yoftware e au_spin_unlock irgre

Research Grq}Jp 0 cleace <ocksd

-

g.%ystems ' i °-- f : y_sk ..-; 0 f 0

i

Reducing Aborts in Distributed Transactional

Systems through Dependency Detection®

Bo Zhang, Binoy Ravindran, Roberto Palmieri

Systems Software Research Group
Virginia Tech

*Appeared as BA VitginiaTech
in PODC’10 ICDCN 2015 W



Lock-based concurrency control

has serious drawbacks

o Coarse-grained locking
o Simple
o But no concurrency

|
SE- - -l

public boolean add(int item) {
Node pred, curr;

lock.lock();
try {
pred = head;

curr = pred.next;

while (curr.val < item) {
pred = curr;
curr = curr.next;

}

if (item == curr.val) {
return false;

} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

Time
A

}
} finally {
lock.unlock();

}

o Fine-grained locking
o Excellent performance
a Poor programmability
o Hard to compose

|—>-—>-—:>-—>-—>

Coarse-grained locking

L

Fine-grained locking

—>

}

Threads

public boolean add(int item) {
head.lock();
Node pred = head;
try {
Node curr = pred.next;
curr.lock();
try {
while (currval < item) {
pred.unlock();
pred = curr;
curr = currnext
curr.lock();

}
if (currkey == key) {
return false;
}
Node newNode = new Node(item);
newNode.next = curr;
pred.next = newNode;
return true;
} finally {

curr.unlock();

}
} finally {
pred.unlock();




Transactional memory promises to
alleviate these difficulties

o Similar to database transactions

o Easier to program
o Composable

Time
A

Coarse-grained locking

STM
I/Fine-grained locking

‘>
Threads

public boolean add(int item) {

}

Node pred, curr;
atomic {
pred = head;
curr = pred.next;
while (curr.val < item) {
pred = curr;
curr = curr.next;
}
if (item == currval) {
return false;
} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}




TM manages contention using
a contention manager

TO T1

X = X + y; X =X / 25;

x X = x / 25;

o Decides which transaction must abort

o Can cause too many aborts, e.g., when a long running
transaction conflicts with shorter transactions

o An aborted transaction may wait too long



Paper’s focus is on
distributed transactional memory

o Nodes interconnected with message passing links

o Similar advantages as that for multicores
o No manual implementation of distributed synchronization
o No code translation required (e.g., no SQL)
o Transactions written in same app programming language
o Data do not need relational organization
o Distribution is programmer-transparent



Transaction execution models
in DTM can be classified

o Control flow [Waldo and Arnold, ‘00]
o Transactions migrate; objects do not
o Synchronization: distributed commit (e.g., 2PC)
o Inherit traditional database synchronization techniques

o Data flow [Herlihy and Sun, ‘07]
o Objects migrate (to invoking transactions); transactions do not
o Synchronization: optimistic
» Conflicts are resolved by conflict resolution strategy
» No need for distributed commit
o Easier to exploit locality




Dataflow DTM mechanics

@ Txn requesting object o Txn holding object o

CC.locate(o)

CC.move(0)

req(o) < req(o)
TM Proxy |¢ > Local Cache Local Cache > TM Proxy
not found in use
. cmp(A,B)l, TCR(A,B)
o Distributed cache-coherence protocol (CC) T
onftlict
0 Locate and move objects in network Resolution

o Ensures consistency among multiple object copies
o Conflict resolution module (CR)
0 Resolve conflicts among transactions



Contention management in data flow DTM
can cause too many aborts

o Uses globally-consistent contention management (GCCM)

a A running transaction can only be aborted by another
transaction (even if still in-flight) with a higher priority

o E.g., Greedy contention manager (Guerraoui, ‘08)

o Generally too conservative

o No concurrency among conflicting transactions

o Only one writable copy available at-a-time per object
o Excessive degree of aborts

o Even if correctness is not violated

o “Poor” permissiveness (with respect to opacity)



GCCM example (contrived)

T1,..., Tm transactions

Each transaction writes 01 and reads 02

All transactions concurrently access o1 for writing
T1 has highest priority, but Tm requests o1 first
m-1 transactions aborted; only T1 commits

L 0o O O O

Empty circle = read
Solid circle = write

L1, -t



GCCM is not effective

Objects are scattered in Transaction’s starting
network node is unpredictable

s o S
!

Poor performance because objects move
repeatedly and abort rate is high




Can we avoid these aborts?



Objective:
increase concurrency in data-flow model

o Increase “degree” of permissiveness
o Accept more schedules than GCCM

o When two transactions conflict over an object, allow to them
proceed concurrently

o Both get an object copy

o If their other operations do not conflict, possible to serialize
them in object access order

o Determine transaction precedence graph and ensure its acyclicity

o Inspired by [Perelman, '09, Ramadan, '09] for multiprocessors
o Cannot copy and paste!

o Key challenge: how to compute/maintain (acyclic) graph in a
decentralized way, without additional communications?




Paper’s contribution:
Distributed Dependency-Aware (DDA) model

o Uses multi-versioning
o Each node stores a version data structure for each object

o Objects have pending list and committed list

o Read-only transactions always commit by reading latest
committed versions

o Write-only transactions always commit by serializing
themselves before (or after) conflicting read-write transactions



DDA computes precedence graph without a
centralized coordinator

o Objects store important events (read, write)

o Implicitly through pending list, committed list, transaction
IDs, timestamps, etc.

o When a transaction fetches an object, stored events are
retrieved to determine real-time order and conflicts:

o If operation violates correctness, aborted
(Otherwise, will introduce cycle in precedence graph)
o If safe to execute, proceeds

o Graph kept acyclic without additional communication steps



DDA example

o All write operations on 01 are conflicting with each other,
but they can be serialized in any order

o Read operation on 02 are not conflicting
o Final serialization order is the access order on 01




Example 2: the case of irreconcilable histories

T5 = {write 01, read 02}

T6 = {write 02; read o1}

T5 and T6 cannot execute concurrently, so T6 is aborted

T2 is read-only and always commits by reading previous versions




Example 3: write-only transactions never abort

o T3 aborts T1 and T2
o T1 because T3 is write-only and cannot abort
o 12 because T2 wants to read o1, and T2 is serialized after T3

o T4 can commit because its read operations do not conflict




DDA has desirable properties

Precedence graph is always acyclic
Opacity

Strong MV-permissiveness
o Read-only and write-only transactions never abort
o Read-only transactions never cause other transactions’ abort

Invisible reads
Real-time prefix garbage collection

Proofs in paper




Conclusions

Dataflow DTM model can exploit locality

GCCM is easy to implement, but has high aborts

Can use a coordinator to compute and maintain acyclic
precedence graph, but high communication cost

DDA is somewhere in between:;

o Stores events in migrating objects to compute precedences
o Allows maximum concurrency for some
o Contention management for others to ensure acyclicity




