~

ystems
oftware

Research Group/

SMASH: Speculative State Machine
Replication in Transactional Systems

Sachin Hirve, Roberto Palmieri, Binoy Ravindran
Department of Electrical and Computer Engineering, Virginia Tech, Virginia, USA
{hsachin, robertop, binoy}@vt.edu

_

& VirginiaTech

Invent the Future®

Transactional Systems based on the Active Replication paradigm, an
Optimistic Atomic Broadcast layer and a speculative concurrency control.

¢ Fault-tolerance is a strongly desirable property of Atomic Broadcast
transactional systems. Object replication provides fault- ¢ Atomic Broadcast (AB) is a total order layer
tolerance guarantees, but suffers from some trade-offs. based on consensus. All nodes receive the
On the one hand, partially replicating shared objects same set of messages in a unique order,
across remote nodes helps reducing the storage even in presence of failures.
requirement at each node, but it also burdens ** ABcast(m): used by clients to broadcast a
transactions with expensive network communication message m to all the nodes.
steps, resulting in long execution times and possibly low K Adelive?r(m.): event notified to each replica
performance. On the other hand, full replication allows for delivering a message m.
transactions to execute fully locally, which vyields low Optimistic Atomic Broadcast
execution times, but requires an ordering protocol that & Odeliver(m), which is used for early
ensures a total order among the transactional requests delivering a previously broadcast message
_ issued by clients.) _ m before the Adeliver(m) is issued. Y
4 System Model N\

We consider a classical distributed system model consisting of a set of processes (replicas) that communicate via message passing. Processes may fail according
to the fail-stop (crash) model. In order to reach consensus, we assume that the majority of nodes are always correct. We assume the full replication model where
Qach replica maintains the whole shared data set. Clients wrap transactions in transaction requests. They are broadcast using the OAB service to all the replicas./

Speculative Concurrency Control (SCC) \

¢ SCC exploits multi-versioned memory for activating read- only transactions in
parallel to write transactions that are, in contrast, executed in a single
thread.

¢ Single-thread processing ensures that when a transaction completes its
execution, all the previous transactions are executed in a known order.

*» Additionally, no atomic operations are needed for managing locks or critical
sections. As a result, write transactions are processed faster and read-only
transactions do not suffer from otherwise overloaded hardware bus (due to
CAS operations and cache invalidations caused by spinning on locks).

** When the final order of a transaction is established, if it is completely
executed by then, it is validated for detecting the equivalence between its
actual serialization order and the final order. If the processing order is
equivalent to the OAB order, then the transaction is committed; otherwise it

/ Optimized OAB service

** The key idea of our optimized OAB service is exploiting the observation that,
during a crash-free execution, while the nodes are establishing the
consensus of messages, the probability of a mismatch between the
optimistic and relative final order of the message is minimal.

*** Implemented on top of S-Paxos.

** When the leader sends the proposed order for a batch, replicas use it for
triggering the optimistic delivery. In order to minimize inversions, replicas
trigger an optimistic delivery only when:

1) they receive a propose message;
2) all request batches of the propose message have been received; and
3) all previous instances have already been optimistically delivered.

k is aborted and restarted. /
Preliminary Evaluation
4 . - N ~
Configuration SMASH
** We implemented the two components of SMASH in Java. s We contrast SMASH with 50000
** Our test-bed consists of 8 nodes, each of which is a 64-core AMD Opteron SCORe, a state-of-the-art gmgﬂ 88°§° reag' —o—
. . . % read —k—
machine, interconnected using a 1Gbps network. partial replication approach. so000 | SQOReSCeread o <
e 90% read -
OAB service > Failure-free mmm ' | ¢ We used TPC-C benchmark, g ‘
rauly = configured to generate 2 | \
** We conducted experiments SIS 1 , 8
: 5 different percentages of g]
measuring the percentage o _
- © 3 : read-only transactions (50%
of reordering between 35 548
N o L ' and 90%). 10000 o R R |
optimistic/final deliveries. s | |
0:0 We tested fai]ure_free and _g :::::::::::f .:;:___:;:-::.:@Ig:::::::::::%lé:-:-:-:-:-:-:-:-%§§::::::?ﬁ
. © ¢ SMASH outperforms SCORe 0® ;
faulty executions where we 8§ | _ ith 8 replicas by Ub to 10x 3 4 5 6 7 8
explicitly crash the leader. 0.32 P y up ' Replicas
00 00 0004 0py 0008
0 3 4 5 5 . 8 ¢ SMASH’s effectiveness is particularly evident here, as SCORe pays the cost for
Replicas looking-up remotely accessed objects, unlike SMASH, which executes locally.

A\ %

~

At its core, our work shows that optimism pays off: speculative transaction execution, started as soon as
transactions are optimistically delivered, allows hiding the total ordering latency, and yields performance gain.

Single-communication step is mandatory for fine-grain transactions.
N /

ACKNOWLEDGMENTS
This work is supported in part by US National Science Foundation under grants CNS 0915895, CNS 1116190, CNS 1130180, and CNS 1217385.

