
On Closed Nesting and Checkpointing in Fault-
Tolerant Distributed Transactional Memory

Aditya Dhoke, Binoy Ravindran, Bo Zhang (speaker Roberto Palmieri)
ECE Dept. Virginia Tech

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Software Transactional Memory
•  Centralized STM

•  Simple programming model
•  Easy debugging --- deadlocks, livelocks, lock

convoying, priority inversion
•  Distributed STM (DTM)

•  Implementation distributed locking
•  Support for synchronization of distributed

application

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Nesting Models
•  Flat Nesting
•  Abort causes entire transaction to restart

•  Closed Nesting
•  Enclosed inside parent transaction
•  Commit of inner transaction local
•  Abort independently of parent
•  Partial rollback mechanism

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Checkpointing
•  Checkpointing
•  Generalization of closed nesting
•  Checkpoint saves execution state and

transactional metadata
•  Rollback to previous checkpoint for abort
•  Partial rollback mechanism

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Motivation with an example

•  Matrix: m1, m2, m3
•  Result = m1+m2+m3

•  conflict on accessing m3

•  Flat Nesting will restart
from T_flat

•  Closed Nesting will
restart T_closed

T_flat:
 m1 = getRemote(m1_Obj);
 m2 = getRemote(m2_Obj);
 m3 = getRemote(m3_Obj);
 intm = add(m1,m2);

 result = add(intm,m3);
 if commit()
 return result;
 retry T_flat;

T_closed:

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Partial rollback benefits
•  Do not repeat operation on m1 and m2
•  Saved computation cost and remote calls
•  Reduced abort rate as well, thus reduced

transaction execution time
•  Suited for replicated systems, where

operations are costly

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Questions?
•  What application/workload will benefit from

partial abort, as compared to flat nesting?
•  What i s the po ten t ia l per fo rmance

improvement or degradation of partial abort?
•  Which parameters of a transaction will affect

the partial abort performance?

IN THE CONTEXT OF DTM

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Quorum-based Replication (QR-DTM)
•  Network layer:

•  Nodes form logical ternary tree
•  Read and write quorum created from tree
•  Read and write quorum always intersect
•  Reduces the number of nodes to contact

•  DTM protocol (Full replication):
•  Read quorum services read and write requests
•  Selecting the highest version from read quorum

gives the latest copy
•  Write quorum services commit requests

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Network organization

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

QR-DTM: Early Validation

•  For every read request:
•  Validate previously read objects (piggyback

read-set on read request)
•  On success, proceed to service the request
•  On failure, send abort message to the

transaction

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Example /1
•  Read quorum R1 and Write quorum W2

intersect at n2
•  T1 reads o1,o2 & o3

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Example /2
•  T2 commits changes to o2
•  T1 requests o4 and validates all the read-set
•  n1 validates T1's read-set, finds o2 is old and

sends abort

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

QR-CN : Closed Nested Operations

•  Read operation (from remote node)
•  Validate current read-set
•  If fail

•  Find the transaction with object invalidated (that
needs to be aborted)

•  Send an abort message with the object not
valid

•  If success
•  Responds with latest copy of requested object

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

QR-CN : Closed Nested Operations

•  Read operation (from local node)
•  If abort response

•  Abort child or parent

•  If success
•  Select the last version from all the versions

sent by remote nodes
•  Return the object

•  Same behavior for write operation

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

QR-CN : Closed Nested Operations

•  Nested transaction:
•  Commit

•  Merge read and write set with the parent
•  Read quorum validation ensures that data-set

is valid at commit time

•  Parent transaction:
•  Commit using write quorum

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

QR-CHK: Checkpointing Operations

•  Transaction creates checkpoints locally
•  Conflict during execution phase, can

restart from appropriate checkpoint
•  Checkpoint saves
•  Program counter
•  Read/write set at that point
•  Records the checkpoint ID

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

QR-CHK: Checkpointing Operations

•  Remote nodes record the checkpoint ID
for each object

•  Remote node
•  For each read request, remote node

validates the data-set
•  On failure

•  Finds the least checkpoint ID among the
conflicting objects that has all its objects valid

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

QR-CHK: Checkpointing Operations

•  Local Node:
•  On success, returns latest copy of

requested object
•  On failure, retrieves the checkpoint ID,

restores to it and resumes execution
•  Checkpoints are ordered following the

objects access pattern. In case of
multiple conflicts, the checkpoint with
minimum id is restore.

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Implementation /1
•  QR-CN
•  Java Exceptions for aborting transaction
•  Transaction throws exception with ID of

aborted transaction
•  Transaction catching compares the ID
•  If the matching fails, throws another

exception caught by parent

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Implementation /2
•  QR-CHK
•  Java Continuations for creating

checkpoints and rollback
•  Continuations save the execution state in

Java object
•  Rollback retrieves this object and resumes

execution

Possible bottleneck!	

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Experimental study
•  For QR-CN, each operation is a closed

nested transaction
•  For QR-CHK, checkpoint created after

reading every object
•  Benchmarks
•  Bank, Hashmap, RBTree, SkipList,

Vacation (STAMP)
•  Test-bed: 40 nodes

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Nested Calls - Vacation

 20
 22
 24
 26
 28
 30
 32
 34
 36
 38

 1 2 3 4 5

Tr
an

s/s
ec

Trans. Length

Flat
Closed

Checkpointing

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Objects accessed - Vacation

 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46

 20 40 60 80 100

Tr
an
s/
se
c

Objects

Flat
Closed

Checkpointing

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Read Workload - Vacation

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

Tr
an

s/
se

c

Read %

Flat
Closed

Checkpointing

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Observations
•  % read workload

•  Closed nesting outperforms flat nesting and
checkpoints with higher margin for mostly write
workload

•  Transaction length
•  Increasing transactional calls, the gap between

closed nesting and other increases
•  Object variation

•  With a large read-set, closed nesting contention
increases the gap against flat.

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Conclusion
•  Closed nesting has performance gain

(vs flat-nesting) of 53% across all
benchmarks

•  33% reduction in abort rate of closed
nesting (vs flat-nesting)

•  Checkpointing has 16% of performance
degradation with 19% message
overhead

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

…and the winner is…

	

CLOSED NESTING	

On Closed Nesting and Checkpointing in Fault-Tolerant Distributed Transactional Memory
27th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2013

Thanks

Questions?

http://www.hyflow.org/

