[<c219ec5f>] security sk free+0xf/0x2
[<c2451efb>] sk free+0x9b/0x120
[<c25ae7cl>] ? raw spin unlock irqre
[<c2451ffd>] sk free+0Ox1d/0x30
[<c2411024>] unix release sock+0x174/

Be General and Don't Give Up
Consistency in Geo-Replicated
Transactional Systems

Alexandru Turcu, Sebastiano Peluso,
Roberto Palmieri and Binoy Ravindran

Hyflow [TIVirginiaTech

ystems

Oftware Invent the Future

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014

Replicated Transactional Systems

DATA CONSISTENCY SCALABILITY
CONCURRENT DATA FAULT TOLERANCE
MANIPULATION
TRANSPARENT LOW LATENCY
SYNCHRONIZATION

go— g &

UPDATE Table SET X = 1;

PR
COMMIT; L !il<..’!il<e’

ited Systems (OPODIS) 2014 @VirginjaTech

Invent the Future

BEGIN;

The 18th Infernational Confe

Geo-Replication: the Whole Picture

@ Processed Locally BEGIN; T2
- T1 @ UPDATE Table
‘ Request C SET X = 2;
ommj g
UPDATE Table mmit g,
SET X = 1; —

oot
’ eSt CO
COMMIT; M
' aftet 12

@ Commit < b
\ ~ / "‘\,.VL N
Wait for replies i‘ 5 Com™™

Yes, consistency /T‘ Wait for a commmi eleader ' NS
»/N ® B »*"‘/’T’i,"l‘

* Intfer-site delays are predominant: minimize the
protocol communication delays.

« Strong Consistency: avoid replicas divergences
and provide transparency to the programmers.

* Non-uniform delays: do not define specialized
roles for sites because delays can vary and are
not uniform.

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 mVlrgmlaTech

Invent the Future

Key Design Principles

Consistency Synchrony |
* Correct state transitions on all replicas:
conflicting transactions committed * No assumptions on inter-site delays
according to a common order at all and replicas’ clocks speed
replicas.
N’
Require Consensus ’i -
Latency | ‘ Parallelism
* No partial replication data model * No coordination among non-
* 2 per-transaction communication conflicting transactions.
delays in case of no conflicts « No designated sites with specialized
roles.
« Coordination either at the
beginning or during the commit. N
* No less than 2 communication ' No leader-based consensus
delays due to the lower bound on
consensus.

on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

Related Work

« Strong Consistency and efficient transaction
execution for restricted types of fransactions:

o Lynx: transactions for piecewise execution [SOSP13d]
o EPaxos: single operations and write-only transactions [SOSP13b]

« Efficient fransaction execution of general-purpose
transactions for lower consistency:

o ChainReaction: Causal+ consistency [EuroSys13]
o Walter: Parallel Snapshot Isolation consistency [SOSP11]
o Jessy: Non-Monotonic Snapshot Isolation consistency [SRDS13]

« Consistency for general-purpose transactions on

specialized architectures:

o Spanner:. absolute time and uncertainty by relying on specialized

hardware components as clock references, i.e., GPS and atomic clocks
[TOCS13]

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

A Step Towards Low-Latency

« EgQalitarian Paxos (EPaxos) [sosp13b:
o |Multiple leaders and quorum-based @
o Non-blocking if at raost f faults (where N=2f+1) @

o Generalized Consensys a.k.a. it only cares about agreement on@
conflicting fransactions

o |[Commit in 2 communication delays if no conflicts @

o Communication is only a\oart of the story. Consensus reoched@
through graph analysis on\dependencies exchanged during

communication

* Mencius [0SDIos]:
o Multiple leaders and possibility\of Generalized Consensus @

o |Communication phase fully exploited: participants agree on a@ @
commit position proposed by the fransaction’s leader

o Blocking: a position p has to hear about positions less than p @

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

Arvin: Key Ingredients

_[

Application Thread J(_

Begin (T)

POBroadcast (T)

Read (T, k) Commi
Write|(T,k,v)

TryCommit (T) Abo

Precede T in PO

-

No Sync\n—énization
with other non-
conflicting threads.

either before or after!

