
On Making Transactional Applications
Resilient to Data Corruption Faults

Mohamed Mohamedin, Roberto Palmieri, and Binoy Ravindran
Virginia Tech

USA

{mohamedin,robertop,binoy}@vt.edu

NCA'14

Transient Faults Problem

 Faults
 Permanent
 Transient

 Transient faults change the behavior of an application and may or
may not crash the application.
 Software bugs
 Hardware errors (e.g., soft errors)

 Transient faults can cause data corruption
 Wrong results
 Data loss
 Propagation of corruption

 Major outage of Amazon S3 service
 7 hour outage to understand and fix the problem

What are Soft-errors?

 Transient faults that may happen anytime during application
execution

 Caused by physical phenomena (e.g., cosmic particle strikes,
electric noise)

 E.g., Soft-error can cause a single bit in a CPU register to flip
which may cause a transient fault.

Do soft-errors represent a problem?

 Soft-errors are:
 Random: Can occur anytime
 Undetectable: No hardware interrupt is triggered
 Corrupting: Can silently corrupt program data or crash the program

Soft-errors in multicore architectures

 Soft-errors rate is growing in the current and emerging multicore
architectures
 Smaller transistors (e.g., Intel Haswell uses 22nm)
 More components on same chip (e.g., more cores)

Soft-error failure-in-time of a chip SER as a function of the number of chips

Soft-errors effect

101011101011

CPU mathematical operation

+

100010101001

=

1001110010100

Soft-errors effect

101011101011

CPU mathematical operation

+

100010101001

=

1001110010100

But if a soft-error happened

101011101011

+

100010101001

=

1001110010100

Soft-errors effect

101011101011

CPU mathematical operation

+

100010101001

=

1001110010100

But if a soft-error happened

101011101011

+

000010101001

=

1001110010100

Soft-errors effect

101011101011

CPU mathematical operation

+

100010101001

=

1001110010100

But if a soft-error happened

101011101011

+

000010101001

=

0101110010100

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

Address

110101

Memory

110101
 ax

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

10001
Address

000001

Memory

110101
 ax

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

11001
Address

000001

Memory

110101
 ax

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

11001
Address

000001

110101

Memory

110101
 ax

Overwrite

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

11001
Address

000001

110101

Memory

110101
 ax

Overwrite

Wrong Value

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

11001
Address

000001

110101

Memory

110101
 ax

Memory Protection

Exception

Wrong Value

How to tolerate transient faults?

 Restart the application!
 It may not crash!
 Not suitable for critical business applications

 We need to maintain availability/reliability constraints

 Checkpointing
 Depends on error-detection accuracy
 How many check points to keep
 Time to restore a check point

 Encoding
 Overhead & limited

 Assertions/invariants
 Not accurate

How to tolerate transient faults? (2)

 Replication
 Permanent faults or Byzantine faults
 Designed for distributed system
 Several sources of overhead

 Wrapping a request into network message
 Totally ordering these messages
 In-order execution

 Computational resources are partitioned into replicas
 Hardware

 High end systems
 Expensive

Our Goal

 Develop a low-intrusive technique that has:
 Good performance
 Less synchronization
 Less bandwidth
 Guarantee both safety and liveness

Target Applications

 Transactional applications
 Very important class of applications
 Based on transactions

 Manage the program state using transactions
 Examples:

 Banking systems
 Automatic teller systems
 Stock trading
 Application web servers

 Need to be protected
 Requires safety and liveness

Proposed Solution (SoftX)

 Speculative execution of the same transaction on different
cores in parallel
 Compare outcomes using a dedicated committer threads

 Low synchronization overhead
 Without partitioning computational resources

 Cores are reused
 Single copy of the memory

 Without ordering transactions
 Implemented using Software Transactional Memory abstraction

 SoftX inherits both the checkpointing and replication
advantages

SoftX Overview

Assumptions

 Data in memory is not replicated
 We rely on memory error detection and correction (e.g., ECC)

 Only committer threads can write to shared data
 Speculative threads has read-only access to shared data

 Committer threads keeps an undo log
 Can recover from an error during write operations

 Works on a single machine
 Cannot tolerate a machine crash or HW permanent error
 Other techniques can be used in parallel

 E.g., Asynchronous checkpointing to a stable storage

 No non-deterministic operations (e.g., random, getTime)
inside a transaction

SoftX Design

 STM + Resilient to transient faults

SoftX Design (2)

 Starting a transaction by forking a group of threads

SoftX Design (3)

 Speculative threads must observe the same initial state
 Committer threads pause all commit operations

SoftX Design (4)

 Each speculative thread executes the transaction
independently

SoftX Design (5)

 At commit time, send to committer threads and wait for their
decision

SoftX Design (6)

 Committer threads cooperatively decide if the transaction has
no conflicts/errors

Committer Threads

 A group of threads responsible for detecting faults (voter) and
conflicts between transactions.

 Its main purpose is to reduce synchronization overhead and
maintain fault tolerance.
 Reduces cache misses and invalidation

 They can also tolerate faults during commit procedure.
 Independently:

 Validate each read-set
 Compare write-sets

 Majority are valid and match → commit, otherwise, restart
 Committer threads decisions also must match
 One thread do write back and others confirm write is correct

 Undo log is used to recover in case of a fault

Speculative threads

 Act as a group
 An abort in one thread, trigger an abort for the entire group

 Number of threads is related to degree of resiliency
 2 threads: detect a fault but cannot recover. The transaction

must restart
 2f + 1 threads: Can recover up to f faults without restarting the

transaction

Applicability

 We don't target deterministic software bugs
 The same behavior on all replicas
 Diversity?

 We target HW transient faults, random SW bugs

Evaluation

 SoftX is implemented in C++ in RSTM library
 Bus-based (x86): 48-core AMD Opteron machine
 Message-passing: 36-core Tilera TILE-Gx co-processor

 Competitors:
 Non transient fault tolerant STM: NOrec
 State Machine-Like Transactional Replication (SMR)
 Byzantine Fault Tolerant system (PBFT)

 Benchmarks:
 Bank
 List
 TPC-C

Evaluation: x86

 TPC-C

Evaluation: x86 (2)

 List

Evaluation: Tilera

 TPC-C

Evaluation Summary

 SoftX overhead is reasonable
 High contention (e.g., List)
 Long transactions (e.g., TPC-C)

 Message-passing reduces synchronization and
communication overhead
 SoftX has the lowest overhead compared to SMR and PBFT

 SoftX performs better than replication-based approaches
 Requires less data transfer between system components

Conclusion

 SoftX adds fault tolerance to concurrency control protocols
 Reasonable overhead
 Better than optimized SMR
 Suitable for both shared bus and message passing architectures

Thanks!

Questions?

Research project’s web-site: www.hyflow.org

	PowerPoint Presentation
	Slide 2
	STM implementations can be broadly classified
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	ByteSTM
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Thanks!

