s}’“ems Slefb] sk frees0soh/0x120

oftware + | ¢ 2u_spin_ynlock_irqre

Research Group 0 cleace <ocksd

An Automated Framework for Decomposing

Memory Transactions to Exploit Partial Rollback

Aditya Dhoke, Roberto Palmieri, and Binoy Ravindran

Systems Software Research Group
Virginia Tech

ECE gy IPDPS 2015 @ VirginiaTech

Invent the Future

\
\

Lock-based concurrency control

has serious drawbacks

* Coarse-grained locking
— Simple, but no concurrency

CE-E-E-.

* Fine-grained locking

— Excellent performance, but
poor programmability

— Hard to compose

public boolean add(int item) {
Node pred, curr;

lock.lock();
try {
pred = head;

curr = pred.next;

while (curr.val < item) {
pred = curr;
curr = curr.next;

}

if (item == curr.val) {
return false;

} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
} finally {
lock.unlock();

}

L.

Time

Coarse-grained locking

Fine-grained locking

.1}
o | S—

7 Research Group

Threads

public boolean add(int item) {
head.lock();
Node pred = head;
try {
Node curr = pred.next;
curr.lock();
try {
while (currval < item) {
pred.unlock();
pred = curr;
curr = currnext;
curr.lock();

}
if (currkey == key) {
return false;
}
Node newNode = new Node(item);
newNode.next = curr;
pred.next = newNode;
return true;
} finally {

curr.unlock();

}
} finally {
pred.unlock();

Transactional memory promises to
alleviate these difficulties

e Similar to ACID transactions
* Easier to program

* Decent performance

« Composable

Time A Coarse-grained locking

STM

Fine-grained locking

public boolean add(int item) {
Node pred, curr;
atomic {
pred = head;
curr = pred.next;
while (curr.val < item) {
pred = curr;
curr = curr.next;
}
if (item == curr.val) {
return false;
} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

(PPoPP, ‘06) }
— } Herlihy and Moss, ‘93
Threads '
tem .
Sftware 3 @ VirginiaTech

Research Group

Invent the Future

Transactions can be nested for better
composability, performance, ...

@Atomic{ T
@Atomic{ —_— Y
Account src = getAccount(a_src); g
int b_src = getBalance(src); § -
setBalance(b_src - X); o 3
} o o+
— S 8
@Atomic{ — v §
Account dst = getAccount(a_dst); T a
int b_dst = getBalance(dst); o S
setBalance(b_dst + X); o
} .
S
}
(Moss and Hosking, '06)
stems ...
Dot s @ VirginiaTech

Research Group Invent the Future

Several nesting models exist

* Flat nesting
* Closed nesting
* Open nesting

nggsv?rse 5 IVlrglmaTech

Researc h Group nt the Futur

Flat nesting is no nesting

Flat inner transactions accessing a shared object

T 1 successfully commits
"
\.H’ ;;;;;;;; T T / ?/Eﬁ?/ﬁﬁ?/ﬁf?
=] :
T2 ‘ s T i Commlt

