
ByteSTM: Virtual Machine-Level
Java Software Transactional Memory

Mohamed Mohamedin, Binoy Ravindran, and Roberto Palmieri
Virginia Tech

USA
{mohamedin,binoy,robertop}@vt.edu	

Coordination 2013

Concurrency control on chip multiprocessors
significantly affects performance (and programmability)

q  Improve performance by exposing greater concurrency
q  Amdahl’s law: relationship between

sequential execution time and
speedup reduction is not linear

S
un

 T
20

00
 N

ia
ga

ra

(8

-c
or

e)

Lock-based concurrency control
has serious drawbacks

q  Coarse grained locking
q  Simple
q  But no concurrency

Fine-grained locking is better,
but…

q  Excellent performance
q  Poor programmability

q  Lock problems don’t go
away!
q  Deadlocks, livelocks,

lock-convoying, priority
inversion,….

q  Most significant difficulty –
composition

Lock-free synchronization overcomes some of
these difficulties, but…

“
lo

ck
-fr

ee
 re

try
 lo

op
”

Transactional memory

q  Like database transactions
q  ACI properties (no D)
q  Easier to program
q  Composable

q  First HTM, then STM, later HyTM

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for
lock-free data structures. ISCA. pp. 289–300.
N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.

How TM works?

q  Optimistic concurrency
q  Example: Adding 9 & 15 concurrently

Thread A adds 9 & Thread B adds 15

Thread A
Read-set: 8
Write-set:

Thread B
Read-set: 8
Write-set:

Thread A adds 9 & Thread B adds 15

Thread A
Read-set: 8, 10
Write-set:

Thread B
Read-set: 8, 10
Write-set:

Thread A
Read-set: 8, 10
Write-set: 10 (left child pointer)

Thread B
Read-set: 8, 10, 14
Write-set:

Thread A adds 9 & Thread B adds 15

 Thread A
Read-set: 8, 10
Write-set: 10 (left child pointer)
Committed successfully

Thread B
Read-set: 8, 10, 14
Write-set: 14 (right child pointer)

Thread A adds 9 & Thread B adds 15

 Thread A
Read-set: 8, 10
Write-set: 10 (left child pointer)
Committed successfully

Thread B
Read-set: 8, 10, 14
Write-set: 14 (right child pointer)
Committed successfully

Thread A adds 9 & Thread B adds 15

 Thread A
Read-set: 8, 10
Write-set: 10
Committed successfully

Thread B
Read-set: 8, 10, 14
Write-set: 14 Conflict è Abort

WAR

Object-based granularity

Optimistic execution yields performance gains at
the simplicity of coarse-grain, but no silver bullet

STM
Fine-grained

locking

Coarse-grained
locking

Threads

Time

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP)

q  High data dependencies
q  Irrevocable operations
q  Interaction between

transactions and
non-transactions

q  Conditional waiting
q  ……

Three key mechanisms needed to create
atomicity illusion

atomic{!
 x = x + y;!
} !

Versioning

Where to store new x until
commit?
q  Eager: store new x in

memory; old in undo log
q  Lazy: store new x in write

buffer

atomic{!
 x = x + y;!
} !

atomic{!
 x = x / 25;!
} !

T0 ! T1 !

Conflict detection

How to detect conflicts between
T0 and T1?
q  Record memory locations read in

read set
q  Record memory locations wrote in

write set
q  Conflict if one’s read or write set

intersects the other’s write set

Third mechanism is contention management

 !
 x = x + y;!
 !

 !
 x = x / 25;!
 !

T0 ! T1 !

 !
 x = x / 25;!
 !

Which transaction to abort?
q  Greedy: favor those with an earlier start time
q  Karma: ….

STM implementations can be broadly classified

q  Library-based
q  No changes to the language
q  Both explicit and implicit transactions
q  E.g., Deuce (MultiProg 10)

q  Compiler-based
q  Adds new language constructs
q  Implicit transactions
q  E.g., Intel® C++ STM Compiler, GCC 4.7

q  Virtual machine-based
q  Implicit transactions supported through bytecode instructions

Ø Either with compiler support (like HTM) or by special marker functions
q  Relatively less studied
q  E.g., ByteSTM, Harris & Fraser (OOPSLA 03)

Motivations for VM-based STM

q  Direct memory access
q  Full control over garbage collector (GC)
q  Full control over bytecode instruction behavior
q  Can manipulate thread’s header
q  HTM-compatible

	

ByteSTM

q  Built by modifying Jikes RVM (v3.1.2) Optimizing Compiler
q  Jikes RVM is a research JVM written in Java
q  Jikes RVM has no interpreter and bytecode must be compiled

first to native code
q  Two types of compilers

Ø Baseline compiler: fast compilation but with no optimizations
Ø Optimizing compiler: better performance (register allocation,

inlining, code reordering,…)

q  ByteSTM instrumentation exists in bytecode-to-native code
compilation

ByteSTM: programming interface

q  Implicit transaction

atomic{	

	
 	
 	
 	
 A	
 =	
 B;	

