[<c219ec5f>] security sk free+0xf/0x2
[<c2451efb>] sk free+0x9b/0x120
[<c25ae7cl>] ? raw spin unlock irqre
[<c2451ffd>] sk free+0Ox1d/0x30
[<c2411024>] unix release sock+0x174/
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Replicated Transactional Systems

DATA CONSISTENCY SCALABILITY
CONCURRENT DATA FAULT TOLERANCE
MANIPULATION
TRANSPARENT LOW LATENCY
SYNCHRONIZATION
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Geo-Replication: the Whole Picture

@ Processed Locally BEGIN; T2
- T1 @ UPDATE Table
‘ Request C SET X = 2;
ommj g
UPDATE Table mmit g,
SET X = 1; —

oot
’ eSt CO
COMMIT; M
' aftet 12

@ Commit < b
\ ~ / "‘\,.VL N
Wait for replies i‘ 5 Com™™

Yes, consistency /T‘ Wait for a commmi eleader ' NS
»/N ® B »*"‘/’T’i,"l‘

* Intfer-site delays are predominant: minimize the
protocol communication delays.

« Strong Consistency: avoid replicas divergences
and provide transparency to the programmers.

* Non-uniform delays: do not define specialized
roles for sites because delays can vary and are
not uniform.
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Key Design Principles

Consistency Synchrony |
* Correct state transitions on all replicas:
conflicting transactions committed * No assumptions on inter-site delays
according to a common order at all and replicas’ clocks speed
replicas.
N’
Require Consensus ’i -
Latency | ‘ Parallelism
* No partial replication data model * No coordination among non-
* 2 per-transaction communication conflicting transactions.
delays in case of no conflicts « No designated sites with specialized
roles.
« Coordination either at the
beginning or during the commit. N
* No less than 2 communication ' No leader-based consensus
delays due to the lower bound on
consensus.
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Related Work

« Strong Consistency and efficient transaction
execution for restricted types of fransactions:

o Lynx: transactions for piecewise execution [SOSP13d]
o EPaxos: single operations and write-only transactions [SOSP13b]

« Efficient fransaction execution of general-purpose
transactions for lower consistency:

o ChainReaction: Causal+ consistency [EuroSys13]
o Walter: Parallel Snapshot Isolation consistency [SOSP11]
o Jessy: Non-Monotonic Snapshot Isolation consistency [SRDS13]

« Consistency for general-purpose transactions on

specialized architectures:

o Spanner:. absolute time and uncertainty by relying on specialized

hardware components as clock references, i.e., GPS and atomic clocks
[TOCS13]
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A Step Towards Low-Latency

« EgQalitarian Paxos (EPaxos) [sosp13b:
o |Multiple leaders and quorum-based @
o Non-blocking if at raost f faults (where N=2f+1) @

o Generalized Consensys a.k.a. it only cares about agreement on@
conflicting fransactions

o |[Commit in 2 communication delays if no conflicts @

o Communication is only a\oart of the story. Consensus reoched@
through graph analysis on\dependencies exchanged during

communication

* Mencius [0SDIos]:
o Multiple leaders and possibility\of Generalized Consensus @

o |Communication phase fully exploited: participants agree on a@ @
commit position proposed by the fransaction’s leader

o Blocking: a position p has to hear about positions less than p @
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Arvin: Key Ingredients

_[

Application Thread J(_

Begin (T)

POBroadcast (T)

Read (T, k) Commi
Write|(T,k,v)

TryCommit (T) Abo

Precede T in PO

-

No Sync\n—énization
with other non-
conflicting threads.

either before or after!

Conflicts are serialized

I

vdlldadic 1L 5
y | execution after
T1l,..,Tk either
committed or
aborted.
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Partial Order Broadcast
Main Idea

S associated with P, if S mod N = i, where Nnumber of sites

l:[la l:['b I:['c Td

(w) (@] (W] (@)

T delivered in position S if

T, conflicts with T, # v conflicting T’ delivered in position S’ >S,
j T e depsy. and T'¢ deps;

T conflicts with T4

A e e T 5 Y (Y N N D
deps {} {T,} {} (T4}
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POB: Properties

Strong Uniform Conflict Order |

If some node executes PODeliver(T,depst) betore PODeliver(T’,depst), and T and
T” are conflicting, then every node executes PODeliver(T’,depst.) only after
PODeliver(T,depst).