T, must abort while T, is still executing
T, may proceed after T, commits

Time

>

stems o s s
yarems] @ VirginiaTech

Research Group Invent the Future

Closed nesting may improve
performance

Closed inner transactions accessing a shared object

S—— 4 successfully commits
1

rrrrrr

aaaaaaaaaaaaaaa

Icommit

T,'s inner transaction must abort
while T, is still executing

T,'s inner transaction may proceed after T, commits

Time

>

tem .,
Sftware 7 @ VirginiaTech

Research Group Invent the Future

Open nesting may perform even better,
at the expense of physical serializability

Open inner transactions accessing a shared object

T,'s inner transaction commits and releases its isolation

« I «—1 1 successfully commits

aaaaaaaaaaaaaaa
- it -

T full mmi
N I/ > successfully co ts

T,'s inner transaction only has to abort

. L T . T,'s inner transaction may
while T,'s inner transaction is executing

proceed as soon as T,'s inner
transaction commits

Time

>

tem Y
Sftware 8 @ VirginiaTech

Research Group Invent the Future

Open nesting reduces false conflicts
and vields abstract serializability

e T1and T2 can execute and commit

_ Shared set s;
concu rrently iff X # Yy # Z Transaction T1: Transaction T2:
. Atomi Atomi
» ButT1and T2 traverse same physical ;’_?;fe{rt(x); ;’_?:,'Sce{rt(z);
structure => physical conflict sinsert(y); }
— False conflict }
Abstract lock Abstract lock Abstract lock
> >
Transaction T1: a b X C y d Z
Atomic { /
GE) BeginNest 1 R Transaction T2: /’
= . s.msert(x), Atomic {
ommitNest 1 : _
BeginNest 2 s.insert(z);
s.insert(y); — }
CommitNest_2
Vol Upon CommitNest 1 (and CommitNest 2),
d-set is released and abstract locks acquired
ystems rea e
Roftv}slfgre No conflicts on a ,b, ¢, d, but only on x, y Vll’g},%%ggig
esearc I'Ollp

Paper’s focus is on closed nesting

e Ifthereis a conflict on

accessing m.: // Matrices: m;, m,, m,
— flat nesting will restart @Atomic{ // T_flat
from T_flat m1 = getObj(m1_Obj);
— closed nesting will restart m2 = getObj(m2_Obj);
T_closed, saving m3 = getObj(m3_Obj);
operations on m, and m, intm = add(m1,m2);
* Root’s commit will likely @Atomic{ // T_closed
succeed result = add(intm,m3);
* Gains can be significant in }
distributed systems)
— Object lookup involves

network communications

stems o s s
ngtware o @ VirginiaTech
Researc h Group Invent the Future

But sub-transactions have to be
programmer-defined

e Step backwards!
— Reduces TM’s high programmability

* Closed nesting enables partial abort in TM,
potentially increasing performance

* |s it possible to automate the definitions of
closed nested transactions?

— Increases TM performance, retaining high
programmability

Sggsv?rse 1 %VlrglmaTech

Researc h Group nt the Futur

Contribution is ACN

* Automatic framework for composing closed
nested transactions

— Completely programmer-transparent

— Heuristic algorithm

* Dynamic framework

— Optimize (closed-nested) transaction definition at
run-time to adapt to transactional contentions
and workload fluctuations

— (Non-trivial to do so manually)

tem Y
Sg%tsvarse 12 @ VirginiaTech

Researc h Group Invent the Future

Multiple factors affect performance of
closed-nested transactions

* Nesting granularity v

— # operations performed branch1 = getObject{branchld1);

by a Ssu b_tra nsaction branch2 = getObject(branchld2);
branchl.withdraw(amtl);

° Contenﬁon branch2.deposit(amt2);
accountl = getObject(accountldl);
— Shared objects accessed account2 = getObject(accountld2);

_ : accountl.withdraw(amtl);
by d SUb transaction account2.deposit(amt2);
* Lexical position i
— Each sub-transaction’s Bank benchmark’s transaction
. . at nestin
position in root 7 9)
SX%ESV“;Ee 3 @ VirginiaTech

Researc h Group Invent the Future

Granularity impacts
performance

Finest granularity:
wrap each operation

Coarse granularity:
wrap all operations as
one sub-transaction

@Atomic{
branchl = getObject(branchidl);
branch2 = getObject(branchid2);

@Atomic{

@Atomic{

branchl = getObject(branchidl);
}
@Atomic{

branch2 = getObject(branchid2);

}

branchl.withdraw(amtl); @Atomic{
branch2.deposit(amt2); branchl.withdraw(amtl);
accountl = getObject(accountldl); }
account2 = getObject(accountld2); @Atomic{
accountl.withdraw(amt1); branch2.deposit(amt2);
account2.deposit(amt2); }

}

INEFFECTIVE!
NO PARTIAL ABORT!
stems . .
yarems y @ VirginiaTech

Research Group

Invent the Future

as a sub-transaction —

Grouping objects with similar access
probability affects performance

System hot spots: branch1, branch2
Objects less contended: account1, account2

@Atomic{
@Atomic{
branchl = getObject(branchidl);
accountl = getObject(accountldl);

