e |

- ystems = "'_ ! - y_sk ..-; 0 ; 0
oftware & Qi zoarc] T _cousain imtack drgpe
L“.R¢search Gur-(-)up | 2411024>] L elease sock+0x174

HiperTM: High Performance
Fault-Tolerant Transactional Memory

Sachin Hirve, Roberto Palmieri, and Binoy Ravindran

Systems Software Research Group
Virginia Tech
ssrg.ece.vt.edu

SCC uumums January 7, 2014, ICDCN 2014 [VirginiaTech

nt the Futur

Motivation

 STM: A promising programming model for general purpose
concurrency control

* Ensures Atomicity, Consistency and Isolation properties
* In-memory transaction processing provides high throughput

* Fault-tolerance is highly desirable for such systems

— Node failure or system crash results in loss of data and service
interruption

* Fault-tolerance through data replication [Guerraoui, 96]

— Immunity to faults, as failure of one node is tolerated by other replicas

stems L
%gﬁware 2 VlrgmlaTech

Research Group Invent the Future

Taxonomy of Replication Models

* Partial replication: Data is replicated on subset of nodes [Serrano, 07]

— Amount of data and system size can scale
— Only a subset of nodes takes part in co-ordination phase
— Remote communication for retrieving and committing objects

* Full replication: Data is replicated on all nodes [Schneider, 90]

Certification-based replication Active replication [Schneider, 93]
[Kemme, 98]

— With low conflicts, high scalability and
performance (within ordering layer’s ' _
scalability bottleneck) — Full failure masking

— Compatible with legacy TM/DB
programming model

— Performance is conflict-dependent

— Performance is impacted by message
size; batching is out of scope

— Performance is conflict-independent

— Local transaction execution

stems Y
sgﬁware 3 [T VirginiaTech

Research Group Invent the Future

Active Replication

* Transaction execution is post-ordering

* Each node/replica executes same set of requests in same order
— Same sequence of updates on objects, despite failures

* Benefits
— High performance: Local execution of requests
— Full failure masking

* Drawbacks

— Scalability hampered due to ordering layer

— Co-ordination phase and execution phase are serialized
\1‘ Processing of m

Client Message . . Client
Request (1) — creation - m(r) Ordering phase Processing m o2 Reply
to-broadcast (m) to-delivery (m)
ystems ——
goftware 4 [T VirginiaTech

Research Group Invent the Future

Optimistic Atomic Broadcast (OAB)

[Pedone, 03]

Client

With high probability, messages broadcast in a LAN are
received totally ordered

— Exploit broadcast message to maximize concurrent processing of
ordering and processing phase

Final order can differ from earlier broadcast order (message
re-ordering)

— E.g., if the sequencer crashes mid-consensus and new sequencer creates
a new order based on previously broadcast message

Speculative Commit
processing (m) (m)

Request (r) =2 Ordering phase] $ J l

to-broadcast (m) Optimistic Delivery (m) to-delivery (m)
stems N
%gﬁware 5 VlrgmlaTech

Research Group Invent the Future

Design Goals

 Maximize the overlap of ordering and execution phases

— Exploit knowledge of probable order during ordering phase

* Eliminate message re-ordering in failure-free executions

e Building a Concurrency Control (CC) such that it:
— Enforces the request order received from AB
— Is independent from contention level
— Ensures abort-free processing of read-only transactions

stems .
ngtware 6 VlrglmaTech

Research Group Invent the Future

Building blocks of HiperTM

e (OS-Paxos

— Optimistic ordering layer built on S-Paxos

HiperTM

OS-Paxos

%Xﬁf&?ﬁe 7 lVlrgmlaTech

Research Group nt the Futur

OS-Paxos

* Protocol overview
— Replicas?! receive client requests and creates batches
— Request batches are uniform broadcast to other replicas

— Leader creates an order for received batches and gathers consensus
from other replicas

— Optimistic delivery (oDeliver) is issued on to-broadcast of the order

— Final delivery (aDeliver) is issued on to-delivery of the order

[1] number of replicas is 2f+1, and at most f replicas may crash

stems .
ngtware 8 VlrglmaTech

Research Group Invent the Future

OS-Paxos Illustration:
Request batch formation

. Client
Client
Requests

Requests
_> 4—
— «—

Client
Requests ——»

ggﬁ:\?vn;se 9 lVlrgmlaTech

Research Group nt the Futur

OS-Paxos lllustration:
Batch propagation and order proposal

Client
Requests

"E

Client

Requests
—_
—
o

Client '
Requests ——»

stems
%gﬁware 10 lVlrglmaTech

Research Group nt the Futur

OS-Paxos lllustration:
Optimistic delivery

Processing thread

e i ‘
Speculative -
Processing
Commit
Processing
stems VT
ggﬁware 1 [T VirginiaTech

Research Group Invent the Future

Building blocks of HiperTM

 SCC

— Speculative Concurrency Control (a transaction processing layer)

HiperTM
SCC
S ware 2 B VirginiaTech

Research Group nt the Futur

SCC: Speculative Concurrency Control

Speculative Commit
processing phase

! |

to—broadcastT Optimistic/]\ T to-delivery
Delivery

800 — : ‘
Failure-free ==
700 | Faulty

600
500 t
400 |
300
200
Time available for 100 ¢
speculative processing

Delay from Odeliver to Adeliver (usec)

3 4 5 6 7 8
Replicas

* Limited delay between optimistic delivery and final order

— Expensive synchronization for concurrent processing of optimistically
delivered order

* Design:
— Single-threaded processing for write transactions
— Local multi-threaded processing for read transactions

stems e
ngtware 14 VlrglmaTech

Research Group Invent the Future

SCC: continued...

