yoftware + - au_spin_unlock irgre

Research Grq}Jp 0 cleace <ocksd

-

g.%ystems ' i °-- f : y_sk ..-; 0 f 0

i

On Reducing False Conflicts in Distributed

Transactional Data Structures®

Aditya Dhoke, Roberto Palmieri, Binoy Ravindran

Systems Software Research Group
Virginia Tech

* Appeared as short paper Virginia
in Middleware’13 ICDCN 2015 WTeCh

Motivation: concurrent data structures

public boolean add(int item) {
head.lock();
Node pred = head;
try {
Node curr = pred.next;
curr.lock();
try {
while (currval < item) {
pred.unlock();
pred = curr;
curr = currnext
curr.lock();
}
if (currkey == key) {
return false;
}
Node newNode = new Node(item);
newNode.next = curr;
pred.next = newNode;
return true;

} fimally {
curr.unlock();

}
} fimally {
pred.unlock();

}
}

Wide use in multithreaded programming

Set with APls:
o add(x)

o remove(x)
o contains(x)

Time A Coarse-grained locking

L

Fine-grained locking

‘>
Threads

What if you need composability?

Transactional data structures?

Shared data: concurrentlist

atomicFoo ()

{
concurrentList.add (x) ;

}

Transactional data structures?

Shared data: concurrentlist

atomicFoo ()

{
concurrentList.add (x) ;
concurrentList.add(y) ;

o Compose multiple operations to form a transaction
(with transactional properties)

Example deux

Shared data: concurrentListl
Shared data: concurrentList2

atomicFoo ()

{
concurrentListl.remove (x) ;
concurrentList2.add (x) ;

A possible solution:
use software transactional memory

Shared data: sequentiallist

@Atomic

atomicFoo ()

{
sequentiallList.add(x) ;
sequentiallist.add(y) ;

o Works! But poor performance
o STM is a general framework
o Data structures will suffer from “false conflicts”

False conflict example: linked-list

add(“55)

False conflict example: linked-list

add(“55”)

o All “red” nodes are in read-set
o “50” and “55” are in write-set

o If a concurrent transaction deletes “5”, STM will detect a
conflict; will abort and retry

o Even though add(“55’) and remove (“5") commute
o False conflict

If transactions involve remote communications,
false conflicts (significantly) degrade performance

< Network

\
/ a@ ___________ ‘50 @ @

o Data structure may be distributed (e.g., partitioned, replicated)
o To exploit locality
o Cope with memory constraints
o For fault-tolerance

10

Objective: reduce impact of false conflicts in
distributed transactional data structures

o Three techniques

o QR-ON
o Exploit Open Nesting [Moss, ‘06] in a distributed setting

a Inner transactions commit globally and release objects; not
validated during final commit

o QR-OON

o Optimistic Open Nesting: reduce commit cost through
non-blocking commit; next transaction executes speculatively

o0 QR-ER
o Early release of objects not affecting transaction semantics

11

Quorum-based Replication (QR) [Zhang, ‘“11]
is base protocol

Motivation: cost of synchronization is higher with
replicated data (QR exemplifies this)

o Nodes logically organized as a tree

o Nodes belong to a read quorum
and/or a write quorum

o Commit operation:

Contact a write quorum to
update new value

o Read/write operation:

Contact a read quorum to
fetch latest object version

12

QR-ON:

QR + Open Nesting

o Divide transaction into multiple sub-transactions
o Sub-transaction’s commit is globally visible

o Acquire abstract locks to serialize non-commutative operations
o Reduced false conflicts (but not eliminated)
o (On abort, fire compensations for committed sub-transactions)

atomicFoo ()

{

List.add (x) ;

var = List.contains (x) ;

If (var)
List.add(z) ;

else
List.add(y) ;

~S

—* “Q

Read-set: {A,B,C, D}
Write-set: {C,X}

@Commit sub-transaction
Read-set: {} Abs Lock: {X}

_ Write-set: {}

13

QR-OON:
QR + Optimistic Open Nesting

QR-ON reduces false conflicts, but at higher commit costs
Reduce by asynchronous commit of current inner transaction
Next inner transaction reads speculatively