	
 	
 	
 	
 B++;	
 	

}	

	

Or:	

	

stm.STM.xBegin();	

	
 	
 	
 	
 A	
 =	
 B;	

	
 	
 	
 	
 B++;	
 	

stm.STM.xCommit();	

	

Implicit	
 transac/on	

(e.g.,	
 ByteSTM)	

Transac>on	
 T;	

T.begin();	

do{	

	
 	
 	
 	
 A.txWrite(B.txRead());	

	
 	
 	
 	
 B.txWrite(B.txRead()	
 +	
 1);	

}	
 while(
 !T.commit());	

	

Explicit	
 transac/on	

(e.g.,	
 RSTM’s	
 explicit	
 transac>on)	

ByteSTM: data types

q  No special transactional instructions
q  Bytecode instructions have two modes

Ø Transactional
Ø Non-transactional

q  Two new bytecode instructions only (xBegin and xEnd)
q  One copy of code
q  Behavior added by modifying the bytecode-to-native code

compiler
q  Works on all data types

q  Memory access is monitored at bytecode instruction level
q  Supports external libraries inside transactions

q  Atomic blocks anywhere in the code
q  Saves program state at transaction start

Ø Stack pointer, registers, local variables
Ø Leverage Java’s exception mechanism plus saving local variables

q  Restores the saved state when transaction aborted
q  Only non-local variables are monitored

Ø Rely on Java-to-bytecode compiler’s special instructions for local
and non-local variables

int	
 	
 c=10;	

c	
 	
 =	
 a	
 +	
 5;	

atomic{	

	
 	
 	
 c	
 =	
 c	
 /	
 2;	

	
 	
 	
 a	
 =	
 c;	

}	

@Atomic	

void	
 	
 method(int	
 c){	

	
 	
 	
 c	
 =	
 c	
 /	
 2;	

	
 	
 	
 a	
 =	
 c	

}	

//Java	
 annota>on	

//Deuce,	
 LSA-­‐STM	

ByteSTM: program state save/restore

saveLocalVariables();	

do	
 {	

	
 	
 	
 	
 	
 try{	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 xBegin();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //transac/on	
 body	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 xEnd();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break;	

	
 	
 	
 	
 	
 }catch(STMExcep/on	
 e)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 restoreLocalVariales();	

	
 	
 	
 	
 	
 }	

}	
 while(true);	

Instance	
 field:	
 Object	
 address	
 +	
 field	
 offset	

Sta/c	
 field:	
 Sta>c	
 memory	
 address	
 +	
 field	
 offset	

Array	
 element:	
 Array	
 address	
 +	
 element	
 size	
 x	
 element	
 index	
 	

Absolute	

address	

Data Type	
 Base Object	
 offset	
 Value	
 Size	

int	
 Obj1	
 0	
 20	
 4	

double	
 Obj1	
 4	
 46	
 4	

Object

(reference)	

Obj2	
 0	
 0

(index)	

4	

Raw	

memory	

model	

Obj1.x	

Obj1.y	

Obj2.obj	

ByteSTM: memory model

q  Direct memory access
q  Faster write back

q  Raw memory model
q  One code to handle all cases
q  Moving GC compatible (absolute address is not used)

q  Arrays of primitive + open addressing hashing

ByteSTM: write-set representation

JO
 pointer

Fields Values
…
…

“Local Buffer”

ByteSTM: GC issues

q  Metadata in the thread header
q  Faster than Java standard ThreadLocal

q  GC issues
q  Manually allocates and recycles memory for transactional

metadata; reduces GC overhead
Ø Jikes RVM immortal memory

q  Since write-set includes object references, they are not GCed
Ø At commit-time, we can write-back (otherwise, objects won’t exist!)

Library-­‐based	

	

	

	

VM-­‐based	
 Compiler-­‐	

based	

Summary and contrast

Experimental Testbed

q  Platform
q  48-core machine (4 AMD Opteron with 12 cores; 700 MHz), 16 GB
q  Ubuntu Linux Server 10.04 LTS 64-bit, JikesRVM v3.1.2

q  Benchmarks
q  Micro-benchmarks

Ø  Linked List, Skip List, Red-black Tree, and Hash set
q  Macro-benchmarks

Ø STAMP benchmark (Vacation, KMeans, Genome, Labyrinth, Intruder)

q  Competitors:
q  Deuce, JVSTM, ObjectFabric, Multiverse
q  Three STM algorithms: NOrec, RingSTM, TL2

q  VM vs. Non-VM
q  Non-VM: same implementation but runs as Deuce plugin
q  Reduces comparison factors and gives fair comparison

Performance: linked-list

Performance: Vacation

Conclusions

q  Implementing a Java STM at the VM-level yields significant
performance benefits

q  Micro-benchmarks: 6% to 70%
q  Macro-benchmarks: 7% to 60%

q  VM-level STM is likely the most performant STM implementation
approach for managed languages

q  Compile-time optimization specific for STM?
q  STM optimization pass

q  STM-aware thread scheduler?

