

[<c219ec5f>] security_sk_free+0xf/0x2d
[<c2451efb>] __sk_free+0x9b/0x120
[<c25ae7c1>] ? _raw_spin_unlock_irqred
[<c2451ffd>] sk_free+0x1d/0x30
[<c24f1024>] unix_release_sock+0x174/d

Archie: A Speculative Replicated Transactional System

Sachin Hirve, <u>Roberto Palmieri</u>, Binoy Ravindran Systems Software Research Group Virginia Tech

What do we want for our transactional application?

High availability Strong consistency High performance **Programmability** Great scalability in small/med size Fault tolerance Low latency

Commonly used building blocks

How does it work when combined?

...and when the load increases?

Goal: Boost performance in the common case

Challenge:

Transaction response time = total order latency

Anticipate the work

 Exploitation of an early notification triggered during the ordering phase (called optimisticdelivery)

Reliable Optimistic Delivery

- Avoid any mismatch between the optimistic delivery order and total order
- Maximize the time between the optimistic delivery and the establishment of the total order

Stable leader

MIMOX

- Multi Paxos + Reliable Optimistic Delivery
 - Exploit the leader's batching time for maximizing the overlapping time
 - Exploit the leader's knowledge for making the optimistic delivery reliable
 - Tag messages with leader's expected order

MIMOX: Batch creation

MIMOX: Batch broadcast

MIMOX: Performance

Transaction Processing

- Exploit parallelism
- Commit in order
- Minimal overhead for conflict detection and resolution

Key points of ParSpec

- Reduce problem's complexity by activating MaxSpec transactions at-a-time
 - meta-data's size is fixed
 - set of possible conflicting transactions is limited
- Parallel execution but in-order speculative commit (x-commit)

ParSpec: details

Is this enough for achieving the goal?

Unfortunately not...

Solution for Write Set

 Speculative versions are associated with an tentative commit timestamp, which is the expected commit timestamp in case of no mismatch between optimistic and total order

Solution for Read Set

- If the leader is not either crashed or suspected (it is stable), then there is no chance of mismatch between optimistic and total order
- ParSpec commits according to optimistic order and make them visible during the total order

We made it!

TS++

Tx1

Evaluation

- Testbed PRObE cluster (19 nodes)
 - AMD Opteron 6272, 64-core, 2.1 GHz CPU
 - 128 GB RAM and 40 Gbps Ethernet
- Benchmarks
 - Bank, TPC-C and Vacation
- Competitors
 - PaxosSTM: DUR-based approach; it suffers from remote aborts
 - SM-DER: Post final delivery single-thread execution
 - HiperTM: SM-DER based single thread execution
 - Archie-FD: Archie but post final delivery parallel processing

Evaluation: TPC-C

Evaluation: Distributed Vacation

Thanks!

Questions? Hyflow

Research project's web-site: www.hyflow.org

