
Bank Benchmark:
 A monetary application, which maintains a set of accounts distributed over bank

branches and contains two transactions (transfer and total balance).
 Compared with three variations of classic two-phase-locking protocol.

 Private cluster of 14-nodes (AMD Opteron processor, 1.9GHz).
 Each node runs a set of periodic tasks constituting 70 distributed tasks.
 Implementation of concurrency control in Hyflow Java DTM framework.
 Benchmark: Bank
 Parameters tested: effects of variation in % of read transactions on throughput and

deadline satisfaction ratio (DSR) of distributed tasks.

ACKNOWLEDGMENTS

This work is supported in part by US National Science Foundation under grants CNS 0915895, CNS 1116190, CNS 1130180, and CNS 1217385.

On Transactional Memory Concurrency Control
in Distributed Real-Time Programs

Sachin Hirve, Aaron Lindsay, Roberto Palmieri, Binoy Ravindran
Department of Electrical and Computer Engineering, Virginia Tech, Virginia, USA

{hsachin, robertop, binoy}@vt.edu, aaron@aclindsay.com

www.ssrg.ece.vt.edu

Main components of the proposed solution

Solution to commit transactions as per task priorities
Applying Concurrency Control in Distributed Real-time Programs

Distributed embedded software is inherently concurrent, as they
monitor and control concurrent physical processes. Often, their
computations need to concurrently access (i.e., read/write)
shared data objects, which must be properly coordinated so that
consistency properties (e.g., linearizability, serializability) can be
ensured. Furthermore, they must satisfy application time
constraints. The usual way for managing concurrency of different
processes in a system is using locks, which inherently suffers
from programmability, scalability, and composability challenges.

 We present RT-TFA (Real-Time Transaction Forwarding
Algorithm), a real-time distributed transactional memory.

 RT-TFA transparently handles object relocation and versioning
using an asynchronous clock-based validation technique.

 RT-TFA supports data-flow model i.e. transaction are fixed on
invoking node and objects migrate to nodes.

 Transactions carry deadline of subsuming tasks.
 RT-TFA resolves transactional contention using task time

constraints.
 We assume a bounded clock drift using clock synchronization.

http://ssrg.ece.vt.edu

 The implementation consists of a stack of ChronOS Real-Time Linux kernel, JChronOS
(a Java interface library), JVM, RT-TFA and application.

 ChronOS supports various scheduling algorithms (EDF, RMA, GEDF, DASA etc.).
 Time constraints are expressed using scheduling segments in a thread.
 Scheduling segments occur at regular intervals and have deadlines.
 JChronOS library extends scheduling interface of ChronOS for Java programs.

Concurrency Control
 RT-TFA extends TFA (Transaction Forwarding Algorithm) to support transactions that

execute under time constraints.
 Transactions inherit deadlines of their parent tasks.
 Objects are acquired at encounter time and object request carry deadline to remote

node.
 Transactions are early-aborted if conflicts are detected at object access time.
 Locks are acquired at commit time and transactions resolve conflicts using the

deadlines of subsuming tasks before getting locks over objects.

System Architecture

Experimental Evaluation

Finally…
Our results revealed that RT-TFA yields comparable or better deadline satisfaction ratios to 2PL-based locking protocols.

Additionally it allows programmers to reap benefits of DTM’s programmability and composability properties.

Configuration

Results and Discussion

MAIN CHALLENGE
• Honor task deadlines for transactions.
• Bound distributed transactional retries.

 RT-TFA does lazy locking and acquires locks at
the commit time.

 2PL serializes objects by acquiring locks before
entering critical section, therefore suffers
higher priority inversion costs.

Sy
st

e
m

A

rc
h

it
e

ct
u

re

Tr
an

sa
ct

io
n

ex

e
cu

ti
o

n
 u

n
d

e
r

R
T-

TF
A

 RT-TFA underachieves compared to 2PL-PI for write-
intensive loads due to higher abort rate and retries.

 RT-TFA yields comparable DSR to 2PL-PI based
locking protocol and out perform others by as much
as 43%.

