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Motivation: concurrent data structures 

Wide use in multithreaded programming 
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Fine-grained locking 

Threads 

Time Coarse-grained locking 

Set with APIs: 
q  add(x) 
q  remove(x) 
q  contains(x) 



 

 

 

 

 

 

 

 

 

 
 
 

What if you need composability? 
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Transactional data structures? 

 

Shared data: concurrentList 

atomicFoo() 

{ 
concurrentList.add(x); 

} 

4 



 

 

 

 

 

 

 

 

 

Transactional data structures? 

 

Shared data: concurrentList 

atomicFoo() 

{ 
concurrentList.add(x); 
concurrentList.add(y); 

} 
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q  Compose multiple operations to form a transaction           
(with transactional properties) 



 

 

 

 

 

 

 

 

 

Example deux 

Shared data: concurrentList1 
Shared data: concurrentList2 

atomicFoo() 
{ 

concurrentList1.remove(x); 
concurrentList2.add(x); 

} 
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A possible solution:  
use software transactional memory 

q  Works! But poor performance 
q  STM is a general framework 
q  Data structures will suffer from “false conflicts” 

Shared data: sequentialList 

@Atomic 

atomicFoo() 
{ 

sequentialList.add(x); 
sequentialList.add(y); 

} 
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False conflict example: linked-list 

add(“55”) 

10 5 2 70 60 50 

55 

X 
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False conflict example: linked-list 

q  All “red” nodes are in read-set 
q  “50” and “55” are in write-set 
q  If a concurrent transaction deletes “5”, STM will detect a 

conflict; will abort and retry  
q  Even though add(“55’) and remove (“5”) commute  
q  False conflict 

 

10 5 2 70 60 50 

55 
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add(“55”) 



 

 

 

 

 

 

 

 

 
q  Data structure may be distributed (e.g., partitioned, replicated) 

q  To exploit locality 
q  Cope with memory constraints 
q  For fault-tolerance 
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10 5 2 70 60 50 

Network 

If transactions involve remote communications, 
false conflicts (significantly) degrade performance 



 

 

 

 

 

 

 

 

 

Objective: reduce impact of false conflicts in 
distributed transactional data structures 

q  Three techniques 

q  QR-ON 
q  Exploit Open Nesting [Moss, ‘06] in a distributed setting 
q  Inner transactions commit globally and release objects; not 

validated during final commit 

q  QR-OON 
q  Optimistic Open Nesting: reduce commit cost through        

non-blocking commit; next transaction executes speculatively 

q  QR-ER 
q  Early release of objects not affecting transaction semantics 
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Quorum-based Replication (QR) [Zhang, ‘11]  
is base protocol 

Motivation: cost of synchronization is higher with 
replicated data (QR exemplifies this) 
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q  Nodes logically organized as a tree 
q  Nodes belong to a read quorum 

and/or a write quorum 

q  Commit operation: 
Contact a write quorum to 
update new value 

q  Read/write operation: 
Contact a read quorum to 
fetch latest object version 



 

 

 

 

 

 

 

 

 

QR-ON:  
QR + Open Nesting 

q  Divide transaction into multiple sub-transactions 
q  Sub-transaction’s commit is globally visible 

q  Acquire abstract locks to serialize non-commutative operations 
q  Reduced false conflicts (but not eliminated) 
q  (On abort, fire compensations for committed sub-transactions) 
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atomicFoo() 
{ 

List.add(x); 
var = List.contains(x); 
If (var) 

 List.add(z); 
else 

 List.add(y); 
} 

D C 

X 

B A X 

Read-set: {A,B,C,D} 
Write-set: {C,X} 

Read-set: {} 
Write-set: {} 

Commit sub-transaction 

Abs Lock: {X} 



 

 

 

 

 

 

 

 

 

QR-OON:  
QR + Optimistic Open Nesting 

q  QR-ON reduces false conflicts, but at higher commit costs 
q  Reduce by asynchronous commit of current inner transaction 
q  Next inner transaction reads speculatively 
q  If current commits, next continues its execution 
q  If current aborts, next also aborts and current restarts 
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List.add(x); 
atomicFoo() 
{ 

List.add(x); 

var = List.contains(x); 
If (var) 

 List.add(z); 
else 

 List.add(y); 
} 

Begin sub-txn
 ... 
 Commit 

 
 
 
 
 
End sub-txn 

Speculative commit 

var = List.contains(x); 
Global 

commit 
Speculative 
execution Commit notification 



 

 

 

 

 

 

 

 

 

QR-ER:  
QR + Early Release 

q  Does not use nested transactions  
q  Requires programmer to: 

q  define data structure’s semantics 
q  identify read objects to release from transaction’s read-set 

q  (Data structure-specific library can be rolled out) 
 
Example: List.add(55) 
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10 5 2 70 60 50 

Read-set: {} 



 

 

 

 

 

 

 

 

 

Early Release example 
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Read-set: {} 

10 5 2 70 60 50 

Would 5 be the successor of 55? 
NO 

-> No inclusion in Read-set 

Read-set inclusion conditions for List.add(55) 

Would 5 be the predecessor of 55? 
NO 

-> No inclusion in Read-set 

add() 
{   

 while(curr.next < 55){ 
    if (needToBeIcnluded(curr)) 

  readSet.get(curr).setValidate(true) 
    curr = curr.next; 

   } 

 . . . 
} 
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Read-set: {50} 

10 5 2 70 60 50 

Would 50 be the successor of 55? 
NO 

-> No inclusion in Read-set 

Would 50 be the predecessor of 55? 
YES 

-> Inclusion in Read-set 

add() 
{   

 while(curr.next < 55){ 
    if (needToBeIcnluded(curr)) 

  readSet.get(curr).setValidate(true) 
    curr = curr.next; 

   } 

 . . . 
} 

Read-set inclusion conditions for List.add(55) 

Early Release example 



 

 

 

 

 

 

 

 

 

Early Release example 
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Read-set: {50,60} 

10 5 2 70 60 50 

Would 60 be the successor of 55? 
YES 

-> Inclusion in Read-set 

Would 60 be the predecessor of 55? 
NO 

-> No inclusion in Read-set 

add() 
{   

 while(curr.next < 55){ 
    if (needToBeIcnluded(curr)) 

  readSet.get(curr).setValidate(true) 
    curr = curr.next; 

   } 

 . . . 
} 

Read-set inclusion conditions for List.add(55) 



 

 

 

 

 

 

 

 

 

Experimental Study 

q  Private Cluster 
q  13 nodes (8 cores each) 
q  Three data structures: 

q  Linked-List 
q  Hash-Map 
q  BST 

q  Competitors: 
q  QR-DTM 
q  QR-ON 
q  QR-OON 
q  QR-ER 
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Experimental results: ON and OON are most effective 
with greater conflicts and read workloads 

QR-ON vs QR 
Throughput improvement 

QR-OON vs QR-ON 
Linked-List 

#calls per transaction=5 
object count=500 
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Experimental results: ER’s gains are significant 
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q  Linked-List benchmark 
q  One nested operation per nested transaction 



 

 

 

 

 

 

 

 

 

Conclusions 

q  Need transactional data structures for composability 
q  False conflicts degrade performance 

q  Open nesting reduces false conflicts, does not require heavy 
programmer’s intervention, but commit cost is high 

q  Commit cost can be reduced through NB implementation 
q  Early release involves programmer in identifying precise 

validation set, but significant performance gain 

q  Tradeoff between programmability and performance 
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