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Lock-based concurrency control  
has serious drawbacks 

q  Coarse-grained locking 
q  Simple 
q  But no concurrency 

q  Fine-grained locking 
q  Excellent performance 
q  Poor programmability 
q  Hard to compose 

Fine-grained locking 
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Transactional memory promises to  
alleviate these difficulties 

q  Similar to database transactions 
q  Easier to program 
q  Composable 

STM 
Fine-grained locking 

Coarse-grained locking 

Threads 

Time 



 

 

 

 

 

 

 

 

 

TM manages contention using  
a contention manager 

 
    x = x + y;
 

 
    x = x / 25;
 

T0 T1 

 
    x = x / 25;
 

q  Decides which transaction must abort 
q  Can cause too many aborts, e.g., when a long running 

transaction conflicts with shorter transactions 
q  An aborted transaction may wait too long 
 



 

 

 

 

 

 

 

 

 

Paper’s focus is on  
distributed transactional memory 

q  Nodes interconnected with message passing links 
q  Similar advantages as that for multicores 

q  No manual implementation of distributed synchronization 
q  No code translation required (e.g., no SQL) 
q  Transactions written in same app programming language 
q  Data do not need relational organization 
q  Distribution is programmer-transparent 



 

 

 

 

 

 

 

 

 

Transaction execution models  
in DTM can be classified 

q  Control flow [Waldo and Arnold, ‘00] 
q  Transactions migrate; objects do not 
q  Synchronization: distributed commit (e.g., 2PC) 
q  Inherit traditional database synchronization techniques 

q  Data flow [Herlihy and Sun, ‘07] 
q  Objects migrate (to invoking transactions); transactions do not 
q  Synchronization: optimistic 

Ø Conflicts are resolved by conflict resolution strategy  
Ø No need for distributed commit 

q  Easier to exploit locality 



 

 

 

 

 

 

 

 

 

Dataflow DTM mechanics 
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Contention management in data flow DTM  
can cause too many aborts 

q  Uses globally-consistent contention management (GCCM) 
q  A running transaction can only be aborted by another 

transaction (even if still in-flight) with a higher priority 
q  E.g., Greedy contention manager (Guerraoui, ‘08) 

q  Generally too conservative 
q  No concurrency among conflicting transactions 
q  Only one writable copy available at-a-time per object 

q  Excessive degree of aborts 
q  Even if correctness is not violated 
q  “Poor” permissiveness (with respect to opacity) 



 

 

 

 

 

 

 

 

 

GCCM example (contrived) 

q  T1,…, Tm transactions 
q  Each transaction writes o1 and reads o2 
q  All transactions concurrently access o1 for writing 
q  T1 has highest priority, but Tm requests o1 first 
q  m-1 transactions aborted; only T1 commits 

Figure 1: The GCCM model: only T1 commits under
the Greedy contention manager.

Figure 2: The DDA model: all transactions commit.

tocol. We assume that o1 first receives Tm’s request, al-
though it is the latest transaction that sends the request
to o1 (e.g., it may be the nearest request to o1). In this
scenario, o1 is first moved to T1 from its initial place at t1.
In the same way, at time tk, the DTS knows that Tm�k+1

requests a write access to o1. Further, we assume that at
time tk (2  k  m), Tm�k+2 has not committed. Hence,
at time tk, Tm�k+1 and Tm�k+2 conflict on o1 (note that
the second operation of each transaction is a read). Since
Tm�k+1 �G Tm�k+2, Tm�k+2 is aborted for each k 2 [2,m].
At last, only T1 commits.

Figure 2 depicts the execution of the same set of transac-
tions in the DDA model. In this scenario, all transactions
can trivially commit in the order that the system receives
their requests to o1. When two transactions conflicts over
o1, the system simply lets them proceed concurrently. Since
their second operations do not conflict, the transactions can
be serialized in the order that they access o1. Hence, all
transactions can safely commit.

Although somewhat contrived, the examples in Figures 1
and 2 imply the inherent limitation of the GCCM model for
DTS. Here, objects are initially scattered in the network,
and the locations where transaction are invoked are unpre-
dictable. As the result, it may be impractical to design a
globally-consistent policy to assign priorities to transactions
which exhibits desirable performance with arbitrarily gen-
erated transactions. It may not be a good design choice
to simply copy a contention management policy from cen-
tralized (e.g., multiprocessor) transactional systems to dis-
tributed. Instead of designing a globally-consistent policy to
proactively define the priority of a transaction, deciding the
priorities of conflicting transactions after the conflict occurs
(i.e., as in the DDA model) may leave more space to exploit
and increase concurrency of transactions.

