. E.g.

ctr() = ctr() + 1 is
ctr.update(ctr.apply() + 1)

■ The atomic ”keyword” is just a method call:

◆ Call method atomic.apply()
◆ Pass as parameter an anonymous function

(the transaction body).

■ Directory manager for opening objects.



Nested Transactions and Checkpointing

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Nested Transactions

Nesting API

Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 15 / 26



Nested Transactions

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Nested Transactions

Nesting API

Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 16 / 26

■ Nesting is used to enable code composability

◆ Transaction enclosed within another transaction

■ Three types, based on parent/children interactions:

◆ Flat nesting: monolithic transactions
◆ Closed nesting: children can abort independently
◆ Open nesting: child releases isolation early

■ Closed nesting is a solution for implementing
transactions’ partial abort



Nested Transactions API

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Nested Transactions

Nesting API

Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 17 / 26

■ Nested atomic blocks just work.

◆ Runtime chooses model (flat or closed) based on
configuration.

■ Open nesting must be requested explicitly.



Checkpointing

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Nested Transactions

Nesting API

Checkpointing

Implementation

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 18 / 26

■ Fine-grain partial abort mechanism

◆ Transaction state is saved each time a new shared
object is accessed.

◆ In case a conflict happens, transaction can
rollback to any previously saved checkpoint.

◆ Checkpointing identifies the invalid object and
restart the transaction just before the first access
of that object.



Implementation

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Architecture

Checkpointing

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 19 / 26



Architecture

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Architecture

Checkpointing

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 20 / 26

■ Based on the actor model (message passing).
■ High-performance, actively maintained libraries:

◆ Akka (actor library)
◆ Netty (asynchronous networking)
◆ Kryo (serialization).



Transaction Checkpointing

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Architecture

Checkpointing

Evaluation

10th International Conference on Principles and Practices of Programming on JAVA platform 21 / 26

■ Uses continuations, a mechanism for controlling
program flow.

◆ Similar to getcontext/setcontext in C.
◆ Not available in stock JVM, needs patched JVM

from the DaVinci VM Project.
◆ Library-based approach possible (e.g., JavaFlow,

NightWolf), but was discarded due to low
performance and Scala compatibility issues.



Evaluation

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

Configuration

Results

Conclusion

10th International Conference on Principles and Practices of Programming on JAVA platform 22 / 26



Configuration

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

Configuration

Results

Conclusion

10th International Conference on Principles and Practices of Programming on JAVA platform 23 / 26

■ One benchmark (bank) and three micro-benchmarks
(enhanced counter, skip list, hash table), configured
with high contention.

■ Competitor is the original Hyflow (which implements
the same algorithm, TFA).

■ Up to 48 nodes.



Results

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

Configuration

Results

Conclusion

10th International Conference on Principles and Practices of Programming on JAVA platform 24 / 26



Results

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

Configuration

Results

Conclusion

10th International Conference on Principles and Practices of Programming on JAVA platform 25 / 26

■ Bank, 80% reads, absolute



Conclusions

Overview

Introduction

Hyflow2

Nested Transactions
and Checkpointing

Implementation

Evaluation

Configuration

Results

Conclusion

10th International Conference on Principles and Practices of Programming on JAVA platform 26 / 26

■ We introduced Hyflow2, a high performance DTM
framework written in Scala.

■ Supports for nesting and checkpointing.
■ Modular to allow for rapid prototyping.
■ Hyflow2 available at: www.hyflow.com

■ Systems Software Research Group:
www.ssrg.ece.vt.edu

■ Thank you! Questions?


	Overview
	Introduction
	Lock-based concurrency control has serious drawbacks
	Software Transactional Memory
	Distributed Concurrency
	Distributed Transactional Memory
	Introducing DTM Transactions
	Transactional Forwarding Algorithm

	Hyflow2
	Motivation
	Hyflow2
	API
	API

	Nested Transactions and Checkpointing
	Nested Transactions
	Nested Transactions API
	Checkpointing

	Implementation
	Architecture
	Transaction Checkpointing

	Evaluation
	Configuration
	Results
	Results
	Conclusions