Conflicts are serialized

I

vdlldadic 1L 5
y | execution after
T1l,..,Tk either
committed or
aborted.

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 ST
P Y () L VirginiaTech

Invent the Future

Partial Order Broadcast
Main Idea

S associated with P, if S mod N = i, where Nnumber of sites

l:[la l:['b I:['c Td

(w) (@] (W] (@)

T delivered in position S if

T, conflicts with T, # v conflicting T’ delivered in position S’ >S,
j T e depsy. and T'¢ deps;

T conflicts with T4

A e e T 5 Y (Y N N D
deps {} {T,} {} (T4}

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 ﬂUlV1rg1n1aTech

Invent the Future

POB: Properties

Strong Uniform Conflict Order |

If some node executes PODeliver(T,depst) betore PODeliver(T’,depst), and T and
T” are conflicting, then every node executes PODeliver(T’,depst.) only after
PODeliver(T,depst).

Local Dependency

For any node that executes PODeliver(T,depsy) betore PODeliver(1”,deps), and T
and 1" are conflicting, then T'edeps; and T'¢ depsy

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

POB in Action

Proposal phase Decision & Accept phases Delivery phase
Wait for FQ replies Wait for CQ replies
POBroadcast (T,)
SP J Propose(T,, 0, >{}) Accept(1,,0, 21}) Stable(T,,0, >{})
0
| T,0 >
+020 N T,0>{) ACK
e, '
T,,0 >{} ACK popeliver (T,, {T.})
- after
5132 PODeliver (T,, {1})
Ty,,4 2{T,
b4 2T} ACK
. '
ACK
Tb/4 9{} Tb/4 9{} Tb/4 9{Ta}
D vy
| Propose(T;, 4, 21{}) Accept(Ty,4, 2{T,}) Stable(T},4, 2{T.})

POBroadcast (Ty)

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

Easier Said than Done:
Delta Dependencies

POBroadcast (T,)

Propose(T,, 0, 21{})

1,0 9{}kt T.,5 >{T)}

Accept(Ta,S, 2>1{T.}) Stable(T,5, 2>{T, T,})
a /

5>4 but T, didn’t see
T}
for Accept ?_‘L

Propose(T,,] / A§K| ?{Tb}
1,0 >{} ACK | >{T})
\ /\
Tb/4 9{Ta} ACK

[1/

7

Ty,4 21 || Tp,4A 21}

|4

y

Propose(T,, 4, 21{})

POBroadcast (Ty)

Tb/4 2> {Ta}

Accept(Ty,4, 21{T1,})

Delta dependencies
in ACKs /,A.

Stable(T},4, 2 {3¥3)

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

Raising the Bar:

2-Communication Delays Delivery

 Base scheme: N =2f+1=# of sites
o Wait forFQ=f+1 replies in the Proposal phase| f=max# of fa‘ﬂt}’ sites
o Wait forcQ = f+1 replies in the Accept phase FQ and CQ are sizes of
quorums

 Fast Transaction Decision:

o NO Accept Dhoselif all FQ replies are the same Like Epaxos’s quorums.
o Wait forFQ=f+ %} replies in the Proposal phase

o Wait forCQ = f+1 replies in the Accept phase

IDEA

A leader crashes after a fast decisionfor T, then T's
new leader has to take the same decision

o Every majority in a classic quorum confirms the fast decision
CcQ
N—FQ—1<[7}+1

One node less than FQ e
in Generalized Paxos.

o Two new conflicting leaders for T and T' respectively cannot both believe
there were two discordant fast decisions for T and T’ in the past

5
2

+f-1<FQ

& VirginiaTech

Invent the Future

P-CC Layer

Multiversion fimestamp-based concurrency control

Execution module |

1. Transactions are executed on the snapshot committed before they began.
2. Write operations are buffered.
3. Transactions are submitted to POB layer to request the commit after the
execution.

