yoftware e au_spin_unlock irgre

Research Grq}Jp 0 cleace <ocksd

-

g.%ystems ' i °-- f : y_sk ..-; 0 f 0

i

ByteSTM: Virtual Machine-Level

Java Software Transactional Memory

Mohamed Mohamedin, Binoy Ravindran, and Roberto Palmieri
Virginia Tech
USA
{mohamedin,binoy,robertop}@vt.edu

Coordination 2013 v WﬁTech

Concurrency control on chip multiprocessors
significantly affects performance (and programmability)

o Improve performance by exposing greater concurrency

o Amdahl’s law: relationship between
sequential execution time and
speedup reduction is not linear

N
\
\
B

[=]
*x8 | |
2
3

g

B

e
© N o

Sun T2000 Niagara

(8-core)

I «
H 8 & 0o o o ¥ @ 8 o 3

96
8192
36

Lock-based concurrency control
has serious drawbacks

o Coarse grained locking

public boolean add(int item) {

o Simple Node pred, curr;
lock.lock();
o But no concurrency try {
pred = head;

curr = pred.next;

while (curr.val < item) {
pred = curr;
curr = curr.next;

}

if (item == currval) {
return false;

} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}

} finally {
lock.unlock();

}
}

Fine-grained locking is better,
but...

Excellent performance
Poor programmability

Lock problems don’ t go
away!
o Deadlocks, livelocks,
lock-convoying, priority
inversion,....

Most significant difficulty —
composition

public boolean add(int item) {
head.lock();
Node pred = head;
try {
Node curr = pred.next;
curr.lock();
try {
while (currval < item) {
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
if (currkey == key) {
return false;
}
Node newNode = new Node(item);
newNode.next = curr;
pred.next = newNode;
return true;
} finally {

curr.unlock();

}
} finally {

pred.unlock();

}
}

Lock-free synchronization overcomes some of
these difficulties, but...

public boolean add(int item) {
while (true) {
Node pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {
pred = head; curr = pred.next.getReference();
while (true) {
succ = curr.next.get(marked);
while (marked[0]) {
snip = pred.next.compareAndSet(curr, succ, false, false);
if (!snip) continue retry:;
curr = succ; suce = curr.next.get(marked);

}

if (curr.val < item)
pred = curr; curr = succ;

””

'}

lock-free retry loop

if (curr.val == item) { return false;
} else {
Node node = new Node(item);
node.next = new AtomicMarkableReference(curr, false);
if (pred.next.compareAndSet(curr, node, false, false)) {return true;}

}

11

Transactional memory

o Like database transactions . -
public boolean add(int item) {
o ACI properties (no D) Node pred, curr;

atomic {

o Easier to program pred = head;

curr = pred.next;

o Composable while (currval < item) {
pred = curr,

curr = curr.next;

o First HTM, then STM., later HyTM ! e == curma) {

return false;
} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for
lock-free data structures. ISCA. pp. 289-300.

N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.

How TM works?

o Optimistic concurrency
o Example: Adding 9 & 15 concurrently

Thread A adds 9 & Thread B adds 15

Thread A Thread B
Read-set: 8 Read-set: 8
Write-set: Write-set:

Thread A adds 9 & Thread B adds 15

Thread A Thread B
Read-set: 8, 10 Read-set: 8, 10
Write-set: Write-set:

Thread A adds 9 & Thread B adds 15

Thread A Thread B
Read-set: 8, 10 Read-set: 8, 10, 14
Write-set: 10 (left child pointer) Write-set:

Thread A adds 9 & Thread B adds 15

O
(37 10

ORNOIONTD
Thread A e 0 @ @

Read-set: 8, 10 Thread B
Write-set: 10 (left child pointer) Read-set: 8, 10, 14

Committed successfully Write-set: 14 (right child pointer)

Thread A adds 9 & Thread B adds 15

(8,
(3) 10

ORR O[O
Thread A e a @ @

Read-set: 8, 10 Thread B
Write-set: 10 (left child pointer) Read-set: 8, 10, 14

. Write-set: 14 (right child pointer)
Committed SUCCESSfu"y Committed successfull

