
HiperTM: High Performance
Fault-Tolerant Transactional Memory

1

Systems Software Research Group
Virginia Tech

ssrg.ece.vt.edu

Sachin Hirve, Roberto Palmieri, and Binoy Ravindran

January 7, 2014, ICDCN 2014

2

Motivation

• STM: A promising programming model for general purpose
concurrency control

• Ensures Atomicity, Consistency and Isolation properties

• In-memory transaction processing provides high throughput

• Fault-tolerance is highly desirable for such systems
– Node failure or system crash results in loss of data and service

interruption

• Fault-tolerance through data replication [Guerraoui , 96]

– Immunity to faults, as failure of one node is tolerated by other replicas

3

Taxonomy of Replication Models

• Partial replication: Data is replicated on subset of nodes [Serrano, 07]

– Amount of data and system size can scale

– Only a subset of nodes takes part in co-ordination phase

– Remote communication for retrieving and committing objects

• Full replication: Data is replicated on all nodes [Schneider, 90]

Certification-based replication
[Kemme, 98]
– With low conflicts, high scalability and

performance (within ordering layer’s
scalability bottleneck)

– Compatible with legacy TM/DB
programming model

– Performance is conflict-dependent

– Performance is impacted by message
size; batching is out of scope

Active replication [Schneider, 93]

– Performance is conflict-independent

– Local transaction execution

– Full failure masking

4

Active Replication

• Transaction execution is post-ordering

• Each node/replica executes same set of requests in same order
– Same sequence of updates on objects, despite failures

• Benefits
– High performance: Local execution of requests

– Full failure masking

• Drawbacks
– Scalability hampered due to ordering layer

– Co-ordination phase and execution phase are serialized

Ordering phase

to-broadcast (m) to-delivery (m)

Processing m

Processing of m

Client
Request (r)

Message
creation - m(r)

Client
Reply

5

Processing (m)

Optimistic Atomic Broadcast (OAB)
[Pedone, 03]

• With high probability, messages broadcast in a LAN are
received totally ordered
– Exploit broadcast message to maximize concurrent processing of

ordering and processing phase

• Final order can differ from earlier broadcast order (message
re-ordering)
– E.g., if the sequencer crashes mid-consensus and new sequencer creates

a new order based on previously broadcast message

Client
Request (r)

to-broadcast (m) to-delivery (m)

Message
creation - m(r)

Optimistic Delivery (m)

Speculative
processing (m)

Commit
(m)

Ordering phase

6

Design Goals

• Maximize the overlap of ordering and execution phases
– Exploit knowledge of probable order during ordering phase

• Eliminate message re-ordering in failure-free executions

• Building a Concurrency Control (CC) such that it:
– Enforces the request order received from AB

– Is independent from contention level

– Ensures abort-free processing of read-only transactions

7

Building blocks of HiperTM

• OS-Paxos
– Optimistic ordering layer built on S-Paxos

• SCC
– Speculative Concurrency Control (a transaction processing layer)

SCC

OS-Paxos

HiperTM

8

OS-Paxos

• Protocol overview
– Replicas1 receive client requests and creates batches

– Request batches are uniform broadcast to other replicas

– Leader creates an order for received batches and gathers consensus
from other replicas

– Optimistic delivery (oDeliver) is issued on to-broadcast of the order

– Final delivery (aDeliver) is issued on to-delivery of the order

[1] number of replicas is 2f+1, and at most f replicas may crash

9

OS-Paxos Illustration:
 Request batch formation

R2

L R1

Client
Requests

Client
Requests

Client
Requests

10

OS-Paxos Illustration:
Batch propagation and order proposal

R2

L R1

Client
Requests

Client
Requests

Client
Requests

11

OS-Paxos Illustration:
Optimistic delivery

R2

L R1

Processing thread

Speculative
Processing

Commit
Processing

Accept

13

Building blocks of HiperTM

• OS-Paxos
– Optimistic ordering layer built on S-Paxos

• SCC
– Speculative Concurrency Control (a transaction processing layer)

