Brief Announcement:
Breaching the Wall of

Impossibility Results on
Disjoint-Access Parallel TM

Sebastiano Peluso!, Roberto Palmieri', Paolo Romano?,
Binoy Ravindran! and Francesco Quaglia3

I VirginiaTech \If

Invent the Future

The 28th International Symposium on Distributed Computing 2014

Degrees of Parallelism

[SPAAOS, SPAAQ9]

« Strict Disjoint-Access Parallelism (S-DAP): Two
transactions do not contend on a common base
object if they do not access any common
transactional object.

« Weak Disjoint-Access Parallelism (W-DAP): Two
transactions do not concurrently contend on a
common base object if there is no path between
them in the conflict graph.

W(x) S-DAP: T1 and T3 cannot contend on a
T

Tl » . common base object.

R(z) R(Y W)

T2 » W-DAP: T1 and T3 can concurrently

R(z) contend on a common base object.
T

T3 »
The 28th International Symposium on Distributed Computing 2014

Desirable properties in TM

Isolation Level

Non-concurrent txs

Real-time Order (RTO)

Parallelism

Disjoint-Access ‘ \ -
parallelism (DAP) _— Update txs

"

_—

— . = . Obstruction-free (OFU)

Py

Read-only txs

Wait-free and

Invisible (WFIRO)

Existing Impossibility Results

Impossibility on Wait-free Invisible Read-Only (WFIRO)
[SPAAQ9, TCS11]

(S’rric@ariolizabili’ry

WFIRO + W-DAP + oty

Snops@solcﬂon

Lower Bound: Wait-free Read-only txs should write on at least t-1
base objects when t+1 processes execute. /

Impossibility on Obstruction-free Updates (OFU)
[SPAAOS, SPAA14]

OFU + S-DAP + ———> sericfioility

PCL Theorem: No TM can ensures S-DAP, Obstruction-freedom
and Weak Adaptive Consistency (weaker than Snapshot Isolation
\ond Processor Consistency). /

The 28th International Symposium on Distributed Computing 2014

Seeking a Sweet Spot in
Disjoint-Access Parallel TM

« Objective: S-DAP + WFIRO

Isolation Levels Progress Guarantees for Update Txs

® Opacity [PPoPP08]
T GObs’rrucﬂon—free
Serializa bili’ry® :
Strongly progressive
A

Snapshot
Isolation

Update

Weakly progressive

GSTric’r Serializability
Extended > [POPL09]

Serializability

[Adya99

Forward

Consistent View
A

The 2 Consistent View pn Distributed Computing 2014

What about Preserving Real-Time
Order?

Real-time order (RTO) relation: T, precedes T, if the
commit of T, precedes the begin of T..

W-DAP SR
Wait-free and Invisible

Wait-free Read-only

Txs Read-only Txs
Obstruction-free Weakly Progressive
Update Txs Update Txs
N N \
N/

Visible Read-Only Txs
enable S-DAP +
We prove that Opacity [icoeniij
TM cannot preserve Real-time | 4

Order (RTO)

The 28th International Symposium on Distributed Computing 2014

A Strictly DAP TM

PARALLELISM READ-ONLY UPDATES ISOLATION
e S_DAP \;\:]C\J/Ii’;-ifgleee]Sr)ebes’rruc’rion— Opacity

SER
E

W-DAP Wait-free Strongly. 6 -
Progressive |

Visible and Weakly Weak
NO DAP No Wait-free Progressive Adaptive

Witnessable Real-Time Order (WRTO)
Real-Time Order preserved only among directly conflicting tfransactions

* Properties of EUS:
o Consistent View guaranteed for all transactions (like Opacity!) B/
o Committed Update Transactions are serializable (like Opoci’ry!)B/

o Two fransactions T,, T, can observe two non-compatible
serialization orders... X

o ...butonlyif T, and T, will never commit any write operation

The 28th Infernational Symposium on Distributed Computing 2014

Thanks for the attention

peluso@vt.edu

The 28th International Symposium on Distributed Computing 2014

References

[Adya99] A. Adya. “Weak Consistency: A Generalized Theory and Opfimistic
Implementations for Distributed Transactions”. PhD thesis, 1999. AAIO800775.

[ICDCNI11] H. Attiya and E. Hillel. “Single version STMs can be multi-version
permissive”. In proc. of the 12th International Conference on Distributed
Computing and Networking, ICDCN, 2011.

[POPLO?] R. Guerraoui and M. Kapalka. “The Semantics of Progress in Lock-based
Transactional Memory”. In proc. of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL), 2009.

[PPoOPPO08] R. Guerraoui and M. Kapalka. “On the Correctness of Transactional
Memory”. In proc. of the 13th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), 2008.

[SPAAO8] R. Guerraoui and M. Kapalka. “On Obstruction-free Transactions.” In proc.
of the 20th annual Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2008.

[SPAAQ?] Hagit Attiya, Eshcar Hillel, and Alessia Milani. “Inherent limitations on
disjoint-access parallel implementations of transactional memory.” In proc. of the
21st annual Symposium on Parallelism in Algorithms and Architectures (SPAA), 2009.

[SPAA14] Victor Bushkov, Dmytro Dziuma, Panagiota Fatourou, Rachid Guerraoui,
“The PCL Theorem. Transactions cannot be Parallel, Consistent and Live.”. In proc.
of the 26th annual Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2014.

[TCS11] Hagit Attiya, Eshcar Hillel, and Alessia Milani. “Inherent limitations on disjoint-
access parallel implementations of tfransactional memory”. Theory Comput. Syst.,
49(4):698-719, 2011.

The 28th International Symposium on Distributed Computing 2014

Examples

The 28th International Symposium on Distributed Computing 2014

Consistent View

« Consistent View: all transactions are provided with @
consistent view of the fransactional state.

« Detecting a Non-Consistent Read: the read creates an
oriented cycle with exactly one anti-dependence edge
In the conflict graph [Adya%9].
Wi(x,a) Example

T1 e—t * RX:a R(z) : 2
T2 et ——

W(xb) W(y,c)
13 e— "Ry):c Wzd)

T4 et e

The 28th International Sympd

The Costs of Ensuring
Consistent View

. : return version V if V *does not
depend on” a version V* that overwrites the read-set.

Example of S-DAP implementations

;[*1 W(i(/a) . ;[‘1 W(i(,a) .
: R(x):a R(y) :? ! R(x): a R(y) : ?
x| 1 T2 » i ! pl |1 T2 o ! A
y| 0 W(x,b) W(y,.c p2 |0 W(xb) W(y,c
T3 o (=) (;y)o p3 |0 T3 o %) (Y)o
x| 2 x| 2 pl |1 pl |1

overwrites y| 1 y| 1 P2 Il p2 [0

\S/ overwrites p3 |1 p3 |1

Theorem. Given a S-DAP and Weakly Progressive STM that
guarantees WFIRO and ensures consistent view, the space complexity
for each version of an object is ()(min(N,,N,)), where:
e N, =number of objects
* N, =number of processes

The 28th International Symposium on Distributed Computing 2014