}

@Atomic{
branch2 = getObject(branchid2);
account2 = getObject(accountld2);

System hot spots: branch1, branch2
Obijects less contended: accountl1, account2

@Atomic{
@Atomic{
branchl = getObject(branchidl);
branch2 = getObject(branchld2);

}

@Atomic{
accountl = getObject(accountldl);
account2 = getObject(accountld2);

) INEFFECTIVE!) EFFECTIVE!
C Y
Sfeware 15 @ VirginiaTech

Research Group

Invent the Future

Lexical scoping of sub-transactions
also affects performance

System hot spots: branch1, branch2

Objects less contended: account1, account2

@Atomic{
@Atomic{
branchl = getObject(branchidl);
branch2 = getObject(branchid2);

}
@Atomic{

accountl = getObject(accountldl);
account2 = getObject(accountld2);

System hot spots: branch1, branch2
Obijects less contended: accountl1, account2
@Atomic{
@Atomic{
accountl = getObject(accountldl);
account2 = getObject(accountld2);

}
@Atomic{

branchl = getObject(branchidl);
branch2 = getObject(branchld2);

} INEFFECTIVE! } EFFECTIVE!
C Y
Sfeware 16 @ VirginiaTech

Research Group

Invent the Future

Algorithm composes sub-transactions
from code blocks

* Transactional code is composed of UnitBlocks
— Smallest logical unit of code involving only one object
— Includes all local computations on object

@Atomic{ @Atomic{
branch1 = getObject(branchldl); (branch1l = getObject(branchidl); |
branch2 = getObject(branchld2); | branchl.withdraw(amt1);)
branchl.withdraw(amtl); (branch2 = getObject(branchlid2); b
branch2.deposit(amt2); | branch2.deposit(amt2);)
accountl = getObject(accountldl); :> (accountl = getObject(accountldl);)
account2 = getObject(accountld2); L accountl.withdraw(amtl);)
accountl.withdraw(amtl); (account2 = getObject(accountld2);)
account2.deposit(amt2); | account2.deposit(amt2);)

} }

T, . @ VirginiaTech

Research Group Invent the Future

Multiple UnitBlocks may be
combined to form a Block

* UnitBlocks are tagged with object contention levels

— Measured at run-time

* UnitBlocks with comparable contention are merged
— Block: smallest executable unit of code

@Atomic{

(branch1l = getObject(branchidl);
| branchl.withdraw(amt1);

(branch2 = getObject(branchld2);
L branch2.deposit(amt2);

VAN

\accountl.withdraw(amtl);

(accountl = getObject(accountldl);

L account2.deposit(amt2);

(account2 = getObject(accountld2);

VAN

=

}

&l

Research Group

18

@Atomic{

branchl.withdraw(amtl);

\branch2.deposit(amt2);

(branchl = getObject(branchid1l);)

branch2 = getObject(branchid2);

)
N

accountl.withdraw(amtl);

\.account2.deposit(amt2);

(account1 = getObject(accountldl);

account2 = getObject(accountld2);

J

1

=~ Invent the Future

Blocks are reordered

* Ordered in increasing contention level, from root

— Ensuring data dependencies

* Safe, as transactions are all-or-nothing

@Atomic{

(branch1 = getObject(branchld1);
branchl.withdraw(amtl);

branch2 = getObject(branchid2);
\branch2.deposit(amt2);

~

("accountl = getObject(accountldl);
accountl.withdraw(amtl);
account2 = getObject(accountld2);

VAN

o
<
N *
.
*
. .
. *
*
*
* 3
*

@Atomic{
accountl = getObject(accountidl);

| 77 accountl.withdraw(amtl);

account2 = getObject(accountld2);
account2.deposit(amt2);
branchl = getObject(branchidl);

I N branchl.withdraw(amtl);

branch2 = getObject(branchid2);

\ account2.deposit(amt2);) branch2.deposit(amt2);
} }

stems ..
Dot 1o @ VirginiaTech

Research Group

Invent the Future

Effectiveness is evaluated at run-time,
and recomposed if needed

* Current Block sequence is discarded
— Merged Blocks are split

* Adjacent dependent UnitBlocks with similar
contention levels are merged

* Blocks are sorted in increasing order of (new)
contention level

(Difficult to statically optimize, manually)

Sggsv?rse 2 %VlrglmaTech

Researc h Group nt the Futur

Case study: distributed TM setting

e Distribution has several motivations

— Exploit locality, fault-tolerance, cope with
memory constraints, etc

* |f transactions involve remote
communications, full aborts are expensive!