Local Dependency

For any node that executes PODeliver(T,depsy) betore PODeliver(1”,deps), and T
and 1" are conflicting, then T'edeps; and T'¢ depsy
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POB in Action

Proposal phase Decision & Accept phases Delivery phase
Wait for FQ replies Wait for CQ replies
POBroadcast (T,)
SP J Propose(T,, 0, >{}) Accept(1,,0, 21}) Stable(T,,0, >{})
0
| T,0 >
+020 N T,0>{) ACK
e, '
T,,0 >{} ACK popeliver (T,, {T.})
- after
5132 PODeliver (T,, {1})
Ty,,4 2{T,
b4 2T} ACK
. '
ACK
Tb/4 9{} Tb/4 9{} Tb/4 9{Ta}
D vy
| Propose(T;, 4, 21{}) Accept(Ty,4, 2{T,}) Stable(T},4, 2{T.})

POBroadcast (Ty)
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Easier Said than Done:
Delta Dependencies

POBroadcast (T,)

Propose(T,, 0, 21{})

1,0 9{}kt T.,5 >{T)}

Accept(Ta,S, 2>1{T.}) Stable(T,5, 2>{T, T,})
a /

5>4 but T, didn’t see
T}
for Accept ?_‘L

Propose(T,, ] / A§K| ?{Tb}
1,0 >{} ACK | >{T})
\ /\
Tb/4 9{Ta} ACK

[1/

7

Ty,4 21 || Tp,4A 21}

|4

y

Propose(T,, 4, 21{})

POBroadcast (Ty)

Tb/4 2> {Ta}

Accept(Ty,4, 21{T1,})

Delta dependencies
in ACKs /,A.

Stable(T},4, 2 {3¥3)
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Raising the Bar:

2-Communication Delays Delivery

 Base scheme: N =2f+1=# of sites
o Wait forFQ=f+1 replies in the Proposal phase|  f=max# of fa‘ﬂt}’ sites
o Wait forcQ = f+1 replies in the Accept phase FQ and CQ are sizes of
quorums

 Fast Transaction Decision:

o NO Accept Dhoselif all FQ replies are the same Like Epaxos’s quorums.
o Wait forFQ=f+ %} replies in the Proposal phase

o Wait forCQ = f+1 replies in the Accept phase

IDEA

A leader crashes after a fast decisionfor T, then T's
new leader has to take the same decision

o Every majority in a classic quorum confirms the fast decision
CcQ
N—FQ—1<[7}+1

One node less than FQ e
in Generalized Paxos.

o Two new conflicting leaders for T and T' respectively cannot both believe
there were two discordant fast decisions for T and T’ in the past

5
2

+f-1<FQ

& VirginiaTech

Invent the Future



P-CC Layer

Multiversion fimestamp-based concurrency control

Execution module |

1. Transactions are executed on the snapshot committed before they began.
2. Write operations are buffered.
3. Transactions are submitted to POB layer to request the commit after the
execution.

‘ Commit module |

1. Upon PODeliver(T,{T1,...,Tk}), wait for {T1,..., Tk} to be either committed or
aborted.
2. Validate T, i.e., check that T’s snapshot didn’t change since T began...
3. ...and if so, apply T’s updates.

NO synchronization point among non-conflicting transactions!

The 18th International Conference on Principles of Distributed Systems (OPODIS) 2014 @Virg;niaTech
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Correctness Criteria

ALVIN guarantees Serializability:
Committed transactions appear as they had been executed sequentially.

3
%

The commits of all Transactions delivered by Transactions always
conflicting transactions POB only commit if they observe a consistent
delivered by POB are didn’t observe an outdated state.

- totally ordered. I snapshot. N -

S E—

If read-only transactions are not submitted to POB
ALVIN guarantees Extended Update Serializability (EUS) [ICDCS12]:
« Committed update transactions are serializable
« All transactions always observe a consistent state




Experimental Evaluation

Implementation: stand-alone framework
Implementedin the Go Programming language.

