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Degrees of Parallelism

[SPAAOS, SPAAQ9]

« Strict Disjoint-Access Parallelism (S-DAP): Two
transactions do not contend on a common base
object if they do not access any common
transactional object.

« Weak Disjoint-Access Parallelism (W-DAP): Two
transactions do not concurrently contend on a
common base object if there is no path between
them in the conflict graph.

W(x) S-DAP: T1 and T3 cannot contend on a
T

Tl » . common base object.

R(z) R(Y W)

T2 » W-DAP: T1 and T3 can concurrently

R(z) contend on a common base object.
T

T3 »
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Desirable properties in TM
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Existing Impossibility Results

Impossibility on Wait-free Invisible Read-Only (WFIRO)
[SPAAQ9, TCS11]

(S’rric@ariolizabili’ry

WFIRO + W-DAP + oty

Snops@solcﬂon

Lower Bound: Wait-free Read-only txs should write on at least t-1
base objects when t+1 processes execute. /

Impossibility on Obstruction-free Updates (OFU)
[SPAAOS, SPAA14]

OFU + S-DAP + ———> sericfioility

PCL Theorem: No TM can ensures S-DAP, Obstruction-freedom
and Weak Adaptive Consistency (weaker than Snapshot Isolation
\ond Processor Consistency). /
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Seeking a Sweet Spot in
Disjoint-Access Parallel TM

« Objective: S-DAP + WFIRO

Isolation Levels Progress Guarantees for Update Txs

® Opacity [PPoPP08]
T GObs’rrucﬂon—free
Serializa bili’ry® :
Strongly progressive
A

Snapshot
Isolation

Update

Weakly progressive

GSTric’r Serializability
Extended > [POPL09]

Serializability

[Adya99

Forward

Consistent View
A
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What about Preserving Real-Time
Order?

Real-time order (RTO) relation: T, precedes T, if the
commit of T, precedes the begin of T..

W-DAP SR
Wait-free and Invisible

Wait-free Read-only

Txs Read-only Txs
Obstruction-free Weakly Progressive
Update Txs Update Txs
N N \
N/

Visible Read-Only Txs
enable S-DAP +
We prove that Opacity [icoeniij
TM cannot preserve Real-time | 4

Order (RTO)
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A Strictly DAP TM

PARALLELISM READ-ONLY UPDATES ISOLATION
e S_DAP \;\:]C\J/Ii’;-ifgleee ]Sr)ebes’rruc’rion— Opacity

SER
E

W-DAP Wait-free Strongly. 6 -
Progressive |

Visible and Weakly Weak
NO DAP No Wait-free Progressive Adaptive

Witnessable Real-Time Order (WRTO)
Real-Time Order preserved only among directly conflicting tfransactions

* Properties of EUS:
o Consistent View guaranteed for all transactions (like Opacity!) B/
o Committed Update Transactions are serializable (like Opoci’ry!)B/

o Two fransactions T,, T, can observe two non-compatible
serialization orders... X

o ...butonlyif T, and T, will never commit any write operation
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Thanks for the attention
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Examples
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Consistent View

« Consistent View: all transactions are provided with @
consistent view of the fransactional state.

« Detecting a Non-Consistent Read: the read creates an
oriented cycle with exactly one anti-dependence edge
In the conflict graph [Adya%9].
Wi(x,a) Example

T1 e—t *  RX:a R(z) : 2
T2 et ——

W(xb) W(y,c)
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The Costs of Ensuring
Consistent View

. : return version V if V *does not
depend on” a version V* that overwrites the read-set.

Example of S-DAP implementations

;[*1 W(i(/a) . ;[‘1 W(i(,a) .
: R(x):a R(y) :? ! R(x): a R(y) : ?
x| 1 T2 » i ! pl |1 T2 o ! A
y| 0 W(x,b)  W(y,.c p2 |0 W(xb)  W(y,c
T3 o (= ) (;y )o p3 |0 T3 o %) (Y )o
x| 2 x| 2 pl |1 pl |1

overwrites y| 1 y| 1 P2 Il p2 [0

\S/ overwrites p3 |1 p3 |1

Theorem. Given a S-DAP and Weakly Progressive STM that
guarantees WFIRO and ensures consistent view, the space complexity
for each version of an object is ()(min(N,,N,)), where:
e N, =number of objects
* N, =number of processes
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