* Excellent problem space for ° “‘
evaluating partial abort techniques 0.. v
— Closed nesting more effective .‘Q Q.Q
than checkpointing (Dhoke, ‘13) "l X M
00 g o ©°

stems o s s
ngtware) @ VirginiaTech
Researc h Group Invent the Future

Quorum-based Replication (QR) is
base DTM protocol

e Cost of synchronization is higher with replication
— Exemplified in QR

Nodes logically organized as a tree

Nodes belong to a read quorum Commit operation:

and/or a write quorum Contact a write quorum to
Quorums intersect: any write-gq and update new value

read-q always intersect Read/write operation:

Contact a read quorum to
fetch latest object version

Zhang, ‘11

@ VirginiaTech

Invent the Future

Evaluations used TPC-C and
manual closed-nesting as competitor

* Three benchmarks:
— TPC-C
— Vacation (from STAMP suite)
— Bank

* Competitors:
— QR-DTM (flat nesting)
— QR-CN (manual closed nesting)
— QR-ACN (automatic; reconfig every 10secs)

* 30-node private cluster (8-core nodes; 1GBPS link)

tem
Sg%tsvarse 23 IVlrglmaTech

Researc h Group nt the Futur

ACN is effective on TPC-C
write transactions

Throughput (tx/sec)

100

QR-DTM —E—

QR-CN —¥—

80 QR-ACN ——
60 51

40rg O oO—85— 5

20

0 10 20 30 40 50
Time Interval (seconds)

100% New Order
Transactions

Block containing
updates on District
object is moved to
transaction end

800

700

600

500

Throughput (tx/sec)

400

300

200

District and Warehouse

QR-DTM —O—

QR-CN —¥—

QR-ACN ———

[l

——F

3—+F

]

/s

?g__

#\ﬁﬁ

N\

A

7

\

7

i

10 15 20 25 30 35 40 45 50

Transactions

Time Interval (seconds)

100% Payment

objects are most

contended; moved
closer to transaction end

Throughput (tx/sec)

70

QR-DTM —O—
QR-CN —¥—
65 QR-ACN ———
= N;‘/é;
0
%0 0 10 20 30 40 50
Time Interval (seconds)
100% Delivery
Transactions
Delivery transaction

objects have similar
contention; ACN’s
throughput
changes every 10s

ystems

oftware
Research Group

24

@ VirginiaTech

Invent the Future

ACN also adapts to
workload fluctuations

Object contention varied every 20s

160

QR-DTM —E—

140 QR-CN —¥—
. QR-ACN ———
S 120
g | I
£ 100 [5 6
3 /
£ 80
: /I&\%
S 60 —K——

40[Fl /G

el
20

0 5 10 15 20 25 30 35 40
Time Interval (seconds)

STAMP-Vacation

Manual closed nesting cannot
adapt; worse than flat

QR-DTM —O—
250 QR-CN —¥—
_ QR-ACN ——H—
¢ 200 P]
?:L 150K~
S K
3 1009//@\ € Y
—<€

50

0 5 10 15 20 25 30 35 40
Time Interval (seconds)

Bank

ACN is always best. Even if most
contended Branches are changed
every 20secs, their contention is
still higher than Accounts’

ystems

oftware
Research Group

25

@ VirginiaTech

Invent the Future

Closed nested transactions can be auto-
composed, with effective performance

* Lightweight technique for partial aborts
* Manual composition reduces programmability

* Automation
— |Is possible (and works!)
— Can run-time optimize to adapt to workload changes

— |Is particularly effective in distributed settings
* Code available at hyflow.org

* Auto-compose open-nesting?

SY%temS ’e @ Virginialech

ortware
Researc h Group nt the Futur