Competitors: certification-based replication
protocols by using MultiPaxos [Lamport98] and EPaxos

as broadcastlayer.

o MultiPaxos provides total order. Designated leader with point-to-
point latency to the other nodes either higher (Paxos-HI) or lower
(Paxos-LO) than the average.

o EPaxos provides total order only among conflicting transactions.

Benchmarks: TPC-C & Bank.

Infrastructure: Amazon EC2 with nodes in up to 7
geographically distributed sites.
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TPC-C Benchmark

1 node 3 nodes

1 node 3 nodes 1 node 3 nodes

II 1 . . .
=000 | |D@ Paxos-LO EEER EPaxos|] Write-intensive workload
7y I .
o3 1500 | |EEE Paxos-HI  HEE ALVIN (< 3% read-only transactions)
45 3
£ 1000 : :
o ALVIN gains up to 26% in
3 :
£ 500 throughput against EPaxos
. J
3 datacenters 5 datacenters 7 datacenters
15060 50‘%3 90% 500/? 90% 50% 90%
Read-intensive workload |[E=1 ALVIN-SR
(50% and 90% read-only g 10000 mmm ALVIN-EUS
transactions) = 8000}
£ 6000}
EUS provides a speed-up of up to |3 4000}
4.8x in throughpufc Whgp = 2000l
compared to Serializability il

0 D d
. / 3 datacenters 5 datacenters 7 datacenters
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Throughput (tps)

AN
o
)
o

w
o
o
o

2000

1000

Bank Benchmark

1 Paxos-LO
B Paxos-HI

B EPaxos
Bl ALVIN

» Write-intensive workload
with very small transaction.

« Transactional work negligible
if compared to the
coordination steps .

3 datacenters 5 datacenters 7 datacenters

* Alvin and Epaxos are comparable.
» Single leader is the bottleneck for MultiPaxos.

< J
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Thanks for the attention

peluso@vt.edu
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Key Design Principles

Consistency Latency |
* Correct state transitions on all replicas: « No partial replication data model
conflicting transactions committed * 2 per-transaction communication
according to a common order at all delays in case of no conflicts
replicas.
« Coordination either at the
- beginning or during the commit. ...

Require Consensus ..
1 * No less than 2 communication

delays due to the lower bound on
consensus.

Parallelism Synchrony

* No coordination among non-
conflicting transactions.
* No designated sites with special rules.

* No assumptions on inter-site delays
and replicas’ clocks speed

4

No leader-based consensus
znce on Principles of Distributed Systems (OPODIS) 201
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Recovery from Failures

If P, suspects T’s current leader and T is not STABLE

P, requests a quorum of promises <T,posy, depsy, status> in a new epoch




Geo-Replication: the
Whole Picture

Picture on tx execution. Single node-> cluster -> geo-
replication (in a previous slide)

Challenges in geo-replication: minimize the protocol
communication delays during execution and commit. (Far
vedere che un nodo richiede il commit e risponde al client
dopo ricevuto le risposte. Poi scrivere qualcosa del tipo: posso
fare di meglio? No, se vado in crash voglio garantire
consistenza...e poi si passa al grafico seguente)

Consistency: we still require strong consistency to avoid state
divergences and to be fully general and transparent to the

applications -> the history of committed update transactions
has to be serializable (far vedere che le repliche non devono

divergere)
Do not define special roles for sites: delays among sites can
vary and are not uniform

(Sarebbe carino associare un'immagine ad ogni frase. )
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Desirable Guarantees

Full replication still better for geo-replication: transactions
are executed locally before the commit -> no remote
read/write operations...but the commit has to involve all
sites.

Serializability of update transactions -> conflicting
transactions committed according to a common order
at all sites

o Non-conflicting fransactions should proceed in parallel

Consensus on the commit-> two communication delays
In case of no conflicts is the best!

No special roles -> no designed site for helping to reach
an agreement on consensus
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Desirable Guarantees

Full replication still better for geo-replication:
transactions are executed locally before the
commit -> no remote read/write operations...but
the commit has to involve all sites.

Serializability of update tfransactions-> conflicting
transactions committed accordingto a common
order at all sites

o Non-conflicting transactions should proceed in parallel
Consensus on the commit-> two communication
delays in case of no conflicts is the best!

No specialroles -> no designed site for helping to
reach an agreement on consensus
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