
Managing Soft-errors in Transactional
Systems

Mohamed Mohamedin, Roberto Palmieri, and Binoy Ravindran
Virginia Tech

USA

{mohamedin,robertop,binoy}@vt.edu

DPDNS'14

What are Soft-errors?

 Transient faults that may happen anytime during application
execution

 Caused by physical phenomena (e.g., cosmic particle strikes,
electric noise)

 E.g., Soft-error can cause a single bit in a CPU register to flip
causing transient failures

Do soft-errors represent a problem?

 Soft-errors are:
 Random: Can occur anytime
 Undetectable: No hardware interrupt is triggered
 Corrupting: Can silently corrupt program data or crash the program

Soft-errors effect

101011101011

CPU mathematical operation

+

100010101001

=

1001110010100

Soft-errors effect

101011101011

CPU mathematical operation

+

100010101001

=

1001110010100

But if a soft-error happened

101011101011

+

100010101001

=

1001110010100

Soft-errors effect

101011101011

CPU mathematical operation

+

100010101001

=

1001110010100

But if a soft-error happened

101011101011

+

000010101001

=

1001110010100

Soft-errors effect

101011101011

CPU mathematical operation

+

100010101001

=

1001110010100

But if a soft-error happened

101011101011

+

000010101001

=

0101110010100

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

Address

110101

Memory

110101
 ax

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

10001
Address

000001

Memory

110101
 ax

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

11001
Address

000001

Memory

110101
 ax

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

11001
Address

000001

110101

Memory

110101
 ax

Overwrite

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

11001
Address

000001

110101

Memory

110101
 ax

Overwrite

Wrong Value

Soft-errors effect

10001

Memory store

e.g., mov [address], ax

But if a soft-error happened

Address

110101

Memory

110101
 ax

11001
Address

000001

110101

Memory

110101
 ax

Memory Protection

Exception

Wrong Value

Soft-errors in multicore architectures

 Soft-errors rate is growing in the current and emerging multicore
architectures
 Smaller transistors (e.g., Intel Haswell uses 22nm)
 More components on same chip (e.g., more cores)

Soft-error failure-in-time of a chip [1] SER as a function of the number of chips [2]

How to tolerate soft-errors?

 Restart the application!
 It may not crash!
 Not suitable for critical business applications

 We need to maintain availability/reliability constraints

 Hardware
 High end systems
 Expensive

 Replication
 Multiple isolated copies of the application data
 Fully mask faults
 But, it is designed for distributed system

Motivation

 Apply the same distributed replication mechanisms in centralized
multicore systems

 Is that enough?
 Significantly degraded performance
 Expensive

Byzantine faults

 Byzantine Faults are arbitrary faults
 Omission faults
 Commission faults

 Soft-errors can be categorized as Byzantine Faults
 Byzantine fault-tolerant systems are usually based on state-

machine replication

Byzantine fault-tolerant (BFT) systems

 System clients + Multiple replicas (servers)
 Requests sent by clients are totally ordered.
 All replicas execute the requests in the same order independently
 Client receives a reply from each replica
 Different reply means an error has occurred

 Require 3f+1 replica to tolerate f faults
 Target arbitrary faults and malicious activities

BFT Systems

Client

Replicas

Requ
es

t

BFT Systems

Client

Replicas

Requ
es

t

Client

Replicas

R
equest O

rdering

BFT Systems

Client

Replicas

Requ
es

t

Client

Replicas

R
equest O

rdering

Client

exec

exec

exec

exec

exec

Replicas

BFT Systems

Client

Replicas

Requ
es

t

Client

Replicas

R
equest O

rdering

Client

exec

exec

exec

exec

exec

Replicas

Client

Replicas

BFT Systems

Client

Replicas

Requ
es

t

Client

Replicas

R
equest O

rdering

Client

exec

exec

exec

exec

exec

Replicas

Client

Replicas

BFT Systems

Client

Replicas

Requ
es

t

Client

Replicas

R
equest O

rdering

Client

exec

exec

exec

exec

exec

Replicas

Client

Replicas

Proposed Solution

 A state-machine replication-based system customized for
centralize systems
 An Optimized network protocol

 Decentralized
 Supports optimistic delivery

 An innovative concurrency control algorithm
 Allows concurrent requests execution using STM
 Preserves a predefined commit order

Proposed Solution

 Partition available resources into replicas and application
threads

 ObCC: Ordering-based Concurrency Control.
 Replicas immediately optimistically deliver request