If current commits, next continues its execution

If current aborts, next also aborts and current restarts

o O O 0O O

atomicFoo () JL

{ List.add (x) ; —> Begin sub-txn
List.add(x) ; :
var = List.contains (x); ; Commi t
If (var) ; : : g(//A\\\A
List.add(z) ; Ve Speculative commit
else var = List.contains (x);
List.add(y) ; Speculative? Global
} L commit
execution :

Ve Commit notification v

End sub-txn

14

QR-ER:
QR + Early Release

o Does not use nested transactions

o Requires programmer to:

o define data structure’s semantics
o identify read objects to release from transaction’s read-set

o (Data structure-specific library can be rolled out)

Example: List.add(55)

Read-set: {}

15

Early Release example

Read-set inclusion conditions for List.add(55)

@,@ ___________ @ @ @

Would 5 be the successor of 557 Would 5 be the predecessor of 557
NO NO
-> No inclusion in Read-set -> No inclusion in Read-set
add ()

{
while (curr.next < 55) {

Read-set {} if (needToBelIcnluded (curr))

readSet.get (curr) .setValidate (true)
curr = curr.next;

Early Release example

Read-set inclusion conditions for List.add(55)

ea@ __________

Would 50 be the successor of 557 Would 50 be the predecessor of 55?

NO YES
-> No inclusion in Read-set -> |nclusion in Read-set

add ()

{
while (curr.next < 55) {

Read-set {50} if (needToBeIcnluded (curr))

readSet.get (curr) .setValidate (true)
curr = curr.next;

Early Release example

Read-set inclusion conditions for List.add(55)

ea@ ___________

Would 60 be the successor of 557 Would 60 be the predecessor of 55?

YES NO
-> |nclusion in Read-set -> No inclusion in Read-set

add ()

{
while (curr.next < 55) {

Read-set {50,60} if (needToBeIcnluded (curr))

readSet.get (curr) .setValidate (true)
curr = curr.next;

Experimental Study

o Private Cluster
o 13 nodes (8 cores each)

o Three data structures:
o Linked-List
o Hash-Map
o BST
o Competitors:
o QR-DTM
o QR-ON
o QR-OON
o QR-ER

Experimental results: ON and OON are most effective
with greater conflicts and read workloads

500 : : : 50 : : : :
% Improvement - % Improvement m—

400

: : 40
300

200
100
0 A A
-100 , , i
Linked-List Hashmap BST
QR-ON vs QR QR-OON vs QR-ON
Throughput improvement Linked-List

#calls per transaction=5
object count=500

20

Throughput

Experimental results: ER’s gains are significant

o Linked-List benchmark
o One nested operation per nested transaction

300 ; : : 200 : : : :
Open Nesting —+— 180 Open Nesting —+— ..
250 3 Early Release _e_ n 160 Early Release _e_
: : : S : : : :
o 140
< 120 R S T o G
(@) 100
e 80 f i SUUUURURUORN RIS EEUUUUUOUUUNE SOOI EESRUUUUUONE SOVURIUROS i X
60 T ST S SO ST SOPPOTUUPPTS POTTROPRRRRRY
Y~ e - 1 00 50000 OO0 OSSOSO SSSSPSSSSSPOO SOSSUSSSSSOOOS SS
20 A
0 | 1 } — 0 | | |] | 1 |
1 2 3 4 5 40 60 80 100 120 140 160 180 200
Nested Calls # Objects

Objects = 500 # Calls =3

21

Conclusions

Need transactional data structures for composability
False conflicts degrade performance

Open nesting reduces false conflicts, does not require heavy
programmer’s intervention, but commit cost is high

Commit cost can be reduced through NB implementation

Early release involves programmer in identifying precise
validation set, but significant performance gain

Tradeoff between programmability and performance

22