3.2 Multi-versioning
The example of Figure 1 and 2 illustrates that the DDA

model can avoid unnecessary aborts stemmed from the in-
herent limitation of the GCCM model. Moreover, past DTS

proposals assume that each object only keeps a single ver-
sion, which may be too conservative and lead to unnecessary
aborts. The DDA model allows DTS to manage multiple
versions of shared objects.
Each object o maintains two object version lists: a pend-

ing version list, called o.vp, and a committed version list,
called o.vc, based on the status of a version’s writer. At any
given time, the versions of each list is numbered in increas-
ing order, e.g., o.vp[1], o.vp[2], ..., etc. The data structure of
an object version is described in Algorithm 1.

Algorithm 1: Data structure of object version
Version

1 Data: data // actual data written to the object

2 id: writer // transaction ID of the writer

3 int: versionNum // ordered version number

4 TxnDsc []: readers // set of readers

5 id []: sucSet // set of successors detected

writing after Version

6 id []: preSet // set of predecessors detected

preceding Version

An object version, called Version, includes:
- Version.data, storing the value;
- Version.writer, storing the writer transaction’s ID;
- Version.readers, storing a set of readers;
- Version.preSet, string a set of detected predecessors;
- Version.sucSet, a set of detected successors (i.e., transac-
tion writing the object after Version.
A read operation of object o returns the value of one of o’s

committed version list. When transaction Ti accesses o to
write a value v(Ti), it appends v(Ti) to the tail of o.vp (note
that before this operation, Ti must guarantee that writing
to o does not violate correctness), e.g., v(Ti) = o.vp[max].
When Ti tries to commits, v(Ti) is removed from o.vp and in-
serted into o.vc. Each transaction keeps two data structures:
readList and writeList. An entry in a readList points to
the version that has been read by the transaction. An entry
in a writeList points to the version written by the transac-
tion.

3.3 Precedence Graph
In dependence-aware DTS, the basic idea to guarantee

correctness is to maintain a precedence graph of transactions
and keep it acyclic, which has been also adopted by some
recent e↵orts in centralized transactional systems [6, 11, 19].
Generally, transactions form a directed labeled precedence
graph, PG, based on the dependencies created during the
transaction execution. The vertices of PG are transactions.
A directed edge Ti ! Tj in PG exists in the following cases:
- Real-time order: Ti terminates before Tj starts; or
- Read after Write (W ! R): Tj reads the value written by
Ti; or

- Write after Read (R ! W ): Tj writes to object o, while
Ti reads the version overwritten by Tj ; or

- Write after Write (W ! W ): Tj writes to object o, which
was previously written to by Ti.

3.4 Inherent Limitations

3.4.1 Distributed Commit Protocol: InsertVersion

The advantages of the DDA model motivates us to de-
sign a framework to support it in DTS. Past similar ap-

Empty circle = read 
Solid circle   = write 



 

 

 

 

 

 

 

 

 

GCCM is not effective 

Objects are scattered in 
network 

Transaction’s starting 
node is unpredictable 

Poor performance because objects move  
repeatedly and abort rate is high 



 

 

 

 

 

 

 

 

 

 
 
 

Can we avoid these aborts? 



 

 

 

 

 

 

 

 

 

Objective:  
increase concurrency in data-flow model 

q  Increase “degree” of permissiveness 
q  Accept more schedules than GCCM 

q  When two transactions conflict over an object, allow to them 
proceed concurrently  
q  Both get an object copy 

q  If their other operations do not conflict, possible to serialize 
them in object access order 
q  Determine transaction precedence graph and ensure its acyclicity 

q  Inspired by [Perelman, ’09, Ramadan, ’09] for multiprocessors 
q  Cannot copy and paste! 

q  Key challenge: how to compute/maintain (acyclic) graph in a 
decentralized way, without additional communications? 



