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CONCURRENCY CONTROL ON CHIP MULTIPROCESSORS
SIGNIFICANT AFFECTS PERFORMANCE (AND PROGRAMMABILITY)

[ Chip multiprocessors (CMPs/Multicore) are here

* Improve performance by exposing greater concurrency in software

O Difficult: last x% involve significant coordination and
synchronization

* Amdahl’s law: relationship between
sequential execution time and
speedup reduction is not linear - AT
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LOCK-BASED CONCURRENCY CONTROL IS CHALLENGING

(d Coarse-grained locking is simple, but permits little concurrency

no speedup
because of
sequential
bottleneck

time

Sun T2000 Niagara

threads
d Fine-grained locking allows greater concurrency, but error-prone

* Must acquire only necessary and sufficient locks

* Must avoid deadlocks
* Livelocks, lock convoying, priority inversion,....

[ Challenges exacerbate in distributed systems




TRANSACTIONAL MEMORY (TM): AN ALTERNATIVE TO LOCKS

[ Organize code that access shared memory as transactions that
(appear to) execute atomically and in isolation

atomic{
X=X+Yy;
}
J Transactions optimistically execute, logging all changes

(J Two transactions conflict if they access same object and
one access is a write

* A conflict resolution policy is used: one is allowed to commit;
other is aborted, changes rolled-back, retried

[ Gaining traction; implementations in software and hardware;
but no silver bullet

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for lock-
free data structures. ISCA. pp. 289-300.

N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.




DISTRIBUTED SOFTWARE TRANSACTIONAL MEMORY (D-STM)

d D-STM
e Support STM in distributed systems

* Nodes communicate by message passing links

1 Control flow
* Transactions move, objects held locally
* Inherited from database transactional synchronization

 Consistency using distributed commit (e.g., two-phase commit)

1 Data flow
* Objects move, transactions run locally
* Cache coherence, conflict resolution
* No distributed commit (paper’s focus)

* Easier to exploit locality




SINGLE COPY (SC) D-STM MODEL

@ Txn requesting object o Txn holding object o

CC.locate(o)
CC.move(0) x

>

req(o) 5 < req(o)
TM Proxy |e Local Cache Local Cache | TM Proxy
not found in use
cmp(A,B) CR(A,B)
e Distributed cache-coherence protocol (CC) .
: . . . Conflict
* Locating and moving objects in the network .
Resolution

e Ballistic [2], Relay [8], Combine [9]
* Only one (writable) copy exists for each object
e Conflict resolution module (CR)
* Resolve conflicts among transactions
* Ensure progress and enhance concurrency




LIMITATIONS OF SC D-STM MODEL

(J No fault-tolerance property

* When node fails, held objects are lost

 Limited support of concurrent reads

* CC protocol needs to maintain the consistency over read-only replicas
while some transaction is writing the object

* High communication cost to detect read/write conflict

* Typical directory-based CC protocols often do not differentiate between
read and write operations

 Limited locality
* One major goal of directory-based CC protocols is to exploit locality
* Directory-based CC protocols often keep track of the single writable copy
* In practice, not all transactional requests are routed efficiently

* Possible locality is often overlooked




QUORUM-BASED REPLICATION (QR) D-STM MODEL

 Fault-tolerance guarantee

* Tolerate certain level of node failures

J Inherent support of concurrent reads
* Multiple (writable) replicas of each object
* Concurrent read transactions never serialized

* (Conflicts resolved at commit)

] Best-effort locality exploration under node failures
* Transactions need to find latest copy of requested object
* Send request to a certain set of nodes

* In case of node failures, do best effort to find the closest possible set of
nodes which hold latest copy




SYSTEM MODEL

 Failure-prone distributed system
* Nodes communicate by message passing links
* Metric-space network of diameter D

* Fail-stop node failures

[ Distributed transactions
* A set of transactions invoked by different nodes
* Share a set of objects

* R->W, W->R, W->W conflicts

1 A fixed contention manager
* Located at every node

* Resolve conflicts based on a consistent policy




QR MODEL: PRELIMINARIES

(] Objects are replicated based on quorums

* A quorum system is constructed

(J Quorum: a collection of nodes
* Read quorum and write quorum

* Two quorums intersect if one of them is a write quorum

 Five operations provided
* Read and write: regular operations
* Request-commit: validate transaction after regular operations

* Commit and abort: complete a transaction by the result of request-
commit operation