SCC

OS-Paxos

HiperTM

14

SCC: Speculative Concurrency Control

• Limited delay between optimistic delivery and final order
– Expensive synchronization for concurrent processing of optimistically

delivered order

• Design:
– Single-threaded processing for write transactions

– Local multi-threaded processing for read transactions

to-broadcast to-delivery

Speculative
processing

Optimistic
Delivery

Time available for
speculative processing

Commit
 phase

Ordering phase

15

SCC: continued…

• Objects stored in a multi-version data –structure
• Replica timestamp is incremented by committing transaction

• Execution of write transactions

– Arrive through OS-Paxos layer
– Single thread processing:

• Speculative processing on oDeliver
• Commit of write-set on aDeliver

– On commit, a new timestamp is attached to committing objects

• Execution of read requests

– Execution using thread pool:
• Acquires replica timestamp at start
• Latest objects are accessed w.r.t. transaction-timestamp

17

SCC Illustration:
speculative processing and consensus

R2

L R1

Processing thread

Speculative
Processing

Commit
Processing

Accept

Accept

18

Accept Accept Accept

SCC Illustration:
consensus in progress

R2

L R1

Processing thread

Speculative
Processing

Commit
Processing

Accept Accept Accept

19

SCC Illustration:
 Committing write and read processing

R2

L R1

Write Processing thread

Speculative
Processing

Commit
Processing

Read
Requests Read Executor

Rq1 Rq2 Rq3 Rq4 Rq5

Rq6 Rq7

Accept

Accept

20

Properties

• 1-copy serializability

• Opacity

• Lock-freedom

• Abort-freedom for read-only transactions

21

Evaluation

• Test-bed consists of 8 nodes
– AMD Opteron machines

• 4 nodes with 64-cores and 2.3GHz speed
• 4 nodes with 48-cores and 1.7GHz speed

– 1Gb/s switched network

• Benchmarks

– Bank: A micro-benchmark emulating a bank application
– TPC-C: A well known OLTP benchmark

• Competitors

– PaxosSTM [Kobus, 12]: Certification-based with full replication
– Score [Peluso, 12]: A partial replication-based DTM protocol ensuring

abort-freedom of read-only transactions

22

Evaluation – Bank Benchmark

• 1000 bank accounts (conflict-
intensive)

• Speculative processing is effective
– Key is leveraging optimistic delivery

• Single-thread processing is effective
– Better performance with less

implementation complexity

23

Evaluation – Bank Benchmark

• Performance and system scalability
increases as read-only transactions
increase from 10% -to- 90%

• Maximum speed-up: ~1.2x

24

Evaluation – TPC-C Workload

• HiperTM (with 8 replicas)
outperforms SCORe by up to 10x
– SCORe’s object look-ups degrades

performance

• (Experiments with failures show
up to 30% performance
degradation before system
stabilizes again)

25

Conclusions

• Optimism pays off
– Speculative transaction execution partially hides total-order latency

– Serial execution of writes is effective

– Multi-versioning needed for abort-freedom of read-only

• Implementation matters
– Important insights; pre-requisite for any transitions

– Number of design decisions affect performance; involve tradeoffs

– E.g., avoid costly synchronization mechanisms; optimizations to
counter network non-determinism

25

26

Certification-based replication

26

How it works?

Node A

Node B Node C Request from Client

Network

to-broadcast(Tx1(read/write-set))

Yes No

Commit
Tx0(write-set)

Signal Abort for
Tx0 (if Tx is local)

ti
m

e

Tx0, Tx1, ….

Local execution of request Tx1

to-delivery(Tx0, Tx1, ….)

Thread-1 Request from Client

Tx0-processing

In-order validation (Tx0, Tx1..)

Does Tx0 validate?

Does Tx1 validate?

To-broadcast
(Tx0(read/writeset)

Note: Node-C also receives to-
delivery of (Tx0, Tx1…) and
validates them in-order.
Similarly as Node-A

Note: Even if Node-B does not
push any to-broadcast, it still
receives to-delivery of (Tx0, Tx1…)
and validates them in-order and
commits. If Tx0 and Tx1 fails
validation, node-B doesn’t need to
signal abort, since Tx0 and Tx1 are
not local transactions

Thread-2

