~

ystems

oftware
Research Group/

On High Performance Distributed
Transactional Data Structures

Aditya Dhoke, Roberto Palmieri, Binoy Ravindran
Department of Electrical and Computer Engineering, Virginia Tech, Virginia, USA
{adityad, robertop, binoy}@vt.edu

_

& VirginiaTech

Invent the Future®

Transactional Data Structures suffer from false conflicts
g The impact of those conflicts is significant in distributed data structure

** The growing promise of Software Transactional Memory v, o
has led to the extension of well-known concurrent data Qo ° J'crhey a;e generited .by conﬂ@ur;g
structures with transactional support, in both % ir:?jzszcr:mdz:iopee;a;;:]smg >eemingly
multiprocessor and distributed contexts. While the o . P P _ .,
: . J * They do not compromise transactions
benefits of transactional data structures under
. : Q correctness.
multiprocessor settings are well-known, they can be L7 B .
R I They do not break data consistency.
equally useful in distributed systems. w
N AN /
/ False Conflicts by example \

** Consider an example of a set implemented using a sorted list. Here, insertion of an element in the set can be viewed as a high level operation, while insertion
of an object in the sorted list can be viewed as a low level operation. To insert an object O1 between objects O2 (lower) and O3 (greater), a transaction T must
traverse from the head of the list, and read all objects prior to O1. Ideally, any invalidation due to concurrent writes on objects prior to O1 would not
compromise T's correctness and should not create any conflicts. However, high level operations, even though semantically independent, traverse the same
set of objects during their execution, causing false conflicts. False conflicts can degrade performance, especially in distributed data structures, where
repeated aborts can significantly in- crease transaction execution time, as transaction execution in this setting includes expensive network communication.

Contributions:

/ QR-ON: Open Nesting \

QR-ON incorporates the open nesting model. In open nesting, only the objects accessed within the (open) nested transactions are validated and (globally)
released after successful commit. This early release increases the potential for improving concurrency: two parent transactions that have read or written the
same set of objects in their inner transactions will not detect any conflict during their commit.

QR-OON: Optimistic Open Nesting
QR-OON makes QR-ON’s commit phase non- blocking: when an open-nested transaction commits, it starts the classical open-nested commit phase. Besides, the
transaction is also locally committed, allowing subsequent transactions to start their execution without waiting for its commit. This causes an overlap between

the commit of an open-nested transaction and the read/write phase of subsequent transactions. The approach pays off when subsequent open-nested
transactions are likely to access the data written by the previous, still committing, transaction.

QR-ER: Early Release

QR-ER, does not rely on open nesting, but instead, use an early release mechanism to resolve false conflicts. QR- ER drops those objects from the transaction
read-set that do not need to be validated because, even in case of invalidation, they do not compromise correctness of the execution.

_ _/

Prellmmary Evaluation

4 . . 50 . . . 2\
Configuration QR OON vs QR-ON % Improvement m——
% The experiments were conducted on a 13 node cluster, where each is an 8- || Hash-Set: 5 40 i i ;

core AMD machine, interconnected using a 1Gbps network. ¢ Figure shows QR- OON’s % 30
c00 | | | through(put imprc/)\;imelntkm;er 3 50

_ % Improvement I QR-ON (up to 43%) for linked- &
QR-ON vs QR 400 list, with 5 nested transactions = 10
“* The Figure shows QR-ON’s 300 and 500 objects. 0

throughput improvement over

QR of 4.2x for linked-list and 200

1.95% for hash-map. 100
** Conversely, BST’s transactions

access a small subset of shared

Read %
QR-ER vs QR-ON

200
180
160
140

o0 ¢ Figure compares QR-ER’s throughput

80 | Wlth QR_ON;S for |inked'|i5t, by va rying

Open I\Iestirig —_—
Early Release —e—

Throughput

objects, and therefore does not -100 _ | _ | i L S T S S N S —— X) fo AT
suffer from false conflicts. Linked-List Hashmap BST ‘2‘8 'ﬁﬁffﬁff?fffﬁﬁﬁﬁﬁf;ﬁﬁﬁfﬁﬁﬁﬁfﬁﬁ?ﬁﬁfffiﬁﬁﬁﬁ?fﬁﬁffﬁﬁffﬁﬁﬁﬁﬁiifﬁfiifiﬁﬁﬁfﬁfﬁff{ﬁfﬁfﬁffﬁ the number ot objects In the a.ta
0 R — m— structure, for 3 nested transactions
/ 40 60 80 100 120 140 160 180 200 _ o .
Objects (for QR QN) and 50% write
_ transactions.)

Open nesting is the typical solution for solving false conflicts, but we determined that it has significant commit
overhead in fault-tolerant DTM. We showed that optimistic open nesting can outperform open nesting in low

contention scenarios. Additionally, we showed that early release can provide substantial performance

Qmprovement -- up to an order of magnitude -- over its open nesting counterparts. Y,
ACKNOWLEDGMENTS

This work is supported in part by US National Science Foundation under grants CNS 0915895, CNS 1116190, CNS 1130180, and CNS 1217385.

