
On Reducing False Conflicts in Distributed
Transactional Data Structures*

Aditya Dhoke, Roberto Palmieri, Binoy Ravindran

Systems Software Research Group
Virginia Tech

ICDCN 2015

*Appeared as short paper
in Middleware’13

Motivation: concurrent data structures

Wide use in multithreaded programming

2

Fine-grained locking

Threads

Time Coarse-grained locking

Set with APIs:
q  add(x)
q  remove(x)
q  contains(x)

What if you need composability?

3

Transactional data structures?

Shared data: concurrentList

atomicFoo()

{
concurrentList.add(x);

}

4

Transactional data structures?

Shared data: concurrentList

atomicFoo()

{
concurrentList.add(x);
concurrentList.add(y);

}

5

q  Compose multiple operations to form a transaction
(with transactional properties)

Example deux

Shared data: concurrentList1
Shared data: concurrentList2

atomicFoo()
{

concurrentList1.remove(x);
concurrentList2.add(x);

}

6

A possible solution:
use software transactional memory

q  Works! But poor performance
q  STM is a general framework
q  Data structures will suffer from “false conflicts”

Shared data: sequentialList

@Atomic

atomicFoo()
{

sequentialList.add(x);
sequentialList.add(y);

}

7

False conflict example: linked-list

add(“55”)

10 5 2 70 60 50

55

X

8

False conflict example: linked-list

q  All “red” nodes are in read-set
q  “50” and “55” are in write-set
q  If a concurrent transaction deletes “5”, STM will detect a

conflict; will abort and retry
q  Even though add(“55’) and remove (“5”) commute
q  False conflict

10 5 2 70 60 50

55

9

add(“55”)

q  Data structure may be distributed (e.g., partitioned, replicated)

q  To exploit locality
q  Cope with memory constraints
q  For fault-tolerance

10

10 5 2 70 60 50

Network

If transactions involve remote communications,
false conflicts (significantly) degrade performance

Objective: reduce impact of false conflicts in
distributed transactional data structures

q  Three techniques

q  QR-ON
q  Exploit Open Nesting [Moss, ‘06] in a distributed setting
q  Inner transactions commit globally and release objects; not

validated during final commit

q  QR-OON
q  Optimistic Open Nesting: reduce commit cost through

non-blocking commit; next transaction executes speculatively

q  QR-ER
q  Early release of objects not affecting transaction semantics

11

Quorum-based Replication (QR) [Zhang, ‘11]
is base protocol

Motivation: cost of synchronization is higher with
replicated data (QR exemplifies this)

12

q  Nodes logically organized as a tree
q  Nodes belong to a read quorum

and/or a write quorum

q  Commit operation:
Contact a write quorum to
update new value

q  Read/write operation:
Contact a read quorum to
fetch latest object version

QR-ON:
QR + Open Nesting

q  Divide transaction into multiple sub-transactions
q  Sub-transaction’s commit is globally visible

q  Acquire abstract locks to serialize non-commutative operations
q  Reduced false conflicts (but not eliminated)
q  (On abort, fire compensations for committed sub-transactions)

13

atomicFoo()
{

List.add(x);
var = List.contains(x);
If (var)

 List.add(z);
else

 List.add(y);
}

D C

X

B A X

Read-set: {A,B,C,D}
Write-set: {C,X}

Read-set: {}
Write-set: {}

Commit sub-transaction

Abs Lock: {X}

QR-OON:
QR + Optimistic Open Nesting

q  QR-ON reduces false conflicts, but at higher commit costs
q  Reduce by asynchronous commit of current inner transaction
q  Next inner transaction reads speculatively
q  If current commits, next continues its execution
q  If current aborts, next also aborts and current restarts

14

List.add(x);
atomicFoo()
{

List.add(x);

var = List.contains(x);
If (var)

 List.add(z);
else

 List.add(y);
}

Begin sub-txn
 ...
 Commit

End sub-txn

Speculative commit

var = List.contains(x);
Global

commit
Speculative
execution Commit notification

QR-ER:
QR + Early Release

q  Does not use nested transactions
q  Requires programmer to:

q  define data structure’s semantics
q  identify read objects to release from transaction’s read-set

q  (Data structure-specific library can be rolled out)

Example: List.add(55)

15

10 5 2 70 60 50

Read-set: {}

Early Release example

16

Read-set: {}

10 5 2 70 60 50

Would 5 be the successor of 55?
NO

-> No inclusion in Read-set

Read-set inclusion conditions for List.add(55)

Would 5 be the predecessor of 55?
NO

-> No inclusion in Read-set

add()
{

 while(curr.next < 55){
 if (needToBeIcnluded(curr))

 readSet.get(curr).setValidate(true)
 curr = curr.next;

 }

 . . .
}

17

Read-set: {50}

10 5 2 70 60 50

Would 50 be the successor of 55?
NO

-> No inclusion in Read-set

Would 50 be the predecessor of 55?
YES

-> Inclusion in Read-set

add()
{

 while(curr.next < 55){
 if (needToBeIcnluded(curr))

 readSet.get(curr).setValidate(true)
 curr = curr.next;

 }

 . . .
}

Read-set inclusion conditions for List.add(55)

Early Release example

Early Release example

18

Read-set: {50,60}

10 5 2 70 60 50

Would 60 be the successor of 55?
YES

-> Inclusion in Read-set

Would 60 be the predecessor of 55?
NO

-> No inclusion in Read-set

add()
{

 while(curr.next < 55){
 if (needToBeIcnluded(curr))

 readSet.get(curr).setValidate(true)
 curr = curr.next;

 }

 . . .
}

Read-set inclusion conditions for List.add(55)

Experimental Study

q  Private Cluster
q  13 nodes (8 cores each)
q  Three data structures:

q  Linked-List
q  Hash-Map
q  BST

q  Competitors:
q  QR-DTM
q  QR-ON
q  QR-OON
q  QR-ER

19

Experimental results: ON and OON are most effective
with greater conflicts and read workloads

QR-ON vs QR
Throughput improvement

QR-OON vs QR-ON
Linked-List

#calls per transaction=5
object count=500

20

-100

 0

 100

 200

 300

 400

 500

Linked-List Hashmap BST

% Improvement

 0

 10

 20

 30

 40

 50

50 60 70 80 90 100

Th
ro

ug
hp

ut
Read %

% Improvement

Experimental results: ER’s gains are significant

21

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5

Th
ro

ug
hp

ut

Nested Calls

Open Nesting
Early Release

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 40 60 80 100 120 140 160 180 200
Th

ro
ug

hp
ut

Objects

Open Nesting
Early Release

Objects = 500 # Calls = 3

q  Linked-List benchmark
q  One nested operation per nested transaction

Conclusions

q  Need transactional data structures for composability
q  False conflicts degrade performance

q  Open nesting reduces false conflicts, does not require heavy
programmer’s intervention, but commit cost is high

q  Commit cost can be reduced through NB implementation
q  Early release involves programmer in identifying precise

validation set, but significant performance gain

q  Tradeoff between programmability and performance

22