‘ Commit module |

1. Upon PODeliver(T,{T1,...,Tk}), wait for {T1,..., Tk} to be either committed or
aborted.
2. Validate T, i.e., check that T’s snapshot didn’t change since T began...
3. ...and if so, apply T’s updates.

NO synchronization point among non-conflicting transactions!

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @Virg;niaTech

nvent the Futur

Correctness Criteria

ALVIN guarantees Serializability:
Committed transactions appear as they had been executed sequentially.

3
%

The commits of all Transactions delivered by Transactions always
conflicting transactions POB only commit if they observe a consistent
delivered by POB are didn’t observe an outdated state.

- totally ordered. I snapshot. N -

S E—

If read-only transactions are not submitted to POB
ALVIN guarantees Extended Update Serializability (EUS) [ICDCS12]:
« Committed update transactions are serializable
« All transactions always observe a consistent state

Experimental Evaluation

Implementation: stand-alone framework
Implementedin the Go Programming language.

Competitors: certification-based replication
protocols by using MultiPaxos [Lamport98] and EPaxos

as broadcastlayer.

o MultiPaxos provides total order. Designated leader with point-to-
point latency to the other nodes either higher (Paxos-HI) or lower
(Paxos-LO) than the average.

o EPaxos provides total order only among conflicting transactions.

Benchmarks: TPC-C & Bank.

Infrastructure: Amazon EC2 with nodes in up to 7
geographically distributed sites.

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

TPC-C Benchmark

1 node 3 nodes

1 node 3 nodes 1 node 3 nodes

II 1 . . .
=000 | |D@ Paxos-LO EEER EPaxos|] Write-intensive workload
7y I .
o3 1500 | |EEE Paxos-HI HEE ALVIN (< 3% read-only transactions)
45 3
£ 1000 : :
o ALVIN gains up to 26% in
3 :
£ 500 throughput against EPaxos
. J
3 datacenters 5 datacenters 7 datacenters
15060 50‘%3 90% 500/? 90% 50% 90%
Read-intensive workload |[E=1 ALVIN-SR
(50% and 90% read-only g 10000 mmm ALVIN-EUS
transactions) = 8000}
£ 6000}
EUS provides a speed-up of up to |3 4000}
4.8x in throughpufc Whgp = 2000l
compared to Serializability il

0 D d
. / 3 datacenters 5 datacenters 7 datacenters
The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

Throughput (tps)

AN
o
)
o

w
o
o
o

2000

1000

Bank Benchmark

1 Paxos-LO
B Paxos-HI

B EPaxos
Bl ALVIN

» Write-intensive workload
with very small transaction.

« Transactional work negligible
if compared to the
coordination steps .

3 datacenters 5 datacenters 7 datacenters

* Alvin and Epaxos are comparable.
» Single leader is the bottleneck for MultiPaxos.

< J

The 18th International Conference on Principles of Distributed Systems (OPODIS) 201

* I VirginiaTech

Invent the Future

Thanks for the attention

peluso@vt.edu

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

References

[EuroSys13] Almeida, S., Leitdo, J., Rodrigues, L.: ChainReaction: A Causal+ Consistent
Data-store Based on Chain Replication. In: 8th ACM EuroSys, pp. 85-98. ACM (2013)

[ICDCS12] Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.: When Scalability
Meets Consistency: Genuine Multiversion Update-Serializable Partial Data Replication. In:
32nd ICDCS, pp. 455-465. [EEE Computer Society (2012)

[OSDIO8] Mao, Y., Junqueira, F. P., Marzullo, K.: Mencius: Building Efficient Replicated State
Machines for WANSs. In: 8th USENIX OSDI, pp. 369-384. USENIX (2008)

