r.-v WOy TP ey | : %r O~ - ==
Qystems 5 B e et
Doftware & [<c2saercl>] 7 _raw spin unlock irqre
i ' ResearchGﬂr:)ip' § 24f1024>] | elease_sock+0x174

Speculative Client Execution in
Deferred Update Replication

Balaji Arun, Sachin Hirve, Roberto Palmieri, Sebastiano
Peluso and Binoy Ravindran

Systems Software Research Group, Virginia Tech
http://ssrg.ece.vt.edu

ecCe: I ¥ VirginiaTech

nt the Futur:

Context

A

n
mlll

* Ubiquitous nature of On Line Transaction Processing workloads
* Fault-tolerance is highly desirable for such systems

— Node failure or system crash results in loss of data and service
interruption

* Fault-tolerance through data replication ensures high availability
— Immunity to faults, as failure of one node is tolerated by other replicas

stems e s s
yarems) @ VirginiaTech

Research Group Invent the Future

Replication Models

* Partial replication: Data is replicated on subset of nodes
— Only a sub set of nodes takes part in co-ordination phase
— Amount of data and system size can scale
— Remote communication for retrieving and committing objects

* Full replication: Data is replicated on all nodes
— Local transaction execution
— Ordering layer required for ensuring replica consistency
— Scaling of amount of data and system size is limited

— Usual setup includes total-order based protocols, which are classified as
» Deferred Update Replication (DUR)
» Deferred Execution Replication (DER)

stems > s s
g Dfeware 3 @ VirginiaTech
Research Group Invent the Future

Overview of
Deferred Update Replication (DUR)

* Clients optimistically execute transactions and submit their
updates to a global certification phase for commit

* Global certification phase:
— Defines a common serialization order on all transaction updates

— Validates the correctness of transaction execution according to

serialization order
— A transaction passes the validation if objects, it read, have not been
modified by other transaction, before it commits

8 . e
ystems @ VirginiaTech

oftware 4
Research Group Invent the Future

DUR by Example

e Global certification phase (or Ordering phase):
— On successful validation, object updates are committed

Optimistic Update Validate Commit
execution of T message T T
Client : : Client
Request (T) — 2 | LGty m(T) Ordering phase V(T) C(T) RGIETV
to-broadcast (m) to-delivery (m)
— On failing the validation, object updates are discarded and transaction is
re-executed
Optimistic Update Validate Abort and
executionof T message v T Retry T
Cli
R;Z:test g | €xecution Ordering phase V(T) A(T)
to-broadcast (m) to-delivery (m)
stems o s s
sgﬁware 5 W VirginiaTech

Research Group Invent the Future

The case study of TPC-C

Warehouse
W

Stock

| 10

District
W*10

| %

} 100K [

ltem
W*100K 100K (fixed)

J—

Transaction’s Data Access Patter (...from the Benchmark’s
specification)
Payment txn: 15% of Customer table records are non-local

to the home warehouse.
New-order txn: 1% of Stock table records are non-local to

the home warehouse.

Customer Order
W*30K > W*30K+
1+
stems .,
yarems] @ VirginiaTech
Invent the Future

Research Group

The Best Case for DUR

* DUR benefits from massive parallelization of client threads

* In well partitioned accesses

— Transactions running on different nodes rarely conflict

Well-partitioned
accesses

R1

T1

T2

Total order

T1>T2>T3>T4>T5>T6

Total Order
R2 on{T1,T2, ., N No
. T6}'s object aborts
Ophmlfhc updates
execution
R3 - >
T5 T6
stems , ..
$thware 7 @ VirginiaTech

Research Group

Invent the Future

The Best Case for DUR

* |In well partitioned accesses
— Even with different serialization order, transactions may not abort

Well-partitioned
accesses

Total order

T6>T5>T4>T3>T2>T1

R1 Validate{T1, T2, ..T6}: Commit T1, T2, T3, T4, T5, T6
Total Order
R2 on{T1, T2, ., : :
S T6)'s object Validate{T1, T2, ..T6}: Commit T1, T2, T3, T4, T5, T6
Opt'm'?t'c updates
execution
R3 Validate{T1, T2, ..T6}: Commit T1, T2, T3, T4, T5, T6
ystems o . ..
I
soﬁware 5 @ VirginiaTech

Research Group Invent the Future

...but even in the best case...