 

 

 

 

 

 

 

 

 

Paper’s contribution:   
Distributed Dependency-Aware (DDA) model 

q  Uses multi-versioning 
q  Each node stores a version data structure for each object 
q  Objects have pending list and committed list 

q  Read-only transactions always commit by reading latest 
committed versions  

q  Write-only transactions always commit by serializing 
themselves before (or after) conflicting read-write transactions 



 

 

 

 

 

 

 

 

 

DDA computes precedence graph without a 
centralized coordinator 

q  Objects store important events (read, write)  
q  Implicitly through pending list, committed list, transaction 

IDs, timestamps, etc. 

q  When a transaction fetches an object, stored events are 
retrieved to determine real-time order and conflicts: 
q  If operation violates correctness, aborted 

(Otherwise, will introduce cycle in precedence graph) 
q  If safe to execute, proceeds 

q  Graph kept acyclic without additional communication steps 



 

 

 

 

 

 

 

 

 

DDA example 

q  All write operations on o1 are conflicting with each other,    
but they can be serialized in any order 

q  Read operation on o2 are not conflicting 
q  Final serialization order is the access order on o1 

Figure 1: The GCCM model: only T1 commits under
the Greedy contention manager.

Figure 2: The DDA model: all transactions commit.

tocol. We assume that o1 first receives Tm’s request, al-
though it is the latest transaction that sends the request
to o1 (e.g., it may be the nearest request to o1). In this
scenario, o1 is first moved to T1 from its initial place at t1.
In the same way, at time tk, the DTS knows that Tm�k+1

requests a write access to o1. Further, we assume that at
time tk (2  k  m), Tm�k+2 has not committed. Hence,
at time tk, Tm�k+1 and Tm�k+2 conflict on o1 (note that
the second operation of each transaction is a read). Since
Tm�k+1 �G Tm�k+2, Tm�k+2 is aborted for each k 2 [2,m].
At last, only T1 commits.

Figure 2 depicts the execution of the same set of transac-
tions in the DDA model. In this scenario, all transactions
can trivially commit in the order that the system receives
their requests to o1. When two transactions conflicts over
o1, the system simply lets them proceed concurrently. Since
their second operations do not conflict, the transactions can
be serialized in the order that they access o1. Hence, all
transactions can safely commit.

Although somewhat contrived, the examples in Figures 1
and 2 imply the inherent limitation of the GCCM model for
DTS. Here, objects are initially scattered in the network,
and the locations where transaction are invoked are unpre-
dictable. As the result, it may be impractical to design a
globally-consistent policy to assign priorities to transactions
which exhibits desirable performance with arbitrarily gen-
erated transactions. It may not be a good design choice
to simply copy a contention management policy from cen-
tralized (e.g., multiprocessor) transactional systems to dis-
tributed. Instead of designing a globally-consistent policy to
proactively define the priority of a transaction, deciding the
priorities of conflicting transactions after the conflict occurs
(i.e., as in the DDA model) may leave more space to exploit
and increase concurrency of transactions.

3.2 Multi-versioning
The example of Figure 1 and 2 illustrates that the DDA

model can avoid unnecessary aborts stemmed from the in-
herent limitation of the GCCM model. Moreover, past DTS

proposals assume that each object only keeps a single ver-
sion, which may be too conservative and lead to unnecessary
aborts. The DDA model allows DTS to manage multiple
versions of shared objects.
Each object o maintains two object version lists: a pend-

ing version list, called o.vp, and a committed version list,
called o.vc, based on the status of a version’s writer. At any
given time, the versions of each list is numbered in increas-
ing order, e.g., o.vp[1], o.vp[2], ..., etc. The data structure of
an object version is described in Algorithm 1.

Algorithm 1: Data structure of object version
Version

1 Data: data // actual data written to the object

2 id: writer // transaction ID of the writer

3 int: versionNum // ordered version number

4 TxnDsc []: readers // set of readers

5 id []: sucSet // set of successors detected

writing after Version

6 id []: preSet // set of predecessors detected

preceding Version

An object version, called Version, includes:
- Version.data, storing the value;
- Version.writer, storing the writer transaction’s ID;
- Version.readers, storing a set of readers;
- Version.preSet, string a set of detected predecessors;
- Version.sucSet, a set of detected successors (i.e., transac-
tion writing the object after Version.
A read operation of object o returns the value of one of o’s

committed version list. When transaction Ti accesses o to
write a value v(Ti), it appends v(Ti) to the tail of o.vp (note
that before this operation, Ti must guarantee that writing
to o does not violate correctness), e.g., v(Ti) = o.vp[max].
When Ti tries to commits, v(Ti) is removed from o.vp and in-
serted into o.vc. Each transaction keeps two data structures:
readList and writeList. An entry in a readList points to
the version that has been read by the transaction. An entry
in a writeList points to the version written by the transac-
tion.