 Replicas: Start total ordering phase
 ObCC: Execute request speculatively using STM

Network Layer

Network Layer

Client
Request

Client

Network Layer

Client
Request

O
ptim

istic D
elivery

Client

Client

Client

Network Layer

Client
Request

O
ptim

istic D
elivery

exec

exec

exec

exec

exec
Client

Client

Client

Client

Client

A
ck

Network Layer

Client
Request

O
ptim

istic D
elivery

exec

exec

exec

exec

exec
Client

Client

Client

Client

Client

A
ck

Client

Client

F
inal D

elivery

Network Layer

 Decentralized Ordering
 Assumptions

 Reliable Network
 Thread FIFO: thread requests are received in the same order
 Synchronized Clock

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

 5 3
5 4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

 5 3
5 4

2
 5 3
5 4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

 5 3
5 4

2
 5 3
5 4

2
 5 3
5 4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

 5 3
5 4

2
 5 3
5 4

2
 5 3
5 4

 5 3
5 4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

 5 3
5 4

2
 5 3
5 4

2
 5 3
5 4

 5 3
5 4

6
 5 3
5 4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

 5 3
5 4

2
 5 3
5 4

2
 5 3
5 4

 5 3
5 4

6
 5 3
5 4

6
 5 3
5 4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

 5 3
5 4

2
 5 3
5 4

2
 5 3
5 4

 5 3
5 4

6
 5 3
5 4

6
 5 3
5 4

6
 5

5 4

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

 5 3
5 4

2
 5 3
5 4

2
 5 3
5 4

 5 3
5 4

6
 5 3
5 4

6
 5 3
5 4

6
 5

5 4

6
 5
5

Network Layer Decentralized Ordering

1

Replicas have a queue for each client

Example on a system with 3 clients

1
3

1
3
4

1
3
4

 5 3
4

 5 3
5 4

2
 5 3
5 4

2
 5 3
5 4

 5 3
5 4

6
 5 3
5 4

6
 5 3
5 4

6
 5

5 4

6
 5
5

6

5

...

Concurrency Control

Concurrency Control

Client Request Replica

Concurrency Control

Client Request Replica Opt-del

Calculate final order

ObCC

Concurrency Control

Client Request Replica Opt-del

Calculate final order

ObCC Speculative Execution

Concurrency Control

Client Request Replica Opt-del

Calculate final order

ObCC Speculative Execution

Final-del ObCC

Concurrency Control

Client Request Replica Opt-del

Calculate final order

ObCC Speculative Execution

Final-del ObCC
Check

 ord
er

Concurrency Control

Client Request Replica Opt-del

Calculate final order

ObCC Speculative Execution

Final-del ObCC
Check

 ord
er

Order matchesOrder mismatches

Concurrency Control

Client Request Replica Opt-del

Calculate final order

ObCC Speculative Execution

Final-del ObCC
Check

 ord
er

Order matchesOrder mismatches

Concurrency Control

Client Request Replica Opt-del

Calculate final order

ObCC Speculative Execution

Final-del ObCC
Check

 ord
er

Order matchesOrder mismatches

Abort speculation

Retry with correct order

Concurrency Control

 More concurrency
 Run multiple requests concurrently

 Conflicts?
 Order?

Concurrency Control

 Conflict detection and resolution
 Two threads accessing same object and one access is write

 Resolution: Thread that precedes wins

 Uses encounter time write-locks
 Writing to a locked object

 Conflict
 Reading locked object

 Conflict?

Concurrency Control

 Another enhancement: Committer mode
 Minimal instrumentation/overhead
 Guaranteed to commit

Evaluation

 System is implemented in C++
 Concurrency control implemented on top of RSTM [17]
 Testbed: 36-core Tilera TILEGx cooprocessor

 1.0 GHz clock speed
 8 GB DDR3 memory
 Message-passing (iMesh 2D on-chip network)

Evaluation: Network Layer

 Good performance for small number of replicas (4-8)

Evaluation: Concurrency Control

 Overhead of ordered commit is about 25%

Hash-Set

Evaluation: Integration

 System performance is bound by network performance
 Limited gap

Hash-Set

Conclusion

 Active replication is a good candidate for solving soft-errors
 Fully masks errors
 Reasonable overhead

 Future Work:
 Optimizing System components

 Reducing network layer overhead
 Increase requests execution concurrency

 Trying different architectures
 Message-passing vs. shared-bus

Questions

Thank you!

	PowerPoint Presentation
	STM implementations can be broadly classified
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	ByteSTM
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

