SNAKE

CONTROL FLOW DISTRIBUTED SOFTWARE

FITN\ 7\ |1 I™orIrms -\

TRANSACTIONAL MEMORY

Mohamed Saad and Binoy Ravindran




Il Distributed Atomicity

System is deployed on a set of Example (Money Transfer):
distributed nodes with message |

passing links from = from - amount
to =to + amount

An operation (or set of operations) |
appears to the rest of the system to
occur instantaneously




Il Distributed Atomicity

Locking — traditional approach
Locks attached to objects
APIs for remote access locks

Drawbacks
x  Distributed deadlock
x  Distributed livelock
% Starvation
% Priority inversion
x  Composability
% Scalability

Example (Money Transfer):

accounta.lock()
account2.lock()

from = from - amount
to =to + amount
accounta.unlock()
account2.unlock()




I Distributed Software Transactional Memaory

Transactional Memory (TM)

Simplifies concurrency control by
allowing a group of instructions to
execute atomically using additional
primitives (e.g., transaction_begin &
transaction_end)

Distributed TM

Generalization of TM to
distributed environments

Not a silver bullet

Example (Money Transfer):

transaction_begin
from = from - amount
to =to + amount
transaction_end

T1 Conflict

T2 5
Rollback

& Retry




I (D)STM Mechanisms

Versioning

transaction_begin
from = from - amount

Where to store new from until
commit?

Eager: store new at original location;
old in an undo log

Lazy: store newin a
transaction-local write-buffer

Conflict detection
To T

transaction_begin transaction_begin
from = from - amount from = from + amount

How to detect conflict betweenTo
and T1?

Record read and write locations in
read and write sets

Conflict if one’s read or write set
intersects with the other’s write set



I (D)STM Mechanisms

Contention management
Which transaction to abort/retry?

Backoff
Priority
Karma

To Ta

transaction_begin transaction_begin
from = from - amount from = from + amount

transaction_begin
from = from + amount



I STM Implementations

Hardware Transactional Memory

Modifications in processors, cache and bus protocols
e.g., unbounded HTM [11], TCC, ....

Software Transactional Memory
Software runtime library, programming language support
Minimal hardware support (e.g., CAS, LL/SC)
e.g., RSTM, DSTM, Deuce, ESTM, ..

Hybrid Transactional Memory
Exploits HTM support to achieve hardware performance for transactions
that do not exceed HTM's limitations, and STM otherwise
e.g., LogTM [16], HYTM, ...

Distributed Software Transactional Memory (D-STM)
Extends STM to work in distributed environments
e.g., Cluster-STM [5], D2STM [7], DiSTM [14], ...



I Snake

= D-STM implementation exploiting control-flow execution
model (immobile objects and mobile transactions)

= Extends Java Remote Method Invocation (RMI)
architecture

= Uses annotations and code generation (using run-time
Instrumentation) to support atomicity/remote access

* No recompilation, or changes to underlying virtual
- machine

» Objects versions used to track object state



I Programming Model
Annotation-based
@Remote

@Atomic

(Inspired by Deuce STM)

Class BankAccount§

@Remote
public void withdraw(int amount){

this.amount -= amount;

}

@Remote
public void deposit(int amount){
this.amount += amount;

}

@Atomic
public static void transfer(

BankAccount accz,
BankAccount acc2,
int amount){



I Control Flow

Immobile objects, mobile transactions

Distributed commit needed for commit/abort decision




I Algorithms

Transactions move between nodes,
while objects are immobile

Each node has a portion of a
transaction’s read and write sets

Transaction metadata are detached
from the transaction context

Distributed validation at commit
using a voting mechanism

Default is D2PC [18]




I Algorithms

Undo Log (Eager/Pess.)
On Write

If (owned) resolve

set owned by me

Backup and change in master copy
On Read

If (owned) resolve

Read value and version
Try Commit

Validate reads (version < current)
On Commit

Increment owned versions

Release owned
On Rollback

Undo changes for owned

Release owned

Write Buffer (Lazy/Opt.)

On Write
Change in private copy

On Read
If (in write-set) read local value
else read master copy value
Read version

Try Commit

Acquire ownership of write-set
Validate reads (version < current)
On Commit
Write values to main copy
Increment owned versions
Release owned
On Rollback
Discard local changes



Il Distributed Contention Management

= Contention managers can be classified into categories:

= Incremental builds up priorities of transactions during
transaction execution
= E.g., Karma, Eruption, Polka

= Progressive ensures system-wide progress (i.e., at least
one transaction will proceed to commit)
= E.g., Kindergarten, Priority, Timestamp, Polite

= Non-Progressive assumes that conflicting transactions
will eventually complete (livelocks can occur)

* E.g., Backoff, Aggressive



Il Distributed Contention Management

= CM behavior under control flow D-STM

a

Incremental. Transactions can have different priorities
at each node, as a transaction builds its priority during
its execution over multiple nodes - livelocks

Non-Progressive. Works for non-distributed TM,
however, aborts without progress guarantees is costly in
distributed environments

Progressive. Most appropriate for control flow

Empirical evidence



I Evaluation

120 nodes, 1.9 GHz each, 0.5~1 ms
network delay

8 threads per node (~1000s of
concurrent transactions)

50-200 sequential transactions
4 million transactions
5% confidence interval (variance)

Use 4 distributed benchmarks: Bank,
Loan, P2P Search Agent, Vacation

Speedup

12

10

Snake Speedup over RMI-RW ——
Snake Speedup over DSM ===

< = Nt |
PO

F

Fod
&2
hed
o]
|

|

]

Bank

Loan-high

Loan-low

Vacation-high ~ Vacation-low




I Evaluation

P2P Benchmark

Throughput (Transactions/Sec)

550

500

450

400

350

300

250

200

150

100

50

........

10% reahs
50% reads

30

Number of Nodes

40

80



I Evaluation

Locality (Dataflow vs. Control-flow)
Bank Benchmark

130 LI I I I

120

110

100

90

80

Throughput (Transactions/Sec)

70

60

50 L1 ! 1 L
12 4 8 16 32 64

Number of remote calls/object




I Conclusions

= Snake DSTM, a control-flow D-STM

= Transactional meta-data is detached; uses distributed commit

= Qutperforms other distributed concurrency control models
(for models and benchmarks studied)

= Control flow is beneficial under
non-frequent object calls, or

when objects must be immobile due to object state
dependencies, object sizes, or security restrictions



I Future work

» Production application case studies
= Mechanisms for (distributed) transactional nesting

= Techniques and mechanisms for multi-version
control flow D-STM

» Snake implementation is available at