3.3 Precedence Graph
In dependence-aware DTS, the basic idea to guarantee

correctness is to maintain a precedence graph of transactions
and keep it acyclic, which has been also adopted by some
recent e↵orts in centralized transactional systems [6, 11, 19].
Generally, transactions form a directed labeled precedence
graph, PG, based on the dependencies created during the
transaction execution. The vertices of PG are transactions.
A directed edge Ti ! Tj in PG exists in the following cases:
- Real-time order: Ti terminates before Tj starts; or
- Read after Write (W ! R): Tj reads the value written by
Ti; or

- Write after Read (R ! W ): Tj writes to object o, while
Ti reads the version overwritten by Tj ; or

- Write after Write (W ! W ): Tj writes to object o, which
was previously written to by Ti.

3.4 Inherent Limitations

3.4.1 Distributed Commit Protocol: InsertVersion

The advantages of the DDA model motivates us to de-
sign a framework to support it in DTS. Past similar ap-



 

 

 

 

 

 

 

 

 

Example 2: the case of irreconcilable histories 

q  T5 = {write o1; read o2} 
q  T6 = {write o2; read o1} 
q  T5 and T6 cannot execute concurrently, so T6 is aborted 
q  T2 is read-only and always commits by reading previous versions 

single node. Along this path, it is impractical to maintain a
global precedence graph on each individual node. In prac-
tice, we propose a set of policies to handle read/write oper-
ations such that the acyclicity of the underlying precedence
graph is not violated, without frequently inter-transaction
communications for each transaction.

4.1 Read

Algorithm 4: Algorithms for read operations

1 procedure Read(o) for read-only transaction Ti

2 UpdateRt(o) // update the real-time order

3 for Version o.vc[max] to o.vc[min] do
// scan the committed version list of o from

the latest one

4 if Version.writer �H then
5 add Ti to Version.readers
6 return Version.data
7 break

8 procedure Read(o) for update transaction Ti

9 UpdateRt(o)
10 abortList ;
11 foreach suc 2 o.vc[max].sucSet[ o.vc[max].readers do
12 if suc.type 6= write-only then
13 if suc /2 o.vc[max].readers then
14 if suc.timeStamp  Ti.timeStamp then
15 Abort

16 break

17 else
18 add suc to abortList

19 else
20 Abort

21 break

22 if Ti.status = live then
23 foreach abortWriter 2 abortList do
24 send abort message to abortWriter

25 add Ti to o.vc[max].readers
26 return o.vc[max].data // return the latest

version

The pseudo code for read operations is shown in Algo-
rithm 4. Consider a transaction Ti reading object o. If
Ti is a read-only transaction, it reads the latest committed
version o.vc[j] where o.vc[j].writer �H Ti, i.e., the writer of
o.vc[j] precedes Ti according to their real-time order relation
(lines 3-7).

This way, a read-only transaction guarantees that it can
be always serialized before other concurrent transactions.
On the other hand, each object must keep proper object
versions to satisfy that each read-only transaction can find
the latest committed version which precedes it in real-time
order.

If Ti is an update transaction, it checks the writing suc-
cessors (updated by transaction writing the object following
Algorithm 2) and readers of the latest committed version
o.vc[max] and applies a contention management policy to
make the decision. In the following, we discuss it case by
case.

1. If there is no live transaction in o.vc[max].rtSuc [
o.vc[max].readers, or for any live transaction Tj 2
o.vc[max].rtSuc, Tj just reads o.vc[max] (line 13), then

Ti reads o.vc[max] (lines 25-26).
2. If there exists a write-only transaction in o.vc[max].rtSuc [

o.vc[max].readers (line 12), then Ti aborts (lines 20-
21).