EXAMPLE: TREE QUORUM SYSTEM
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U Tree quorum system: Agrawal and Abbadi ‘90 [11]

e Read quorum: the root, or replaced by its majority of children recursively
* Three read quorums are shaded




EXAMPLE: TREE QUORUM SYSTEM
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U Tree quorum system: Agrawal and Abbadi ‘90 [11]

* Write quorum: the root and its majority of children recursively selected
* One write quorum is shaded




QR MODEL: READ AND WRITE OPERATIONS

\
\
| |
1. req(T,read(0)) I 2.PR(O)<-T
or req(T,write(0)) I : or PW(o) <- T
. | 1 3. rsp(T0)
4. Select highest | I
version of o I
|
|
5. T.readset <- 0 ! |
or T.writeset<- 0 ) f

Read or write requests sent to a read quorum

Each node keeps a potential readers list PR(0)
and a potential writers list PW(o) for each object o

The highest version copy is selected when multiple copies received

Each transaction keeps a readset and a writeset




QR MODEL: REQUEST-COMMIT OPERATION

1. req_cmt(T)

6. Abort if any
rsp(T,abort)
received

7. Else, commit.
AT(T) <-UCT(T)

2. Conflict-Detect(A,T)
and update CT(T)

3. CM(T,CT(T))

4. If T aborts, rsp(T,abort);
If not, rsp(T,cmt,CT(T))
and o.protected <- true for
all o requested by T

5. Remove T from PR(0)
and PW(o) for all o




QR MODEL: REQUEST-COMMIT OPERATION

d Request-commit after all regular operations

* Request sent to a write quorum

(d Remote: conflict detection and contention management
* Conflicting transaction list: CT(T)

* Conflicts are detected for each object requested by T, based on object’s
version number and potential reader and writer lists

* CM(T, CT(T)): contention management for T and every transaction in CT(T)

* o.protected: field to protect o from being overwritten after request-commit

J Local: determine commit or abort based on responses

* If commit, update an abort transactions list AT(T) by including all received
CT(T) from remote nodes




QR MODEL: COMMIT AND ABORT OPERATIONS

d Request sent to a write quorum

d Commit operation
* Invoked immediately after request-commit operation

* Local & remote: overwrite the object value, increase version number by 1,
and set o.protected to false for every o requested by T

* Local: send abort message to every transaction in AT(T)

J Abort operation
* Invoked immediately after any abort message received
* Local: discard any changes made to objects

* Remote: set o.protected to false for every o requested by T and
remove T from all potential readers and writers list




QUORUM CONSTRUCTION

[ A quorum construction is needed
* Correctly define read and write quorums in the system

* Determine which quorum should be selected for any operation invoked by
any node

* Find replacement of failed nodes

(J FLOODING protocol
* Motivated by tree quorum system by Agrawal and Abbadi [11]

* An overlay tree constructed on Herlihy and Sun [2]’s hierarchical clustering
structure

* For each node, a basic read quorum and a basic write quorum is always
selected when no node fails

* When some node fails, a replacement is dynamically found




FLOODING PROTOCOL: EXAMPLE OF READ QUORUM
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* Basic read quorum: root node




FLOODING PROTOCOL: EXAMPLE OF READ QUORUM
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* If root node fails, the closest majority set is selected for replacement

* A new read quorum selected




FLOODING PROTOCOL: EXAMPLE OF READ QUORUM

* Closest majority set of nodes is selected recursively



FLOODING PROTOCOL: EXAMPLE OF READ QUORUM
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* No available read quorum when reach the bottom
* Go up one level, find closest majority set

* A read quorum will finally be probed if at least one read quorum lives




QR MODEL: ANALYSIS

1 Correctness: 1-copy serializability

1 Communication cost when £ nodes fails
* Read and write: (& d(v,qlr (v))), where glr (v) is a live read quorum

* Request-commit, commit and abort: O(& d(v,qgiw (v))), where gdw () is
a live write quorum

 Availability: similar to the classic tree quorum system

* Can afford a certain level of node failures when at least one read and one
write quorums live in the system




CONCLUSIONS

* Fast read/write operations, resolve conflicts at commit phase
* When no node fails, provide competitive communication cost as SC model

* When nodes fail, communication cost increases linearly as the number of
failed nodes increases

* Provide similar availability as classic tree quorum system

 Future...
* Implementation
* Nested transactions?
* Other quorum systems to balance load?

* Reduce communication/improve concurrency?




