L ads b ALl aii (A 2. o) A

ystems 1 Slatbo] | ok frossexob/axse
| Oftware > i ... ; d/0 .° e
L.....; !{esearch Gropp ;. 24710 — elease sock+0x1:

On Developing Optimistic Transactional Lazy

Set

Ahmed Hassan, Roberto Palmieri, Binoy Ravindran
Systems Software Research Group
Virginia Tech

OPODIS 2014
Virginia

WTECh

Motivation

o Concurrent data structures are well optimized for high
performance

o E.g., Lazy linked-list, Lazy skip-list

What about Transactional data structures?

7
\

_/

|

Why Transactional data structures?

Shared data: concurrentlist

atomicFoo ()

{
concurrentList.add (x) ;

}

Why Transactional data structures?

Shared data: concurrentlist

atomicFoo ()

{
concurrentList.add (x) ;
concurrentList.add(y) ;

o Composability

Why Transactional data structures?

Shared data: concurrentListl

Shared data: concurrentlList2

atomicFoo ()

{
concurrentListl. remove (x) ;

concurrentList2.add (x) ;

o Composability

Why Transactional data structures?

Shared data: concurrentlist

atomicFoo ()
{
If (concurrentList.add(x))
nl++;
Else
n2++;

a

o Integration

Solutions?

o Software Transactional Memory (STM)?
a Yes, but will lose performance

Shared data: sequentiallist

@Atomic

atomicFoo ()

{
sequentiallist.add(x) ;
sequentiallist.add(y) ;

a Why?

o For STM to be a general framework, data structures
will suffer from false conflicts

False Conflict

o Example: Linked list (Insert “557)

False Conflict

o All “red” nodes are in the read-set PR
“50” and “55” are in the write-set
o What if a concurrent transaction deletes “5°7?7

False Conflict

Earlier Solution: Transactional Boosting

o Convert highly concurrent data structures to be transactional.

: Acquire S ti
o Composable (like STM) E =
o And efficient (like lazy/lock-free) Update Semantic
undo-log
| . Call
1 Issues. Concurrent
- Eager locking. Operation

_ (As Black Box)
- Inverse operations.

- Black-box concurrent data structure.

Release Semantic
Locks

(If Abort, roll back
undo-log)

Our Solution: Optimistic Transactional Boosting (OTB)

o Convert highly concurrent data structures to be transactional.

AND

o Lazy updates.

o White-box data structures.

o No need for inverse operations.

o Easy integration with STM frameworks.

11

Lazy Vs Boosting Vs Optimistic Boosting

Operation <
Execution

Commit
Execution<

/

Acquire Semantic
Unmonitored Locks Unmonitored
Traversal Update Semantic Traversal
undo-log
- Call . Semantic read-set
. . oncurren
Validate and Write Operation Update Semantic
read- and write-
Release Locks (As Black Box) sets
) Acquire Locks
Release Semantic
Locks . .
Validate and Write
(If Abort, roll back
undo-log) Release Locks
Concurrent Pessimistic Boosting OTB

12

OTB Guidelines

G1: Split the (semantic) data
structure operations.

— Non optimized
G2: Validate/Commit to guarantee
Opacity.

—

G3: Optimize the data structure. :|— Optimized

13

OTB Guidelines

o Split the data structure operations.

14

G1: Split Operation

o Example: Linked list (Insert “557)

15

G1: Split Operation

o Example: Linked list (Insert “55")

o Traversal (unmonitored)

16

G1: Split Operation

o Example: Linked list (Insert “55")

o Traversal (unmonitored)

o Validation

17

G1: Split Operation

o Example: Linked list (Insert “55")

o Traversal (unmonitored)

o Validation

o Commit

18

G1: Split Operation

o Results of traversal are saved in local objects:
0 Semantic read-set: to be validated.

o Semantic write-set: to be published at commit.