* |In well partitioned accesses
— Transactions running on same nodes suffer from aborts — Challenge!!!!

Partitioned
accesses

Total order

T1>T2>T3>T4>T5>T6

Rl .- Validate{T1, T2, ..T6}: Commit T1, T3, T5 Abort T2, T4, T6 gl
Total Order
R2 on{T1,T2, .,
. T6}'s object
OPt'm'?t'c updates
execution
R3
T5 T6
stems , ..
)4 Ll
8 oftware 9 VirginiaTech

Research Group Invent the Future

Partial Solution

* Transaction validates against local
transactions before being certified

— Underutilization of the total order layer

— Increased latency perceived by clients due to
repeated local retries

Optimistic Update Validate Commit
execution of T message T o
‘ Local Validation Ordering phase
to-broadcast (m) to-delivery (m)

stems e s s
gZ&mre 0 @ VirginiaTechs

Research Group Invent the Future

Local Pre-Validation

T1
Threadl U)o
3 Local Ordering phase
l Validati
dlldation KO'
Thread2 Ot J
sg’gsvrgﬁe ; W VirginiaTech

Researc h Group Invent the Future

Proposed Solution: Speculation

e Local Transaction Ordering
— Introduction of an order for local transaction optimistic execution
— Ordered transaction processing eliminates conflicts

e Speculative commit and read

— Transactions commit speculatively and make their updates available to
following transactions

— Transactions read from speculative versions of objects modified by
earlier transactions

— Transactions help following transactions to commit without aborts

Speculatively
updated object

Total Order on {T1,
T2}'s object updates

U N

tem .,
ggﬁﬁvaﬁe 12 @ VirginiaTech

Research Group Invent the Future

Proposed Solution

* Propagating the updates in the same order as optimistic execution
order

— Transactions from one node go to global certification phase in the same
order as their execution order

— ldentical order of execution and certification reduces false conflicts

Speculatively Total order
updated object
T ‘L - T1>T2>T5>T6>T3>T4
(0]1] -

R1 . Validate{T1, T2, ..T4}: Commit T1, T2, T5, T6, T3, T4
T3

Total Order
N o on (11,72, . . No
. —— T6's object Validate{T1, T2, ..T4}: Commit T1, T2, T5, T6, T3, T4 aborts!

Optimistic updates \ .
execution \

R3 n" Validate{T1, T2, ..TA}: Commit T1, T2, T5, T6, T3, T4
T5 T6

stems . .
Y]
software i3 @ VirginiaTech

Research Group Invent the Future

How it works: No Abort

 Example execution on a single node
. R(x)
— Counter benchmark: Each node has its own counter T= {W(XJ
Replica-1 @ @ @
XOC | | | XcurrC — XlA - Xcurrc E XZB Object
A version
___ Server
Thread
Yes Yes
[XOC - Xcurrc p [XlA - XcurrC p Commit
"""""""""""""""""""""""""""""""" Open T, 7 Thread
__ {Tp T, Tct's 5 I:::::.
object updates
stems s 4 _»
g%’&ware y W VirginiaTech.
Research Group Invent the Future