e Objects stored in a multi-version data —structure
* Replica timestamp is incremented by committing transaction

* Execution of write transactions
— Arrive through OS-Paxos layer

— Single thread processing:
» Speculative processing on oDeliver
e Commit of write-set on aDeliver

— On commit, a new timestamp is attached to committing objects

e Execution of read requests

— Execution using thread pool:
* Acquires replica timestamp at start
* Latest objects are accessed w.r.t. transaction-timestamp

stems .
ngtware 15 VlrglmaTech

Research Group Invent the Future

SCC Illustration:
speculative processing and consensus

Processing thread

Speculative H Accept I

cep

Processing

Commit

Processing . .
: Accept @
stems
ggﬁware 17 lVlrgmlaTech

Research Group nt the Futur

SCC Illustration:
consensus in progress

Processing thread

Speculative a ‘

Accept
Processing

Commit :
Processing . .

stems . e
ggﬁware 18 [T VirginiaTech

Research Group Invent the Future

SCC Illustration:
Committing write and read processing

Write Processing thread

Speculative e ‘
Processing
I/'
/
Commit ¥
Processing . .
4—
44—
Read Executor
Ral] |Rq2[[Rg3| [Rg4| |Ra5
stems . e
%gﬁware 19 [T VirginiaTech
Invent the Future

Research Group

Properties

* 1-copy serializability

* Opacity

* Lock-freedom

* Abort-freedom for read-only transactions

stems T
Sfeware 20 [T VirginiaTech
Research Group Invent the Future

Evaluation

e Test-bed consists of 8 nodes

— AMD Opteron machines
* 4 nodes with 64-cores and 2.3GHz speed
* 4 nodes with 48-cores and 1.7GHz speed

— 1Gb/s switched network

e Benchmarks

— Bank: A micro-benchmark emulating a bank application
— TPC-C: A well known OLTP benchmark

 Competitors
— PaxosSTM [Kobus, 12]: Certification-based with full replication

— Score [Peluso, 12]: A partial replication-based DTM protocol ensuring
abort-freedom of read-only transactions

stems e
ngtware 21 VlrglmaTech

Research Group Invent the Future

Evaluation — Bank Benchmark

120000

HiperTM 0% read — < e 1000 bank accounts (conflict-
HiperTM 10% read —=— . .
100000 | PaX0SSTM 10% read = \ intensive)
S/’/A///é/é * Speculative processing is effective
& 80000 — Key is leveraging optimistic delivery
g * Single-thread processing is effective
X 60000
= = I — Better performance with less
A . . .
implementation complexit
40000 T P plexity
s
Vi St
20000
3 4 5 6 7 8
Replicas
ystems T \Viroini
oftware 22 IVirginiaTech

Research Group Invent the Future

Evaluation — Bank Benchmark

450000 . . . -
HiperTM 50% read — o * Performance and system scalability
400000 - HiperTM 90% read ——*— i - i
PaxosSTM 50% read — o !ncreases as read-only transactions
350000 PaxosSTM 90% read - K increase from 10% -to- 90%
g 300000 * Maximum speed-up: ~1.2x
e 250000
8] i
x 200000 g
- }/@fﬁ -
150000 S
kT
100000+
Y W S
50000 oo
3 4 5 6 7 8
Replicas
yarers LI\/iroini
oftware 23 IVirginiaTech

Research Group Invent the Future

Evaluation — TPC-C Workload

 HiperTM (with 8 replicas)
outperforms SCORe by up to 10x

50000 HiperTM 50% read ——— — SCORe’s object look-ups degrades
HiperTM 90% read —*— performance
40000 L Score 50% read - ©---
Score 90% read - - %//
S 30000 — * (Experiments with failures show
(72
=) o up to 30% performance
g 5/@///@/6 P . P
X 20000 degradation before system
stabilizes again)
10000
0 $:::::: — ,::::::,,,:;:;:%5:;,:,:,:,:i::::%§i:iiiii: ???? :'%§"::::::*: §
3 4 5 6 7 8
Replicas
stems o e
ngtware 24 VlrglmaTech
Invent the Future

Research Group

Conclusions

* Optimism pays off
— Speculative transaction execution partially hides total-order latency
— Serial execution of writes is effective
— Multi-versioning needed for abort-freedom of read-only

* Implementation matters
— Important insights; pre-requisite for any transitions
— Number of design decisions affect performance; involve tradeoffs

— E.g., avoid costly synchronization mechanisms; optimizations to
counter network non-determinism

stems e
ngtware 25 VlrglmaTech5

Research Group Invent the Future

Certification-based replication

time

How it works?

Request from Client

\= Thread-1

Local execution of request Tx1

to-broadcast(Tx1(read/write-set))

Thread-2

to-delivery(Tx0, Tx1,)

In-order validation (Tx0, Tx1..)

Does TxO0 validate?

Yes\l,

Commit
TxO(write-set)

No W

Signal Abort for
TxO0 (if Tx is local)

Does Tx1 validate?

—

Node B Node C
—>| Request from Client
Tx0-processing
To-broadcast
(TxO(read/writeset)
L \g'l]
Network

Tx0, Tx1,

Note: Even if Node-B does not
push any to-broadcast, it still
receives to-delivery of (Tx0, Tx1...)
and validates them in-order and
commits. If TxO and Tx1 fails
validation, node-B doesn’t need to
signal abort, since Tx0 and Tx1 are
not local transactions

Note: Node-C also receives to-
delivery of (Tx0, Tx1...) and
validates them in-order.
Similarly as Node-A

%Y

stems

oftware
Research Group

26

@ VirginiaTechs

Invent the Future