19

G1: Split Operation

o Example: Linked list (Insert “557)

20

G1: Split Operation

o Example: Linked list (Insert “55”)

read-set entry * Pred:50, curr:60

* Pred:50, curr:60, new:55

write-set entry

{
{

21

G1: Split Operation

o Example: Linked list (Insert “55”)

read-set entry { * Pred:50, curr:60

write-set entry { * Pred:50, curr:60, new:55

o Validation:
o Pred.deleted == false
o Curr.deleted == false
o Pred.next == Curr

22

G1: Split Operation

o Performance:
o Traversal without instrumentation: No false conflicts.

o Functionality:

o Validation guarantees that unmonitored traversal does not harm.

o Defer Commit to the end of the transaction: Composability & TM
Integration.

23

OTB Guidelines

o Validate/Commit to guarantee Opacity.

24

G2: Validation & Commit

o How OTB guarantee opacity:

1. Each operation, scan the local write-set first.

2. Re-validation of semantic read-set after each operation and
during commit.

3. Two Phase Locking during commit.

25

G2: Validation & Commit

o How OTB guarantee opacity:

4. During commit, publish operations according to the order they
are invoked in the transaction, and propagate their effect.

26

G2: Validation & Commit

o How OTB guarantee opacity:

4. During commit, publish operations according to the order they
are invoked in the transaction, and propagate their effect.

o Example: Linked list (insert “55” and “567)

entry1

write-set : : |
entry2 { Pred:50, curr:60, new:56

write-set { « Pred:50, curr:60, new:55

27

G2: Validation & Commit

o How OTB guarantee opacity:

4. During commit, publish operations according to the order they
are invoked in the transaction, and propagate their effect.

o Example: Linked list (insert “55” and “567)

write-set
entry1

write-set : |
entry?2 { , curr:60, new:56

28

G2: Validation & Commit

o How OTB guarantee opacity:

5. All operations has to be validated even if they are not validated
in the concurrent version (e.g., contains).

29

G2: Validation & Commit

o How OTB guarantee opacity:

5. All operations has to be validated even if they are not validated
in the concurrent version (e.g., contains).

o Example: Linked list (search for “60”)

read-set entry { * Pred:50, curr:60

30

G2: Validation & Commit

o How OTB guarantee opacity:

5. All operations has to be validated even if they are not validated
in the concurrent version (e.g., contains).

o Example: Linked list (search for “60”)

read-set entry { * Pred:50, curr:60

o During commit: this entry has to be validated to ensure that 60
is still in the list and not deleted.

o In the concurrent version, this validation is not needed.

31

OTB Guidelines

o Optimize the Data structure.

32

G3: Specific Optimizations

Non-
optimized

Concurrent R Transactional
G1 & G2

Optimized
Transactional

G3

33

G3: Specific Optimizations

o Example optimizations on Linked-List and Skip-List

o Elimination:
» Ex. Add(x) then Remove(x).
» No need to access the shared data structure.

34

G3: Specific Optimizations

o Example optimizations on Linked-List and Skip-List

o Optimizing Unsuccessful add/remove operations
» Considerthem as successful/unsuccessful contains.
» No need for having write-set entries.

» Possible because at commit time we know everything about the
operation.

35

Results

Throughput (million trans/sec)

0.7
0.6 |
0.5 |
04 |
0.3 | P
0.2 oW

0.1 PessimisticBoosted -+
0 OptimisticBoosted --- -~

0 10 20 30 40 50 60 70
Number of threads

Skip-list 512 Nodes Skip-list 64K Nodes
5 ops/transaction 5 ops/transaction

0.1 PessimisticBoosted - |
: - OptimisticBoosted ---#---

Throughput (million trans/sec)
o
(6)]

0 10 20 30 40 50 60 70
Number of threads

36

Thanks!

Questions?

Conclusions

Moving from “concurrent” to “transactional” data structures is
Important to support composability and integration

Previous solutions (e.g. STM, pessimistic boosting) are
inefficient and/or non-programmable.

OTB solves this issue by boosting concurrent lazy data
structures to be transactional.

OTB provide guidelines for designing
o General (non-optimized) version
o Data structure specific (optimized) version.

38