[SOSP11] Sovran, Y., Power, R., Aguilera, M. K., Li, J.: Transactional Storage for Geo-
replicated Systems. In: 23rd ACM SOSP, pp. 385-400. ACM (2011)

[SOSP13a] Zhang, Y., Power, R., Zhou, S., Sovran, Y., Aguilera, M. K., Li, J.: Transaction
Chains: Achieving Serializability with Low Latency in Geo-distributed Storage Systems. In:
24th ACM SOSP, pp. 276-291. ACM (2013)

[SOSP13b] Moraru, I., Andersen, D.G., Kaminsky,M.: There is More Consensus in Egalitarian
Parliaments. In: 24th ACM SOSP, pp. 358-372. ACM (2013)

[SRDS13] Ardekani, M. S., Sutra, P., Shapiro, M., Preguica, N.: Non-Monotonic Shapshot
Isolation: scalable and strong consistency for geo-replicated transactional systems. In:
32nd SRDS. I[EEE (2013)

[TOCS13] Corbett J. C. et al.: Spanner: Google's Globally Distributed Database. ACM
Trans. Comput. Syst. 31(3), 8:1-8:22 (2013)

[TOCS98] Lamport, L.: The Part-time Parliament. ACM Trans. Comput. Syst. 16(2), 133—-169
(1998)

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @VirginiaTech

Invent the Future

Key Design Principles

Consistency Latency |
* Correct state transitions on all replicas: « No partial replication data model
conflicting transactions committed * 2 per-transaction communication
according to a common order at all delays in case of no conflicts
replicas.
« Coordination either at the
- beginning or during the commit. ...

Require Consensus ..
1 * No less than 2 communication

delays due to the lower bound on
consensus.

Parallelism Synchrony

* No coordination among non-
conflicting transactions.
* No designated sites with special rules.

* No assumptions on inter-site delays
and replicas’ clocks speed

4

No leader-based consensus
znce on Principles of Distributed Systems (OPODIS) 201

* I VirginiaTech

Invent the Future

Recovery from Failures

If P, suspects T’s current leader and T is not STABLE

P, requests a quorum of promises <T,posy, depsy, status> in a new epoch

Geo-Replication: the
Whole Picture

Picture on tx execution. Single node-> cluster -> geo-
replication (in a previous slide)

Challenges in geo-replication: minimize the protocol
communication delays during execution and commit. (Far
vedere che un nodo richiede il commit e risponde al client
dopo ricevuto le risposte. Poi scrivere qualcosa del tipo: posso
fare di meglio? No, se vado in crash voglio garantire
consistenza...e poi si passa al grafico seguente)

Consistency: we still require strong consistency to avoid state
divergences and to be fully general and transparent to the

applications -> the history of committed update transactions
has to be serializable (far vedere che le repliche non devono

divergere)
Do not define special roles for sites: delays among sites can
vary and are not uniform

(Sarebbe carino associare un'immagine ad ogni frase.)

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 ﬂﬂlﬂﬂVlrglmaTech

nt the Futur

Desirable Guarantees

Full replication still better for geo-replication: transactions
are executed locally before the commit -> no remote
read/write operations...but the commit has to involve all
sites.

Serializability of update transactions -> conflicting
transactions committed according to a common order
at all sites

o Non-conflicting fransactions should proceed in parallel

Consensus on the commit-> two communication delays
In case of no conflicts is the best!

No special roles -> no designed site for helping to reach
an agreement on consensus

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 ST
P Y () L VirginiaTech

Invent the Future

Desirable Guarantees

Full replication still better for geo-replication:
transactions are executed locally before the
commit -> no remote read/write operations...but
the commit has to involve all sites.

Serializability of update tfransactions-> conflicting
transactions committed accordingto a common
order at all sites

o Non-conflicting transactions should proceed in parallel
Consensus on the commit-> two communication
delays in case of no conflicts is the best!

No specialroles -> no designed site for helping to
reach an agreement on consensus

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 %VirginiaTech

Invent the Future