3. If there exists an update transaction Tj 2 o.vc[max].rtSuc [
o.vc[max].readers and Tj writes to o (line 13), then
only one of Ti and Tj can proceed. We adopt a Greedy
contention manager to compare priorities between two
transactions based on their timestamps (line 14). The
transaction with earlier timestamp has higher prior-
ity (lines 14-18). After examines all transactions in
o.vc[max].rtSuc, if Ti determines to proceed, it sends
an abort message to each transaction which is aborted
by Ti (lines 23-24).

Figure 7: Transactions are serialized in order
T1T3T2T4T5T6, where T6 aborts.

In the scenario depicted in Figure 7, the sequence of ver-
sions read by T2 is {o11, o12, o23}. Note that for object o2, T2

does not read o22 written by T4 since T4 and T2 are concur-
rent. Obviously, if T2 reads o22, the correctness is violated
since T2 and T4 cannot be serialized. In this example, T5

checks the successors of o22 (written by T4) when reads o2.
Hence, T5 compares its priority with T6 and aborts T6 by
sending it an abort message. Now the set of transactions
can be serialized in order T1T3T2T4T5T6, where T6 aborts.

4.2 Write
The write operation is managed by the same contention

management policy presented above for handling read op-
eration of update transactions. A transaction Ti checks
the readers of the latest committed version o.vc[j] where
o.vc[j].writer �H Ti, i.e., the writer of o.vc[j] precedes Ti in
real-time order.

1. If there is no live transaction in o.vc[j].readers, or for
any live transaction Tj 2 o.vc[j].readers, Tj is a read-
only transaction, then Ti writes to o by appending
v(Ti) to the end of the pending committed list o.vp.

2. If there exists an update transaction Tj 2 o.vc[j].readers
which reads o.vc[max], then only one of Ti and Tj can
proceed:
a. if Ti is a write-only transaction, then Ti has the

higher priority;
b. otherwise, the transaction with earlier timestamp

has higher priority.
After examines all transactions in o.vc[j], if Ti does
not abort, it sends an abort message to each transac-
tion which is aborted by Ti. Then Ti writes to o by
appending v(Ti) to the end of the pending committed
list o.vp.

An an illustrative example, consider the scenario depicted



 

 

 

 

 

 

 

 

 

Example 3: write-only transactions never abort 

q  T3 aborts T1 and T2 
q  T1 because T3 is write-only and cannot abort 
q  T2 because T2 wants to read o1, and T2 is serialized after T3 

q  T4 can commit because its read operations do not conflict 

Figure 8: Transactions are serialized in order
T1T2T3T4, where T1 and T2 abort.

in Figure 8. When T3 writes to o1, it aborts T1 since T3

is a write-only transaction and T1 is an update transaction
which reads o01. When T2 reads o1, it aborts since T3 is a
write-only transaction overwriting o01. On the other hand,
T4 does not abort when writes o2 since o02 has no readers.
Due to the same reason, T4 does not abort when reads o11
written by T3. The set of transactions can be serialized in
order T1T2T3T4, where T1 and T2 abort.

4.3 Correctness

Lemma 1. In the DDA model, a transaction does not gen-
erate any cycle in the precedence graph PG before it tries to
commit.

Proof. We prove this theorem case by case. Consider an
update transaction Ti. If Ti reads object version okj , then it
only adds a W ! R edge from okj .writer to Ti to PG since
okj is the latest committed version of oj . If Ti writes to object
oj , it first finds the latest committed version oj .vc[k] where
oj .vc[k].writer �H Ti, i.e., the writer of oj .vc[k] precedes
Ti in real-time order. It only adds an R ! W edge from
Tl to Ti in two cases: 1) Tl is a read-only transaction which
reads oj .vc[k]; 2) Tl is a committed update transaction which
reads oj .vc[k]. Note that the operations of Ti only introduce
incoming edges to Ti in PG. Hence, Ti does not generate
any outgoing edge before it tries to commit and no cycle
forms.
Consider a read-only transaction Ti. From the description

of read operations, we know that Ti can always find an object
version okj to read for object oj , where okj .writer �H Ti.
Hence, for each object okj read by Ti: 1) no new incoming
edge to Ti is added to PG; 2) an R ! W outgoing edge from
Ti to Tl is added to PG for each Tl 2 okj .rtSuc where Tl

writes to oj . Suppose a cycle is generated by Ti’s operation.
Then we can find a cycle Ti1 ! Ti ! Ti2 . . . ! Ti1 where
Ti1 �H Ti and Ti ! Ti2 is an R ! W edge. Then a path
exists from Ti2 to Ti1 before Ti’s operation. Note that Ti2 is
an update transaction. There are two cases based on Ti2 ’s
status. If Ti2 is a live transaction, from the first part of the
proof we know that no outgoing edge from Ti2 exists in PG.
If Ti2 is a committed transaction, a path forms from Ti2 to
Ti1 if and only if Ti1 commits after Ti2 commits. In both
cases, a contradiction forms. The lemma follows.