Object-based granularity

Thread A
Read-set: 8, 10 Thread B
Write-set: 10 «—WAR . Read-set: 8, 10, 14

Committed successfully \Write-set: 14 Conflict =& Abort

Optimistic execution yields performance gains at
the simplicity of coarse-grain, but no silver bullet

o High data dependencies

Time Coarse-grained
A locking
o lIrrevocable operations
o Interaction between

/STM transactions and

Fine-grained non-transactions
locking o Conditional waiting

————

‘>
Threads

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP)

Three key mechanisms needed to create
atomicity illusion

Versioning Conflict detection
TO T1
atomic{ atomic{ atomic{
X =X + V; X =X + y; x = x / 25;
} } }
Where to store new x until How to detect conflicts between
commit? T0 and T17
o Eager: store new x in o Record memory locations read in
memory; old in undo log read set
o Lazy: store new x in write o Record memory locations wrote in
buffer write set

o Conflict if one’ s read or write set
intersects the other’ s write set

Third mechanism is contention management

TO T1
X = X + Vy; x = x / 25;
X = X / 25;

Which transaction to abort?
o Greedy: favor those with an earlier start time
o Karma:

STM implementations can be broadly classified

o Library-based

o No changes to the language

o Both explicit and implicit transactions

o E.g., Deuce (MultiProg 10)
o Compiler-based

o Adds new language constructs

o Implicit transactions

o E.g., Intel® C++ STM Compiler, GCC 4.7
a Virtual machine-based

o Implicit transactions supported through bytecode instructions

» Either with compiler support (like HTM) or by special marker functions
o Relatively less studied
o E.g., ByteSTM, Harris & Fraser (OOPSLA 03)

Motivations for VM-based STM

o o 0O O O

Direct memory access

Full control over garbage collector (GC)

Full control over bytecode instruction behavior
Can manipulate thread’s header
HTM-compatible

ByteSTM

o Built by modifying Jikes RVM (v3.1.2) Optimizing Compiler
o Jikes RVM is a research JVM written in Java

o Jikes RVM has no interpreter and bytecode must be compiled
first to native code
o Two types of compilers
» Baseline compiler: fast compilation but with no optimizations
» Optimizing compiler: better performance (register allocation,
inlining, code reordering,...)
o ByteSTM instrumentation exists in bytecode-to-native code
compilation

ByteSTM: programming interface

o Implicit transaction

atomic{ Transaction T;

A =B; T.begin();

B++,' do{
} A.txWrite(B.txRead());
Or: B.txWrite(B.txRead() + 1);

} while(IT.commit());
stm.STM.xBegin();

A=B; Explicit transaction
B++; , . .
stm.STM.xCommit(); (e.g., RSTM’s explicit transaction)

Implicit transaction
(e.g., ByteSTM)

ByteSTM: data types

o No special transactional instructions

o Bytecode instructions have two modes
» Transactional
» Non-transactional

o Two new bytecode instructions only (xBegin and xEnd)
o One copy of code

o Behavior added by modifying the bytecode-to-native code
compiler

o Works on all data types

o Memory access is monitored at bytecode instruction level
o Supports external libraries inside transactions

ByteSTM: program state save/restore

o Atomic blocks anywhere in the code
o Saves program state at transaction start
» Stack pointer, registers, local variables
» Leverage Java's exception mechanism plus saving local variables
o Restores the saved state when transaction aborted
o Only non-local variables are monitored

» Rely on Java-to-bytecode compiler’s special instructions for local
and non-local variables

savelocalVariables();

@Atomic int c=10; do {

. . t
void method(intc){ | |c =a+5; W xBegin();

c=¢C / 2; atomic{ — //transaction body

_ _ _ XEnd();

a=¢C C—C/2, break;

} a=_c; }catch(STMException e) {
. restorelLocalVariales();

//Java annotation })
//Deuce, LSA-STM } while(true);

ByteSTM: memory model

o Direct memory access
o Faster write back

o Raw memory model

o One code to handle all cases

o Moving GC compatible (absolute address is not used)