How it works: Abort

Clear all
speculative version

E 3 curr — Yyl
X0C1_ XQ _______________________________ X=X . Object
v / version
\‘ |
\
B '~ N ‘s B c I D , Server
Thread
No
. —— yecurr
Replica-t X2 commi
Thread
___ . I Total
{TA' TBI TC ’ TD} S order
object updates
Replica-2 @
X0 -,
2 O 2 S
N |
\\ :
\

stems > s s
ggftvggre 15 @ VirginiaTechs
esearc roup

Invent the Future

Evaluation

* Prototype in Java

* Testbed — PRODbE cluster (23 nodes)
— AMD Opteron 6272, 64-core, 2.1 GHz CPU
— 128 GB RAM and 40 Gbps ethernet
* Benchmarks
— TPC-C
— Vacation (from the STAMP suite benchmark)
— Bank

* Competitors
— PaxosSTM: DUR-based approach without any speculation
— X-DUR: our proposal

stems e s s
gZ&mre y @ VirginiaTech

Research Group Invent the Future

Evaluation: TPC-C

PaxosSTM High—— Pax0sSTM Med —e— PaxosSTM Low —{3— X-DUR High —l— X-DUR Med —p— X-DUR Low —@—

25000 8000
f |]
| % 7000
20000 o ammm—
9 _$— N 6000 — —
5 15000 TR g | 2 5000 }
2 —8— £
S 3 4000
S 10000 A g 3000 0
©
E >\\9\ < /i:-l
= 2000 o
5000 B N\ G .
G— - 1000 & y
0 e——5—8 0 ﬁ\%iﬁé—:’ﬁ’ -
3 65§ 7 9 11 13 15 17 19 21 23 3 5 7 9 1 13 15 17 19 21 23
Replicas Replicas

Fig. Performance plots for varying contention workload A.) Throughput, B.) Client perceived latency

* Contention settings
— 23 warehouses (High-), 115 warehouses (Med-) and 230 warehouses (Low-conflict)

* Long transactions (OLTP) profile with 92% read-write requests
* Aborts of long transactions severely hampers PaxosSTM’s performance

tem
Sg%tsvaﬁe 17 @ VirginiaTech

Research Group Invent the Future

Evaluation: Vacation

PaxosSTM High—E— PaxosSTM Med —>— PaxosSTM Low —()— X-DUR High —ll— X-DUR Med —p— X-DUR Low —@—

7000 [—

6000 |} &—

5000

S R
3000 e
A~ aﬁ\?ﬁi

2000 } & — 5 i
=

1000

-

Transaction per sec

s 4

0

3 5 7 9 11 13 15 17 19 21 23
Replicas

Fig. Throughput with varying contention

* Contention settings:
— 250 relations (High-), 500 (Mid-) and 1000 (Low-conflicts)

* X-DUR out-performs PaxosSTM for all contention settings

* Assystem size increase, network overhead impact both X-DUR and PaxosSTM
similarly

stems o s s
yarems s @ VirginiaTech

Research Group Invent the Future

Evaluation: Bank

PaxosSTM High—E— PaxosSTM Med —>— PaxosSTM Low —()— X-DUR High —ll— X-DUR Med —p— X-DUR Low —@—

180000
160000
140000
120000
100000
80000
60000
40000
20000
0

Transaction per sec

N

~
L

/
d/
<

3

5

7 9 11 13 15 17 19 21 23
Replicas

Transaction per sec

200000
180000
160000
140000
120000
100000
80000
60000
40000

M

]
)

1
i |

[

750 900 1050 1200

Application threads

Fig. Throughput plots A.) Varying number of nodes, B.) Varying application threads on 7 nodes

* Contention settings:
— 500 objects (High-conflict), 2000 (Medium-conflict) and 5000 objects (Low-conflict)

* PaxosSTM suffers from aborts in high % of conflicts even for partitioned accesses
* PaxosSTM benefits from massive parallelism in low and medium contention

workload
tem ..
g%t\e)veu?e 1 @ VirginiaTech

Research Group

Invent the Future

Thank You

Speculation pays off!

Questions?

tem
%Z%tsvarse 2 lVlrgmlaTech

Researc h Group nt the Futur