Lemma 1 guarantees the acyclicity of PG from the time a
transaction starts to the time it tries to commit. Obviously,
the commit of a read-only transaction does not make any
change to PG. For update transactions, a new version is

inserted in the committed version list for each object in its
writeList. Such operation brings new edges to PG.

Lemma 2. In the DDA model, the InservVersion oper-
ation of an update transaction does not generate any cycle
in the precedence graph PG.

Proof. Consider an update transaction Ti which inserts
a new version v(Ti) to the committed version list oj .vc of
object oj . From Lemma 1, we know that before Ti tries to
insert object versions, it does not bring any new outgoing
edge to PG. If v(Ti) is inserted to the tail of oj .vc, then
a W ! W edge from oj .vc[max].writer to Ti and a set of
R ! W edges from Tl to Ti for each Tl 2 oj .vc[max].readers
are added to PG. Hence, no new outgoing edge from Ti is
added to PG.
If v(Ti) is inserted to the place preceding oj .vc[k], then

a W ! W edge from oj .vc[k � 1].writer to Ti and a set of
R ! W edges from Tl to Ti for each Tl 2 oj .vc[k�1].readers
are added to PG. Additionally, a W ! W edge from Ti

to oj .vc[k].writer is added to PG. However, from the de-
scription of InsertVersion we know that v(Ti) is inserted
before oj .vc[k] if and only if there preexists an edge from
Ti to oj .vc[k] in PG. Hence, the InsertVersion operation
does not introduce new outgoing edge from Ti to PG. The
lemma follows.

We now introduce the following lemma relying on Lemma
4 from [11]:

Lemma 3. If PG of the execution of a set of transactions
is acyclic, then the non-local history H of the execution sat-
isfies opacity.

Then from Lemma 1, 2 and 3, we have the following the-
orem.

Theorem 4. In the DDA model, the non-local history H
of the execution of any set of transactions satisfies opacity.

4.4 Permissiveness
The key advantage of the DDA model compared with the

GCCM model is reducing the number of aborts. Formally,
the criterion of transaction histories accepted by a DTS is
captured by the notion of permissiveness [4], which restricts
the set of aborted transactions by defining such criterion.
For multi-versioned DTSs, Perelman et al. propose multi-
versioned (MV)-permissiveness in [18]. In a DTS that satis-
fies MV-permissiveness, read-only transactions never abort
and an update transaction is only aborted when it conflicts
with another update transaction. Based on MV-permissiveness,
we propose the definition of strong multi-versioned(MV)-
permissiveness.

Definition 2. A DTS satisfies strong multi-versioned (MV)-
permissiveness if a transaction aborts only when it is a non-
write-only update transaction that conflicts with another up-
date transaction.

Informally, in a DTS that satisfies strong MV-permissiveness,
read-only and write-only transactions never abort. Further-
more, read-only transactions never cause other transactions’
aborts.

Theorem 5. The DDA model satisfies strong MV-permissiveness.



 

 

 

 

 

 

 

 

 

DDA has desirable properties 

q  Precedence graph is always acyclic 
q  Opacity 

q  Strong MV-permissiveness 
q  Read-only and write-only transactions never abort 
q  Read-only transactions never cause other transactions’ abort 

q  Invisible reads 
q  Real-time prefix garbage collection 

q  Proofs in paper 



 

 

 

 

 

 

 

 

 

Conclusions 

q  Dataflow DTM model can exploit locality 

q  GCCM is easy to implement, but has high aborts 
q  Can use a coordinator to compute and maintain acyclic 

precedence graph, but high communication cost 

q  DDA is somewhere in between: 
q  Stores events in migrating objects to compute precedences 
q  Allows maximum concurrency for some  
q  Contention management for others to ensure acyclicity 