Instance field: Object address + field offset
Static field: Static memory address + field offset
Array element: Array address + element size x element index

Objl.x
Objl.y

Obj2.0bj

¥

Data Type Base Obiject offset Value Size
int Obj1 0 20 4
double Obj1 4 46 4
Object Obj2 0 0 4
(reference) (index)

ssaippe
ainjosqy

Raw
memory
model

ByteSTM: write-set representation

o Arrays of primitive + open addressing hashing

Fields Values “ Local Buffer”

Base

Object Offset Valug” Size Index table

R

N pointer

Hash function

[Address

Objects

An Object Entry

ByteSTM: GC issues

o Metadata in the thread header
o Faster than Java standard ThreadlLocal

o GC issues

o Manually allocates and recycles memory for transactional
metadata; reduces GC overhead

» Jikes RVM immortal memory
o Since write-set includes object references, they are not GCed
» At commit-time, we can write-back (otherwise, objects won'’t exist!)

Summary and contrast

Library-based Compiler- VM-based
AN AN

- ~ baseq- \
BRI
5] |z
o _|8IR[= & _ |2
= [=| & = A= E = =15 o
: ==l El 212 |5 E
= o ES(Z|E1%RE 2] |2 =
3 A S HE R E R R E
= A lsRelaIEE=El<=F] &
Implicit transactions vV IIVIXIXIXIVIV IV VIV V
All data types VXX XXX VIV VIV Vv
External libraries VXXX XX AVIX V]V
Unrestricted atomic blocks| X | X|/|VI[VIX|V V| V |V Vv
Direct memory access [/ | X|X|X|[X[X[X [V| v [X Vv
Field-based granularity | / [X|X|X|[X]|X]| X |X]| X |X Vv
No GC overhead VXXX XXX [V VX Vi
Compiler support X (X X|x(XIX|{VIV]VIVIV&X®
Strong atomicity X | XWX XXV I[X] VX X
Closed /Open nesting X [VIVIXIX|X| X [X] VX X
Conditional variables X | X[X[X[X|X]|X|X]| V|X X

Experimental Testbed

o Platform
o 48-core machine (4 AMD Opteron with 12 cores; 700 MHz), 16 GB
a Ubuntu Linux Server 10.04 LTS 64-bit, JikesRVM v3.1.2

o Benchmarks

a Micro-benchmarks
» Linked List, Skip List, Red-black Tree, and Hash set

o Macro-benchmarks
» STAMP benchmark (Vacation, KMeans, Genome, Labyrinth, Intruder)
o Competitors:
o Deuce, JVSTM, ObjectFabric, Multiverse
o Three STM algorithms: NOrec, RingSTM, TL2

o VM vs. Non-VM

o Non-VM: same implementation but runs as Deuce plugin
o Reduces comparison factors and gives fair comparison

Throughput (1000 tx/sec)

Performance: linked-list

300

ByteSTM/RINGSTM e
Non-VM/RingSTM —&—
ByteSTM/TL2 =€~

NON-VM/TL2 =iy

ByteSTM/NOrec —fiij—
Non-VM/NOrec ={

Number of threads

(a) 20% writes.

Throughput (1000 tx/sec)

90

80

70

60

50

40

300
20F

10y

Deuce/TL2 =iy
Object Fabric =g
Multiverse =

JVSTM ==

2 -

8
Number of threads

(b) 80% writes.

Time (ms)

Performance: Vacation

ByteSTM/RingSTM $ Non-VM/TL2 ——d— Deuce/TL2 =—fiy—
Non-VM/RingSTM ByteSTM/NOrec —fi}—
ByteSTM/TL2 =€ Non-VM/NOrec ={

14000

12000

10000

Time (ms)

64 1 2 4 8 16 32 64
Number of threads

(a) Low contention. (b) High contention.

Number of threads

Conclusions

Implementing a Java STM at the VM-level yields significant
performance benefits

Micro-benchmarks: 6% to 70%
Macro-benchmarks: 7% to 60%

VM-level STM is likely the most performant STM implementation
approach for managed languages

Compile-time optimization specific for STM?
o STM optimization pass
STM-aware thread scheduler?

