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Distributed Operations

/ * Intoday’sworld distributed operations are ubiquitous

o

Example -

~

2

Image sources: rikbasra.com, database.bio, iconsplace.com, iconfinder.com, guillaumekurkdjian.com, mytay.mobi, prepareyourgroundzero.com, iconshut.com



What are Distributed Operations?

A logical unit of work that accesses shared data involving two \
or more servers on the network

Servers coordinate to service client requests while ensuring
consistency of data

Properties : Atomicity, Consistency, Isolation, Durability

Example -
ij C——) ﬁ
tx_start: o o
x=x -10;
[ J \ /
tx_end
el

(((

Image sources: rikbasra.com, database.bio, iconsplace.com



Distributed Operations

/ * Desired properties
— Fault-tolerance
— High resiliency
— Failure masking
e State Machine Replication (SMR) [Schneider, 93] is a general
approach to achieve these dependability properties.




System Model

A distributed system consists of N nodes{P;, P, ..., B, }, also
called servers/replicas

For f number of faults, system size N = 2f +1 [Lamport, 98]
Datais replicated on all nodes

Only replicacrash (non-byzantine) faults are considered
Clients may or may not be co-located with replicas

Commands are client requests, that includes operations on
shared data

~




State Machine Replication (SMR)

SMR implements fault-tolerant services by replicating servers \
and coordinating clientinteractions with servers

State machine consists of
— State variables that encode the state of the system
— Commands that transform this state

Building blocks

— Ordering layer

— Execution layer




State Machine Replication (SMR)
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State Machine Replication (SMR)

R-1

Reqg-1

Network

R-2

Reg-1
Reqg-3
Req-2

4

Reqg-1
Reqg-3

Req-2

Network
—)
Req-2

R-3
)
Reqg-1

I

Reqg-1

Reqg-3

Req-2

Ordering Layer

Execution Layer

J




How SMR meets dependability properties?

/ * Propertiesof SMR

— Consistent state
— High availability

— Failure masking

~




SMR — Ordering layer
/° Total order \

— Replicas define order of requests “blindly”, without looking at conflicts

— Generally request are serially executed

— Examples — Paxos [Lamport, 98], Mencius (baseline) [Mao, 08]
* Partial Order

— Order is defined among conflicting requests
— Better possible concurrency for request execution

— Examples — Generalized Paxos [Lamport, 05], Epaxos [Moraru, 13]
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SMR — Execution layer

/  Deferred Update Replication (DUR) \

— Requests are executed optimistically prior to order finalization and at
final order, they are validated and committed

— High concurrency and performance for rare conflicts among requests

— Fails to exploit concurrency in high conflict scenarios

* Deferred Execution Replication (DER)
— Requests are executed after the order is finalized

— Requests are executed post final-order, therefore conflicts do not lead
to aborts

— Fails to benefit from concurrency

11



Research Contributions
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Research Contributions
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HiperTM: High Performance Fault-Tolerant Transactional Memory
[ICDCN 2013]




Research Contributions
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[Middleware2014]




Research Contributions

/ Ordering Layer Execution Layer \
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Research Contributions
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Research Contributions

o
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Research Contributions

/  What is so special about this set of contributions?
— These systems are composed of plugins
— Plugins are not specific to a single system or problem

— Can be mix-matched to create another system solving different
problem
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Portability of Contributions — Examplel
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Portability of Contributions — Example2
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Post-Prelim Contributions

/ e Speculative Client Executionin Deferred Update Replication \

— ACM/IFIP/USENIX 15t Middleware Workshop for Next Generation Computing
(MW4NG 14)

* Regulating Consensus underthe Authority of Caesar
— To be submitted to EuroSys 16
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Post-Prelim Contributions

/ e Speculative Client Executionin Deferred Update Replication \

— ACM/IFIP/USENIX 15t Middleware Workshop for Next Generation Computing
(MW4NG 14)
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Deferred Update Replication - Definitions

o

Optimistic execution

— A transaction execute assuming all objects accessed by it are up-to-
date and no other concurrent transaction accesses those objects

Readset

— Collection of objects and versions that are read by transaction
Writeset

— Collection of objects that are updated by transaction
Validation

— Verifying the validity of objects at commit time that were read earlier
during optimistic execution

Commit

— Updating the main memory with object updates by the current
transaction

~
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Deferred Update Replication

/ e Execution model

committed
R-1

-

>

L

Network

— Requests are executed optimistically
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Ordering Layer

— Transaction updates go through certification phase before they can be

~
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Deferred Update Replication

Tx-4
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Tx-2

Tx-1
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/ e A transaction execution model

— Requests are executed optimistically
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R-3

Tx-3:
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Execution Layer

— Transaction updates go through certification phase before they can be
committed

~
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Deferred Update Replication

/ e Certification phase

— Defines an order for transaction updates

R-1 R-2 R-3
(" Tx-2: R(X), W(Y) (” Tx-2: R(X), W(Y) (" Tx-2: R(X), W(Y) ) ]
Tx-1: W(X) Network Tx-1: W(X) Network Tx-1: W(X) g
T*-3: W(X) T-3: W(X) Tx-3: W(X) E,
Tx-4 W(Y) Tx-4 W(Y) Tx-4 W(Y) g
o
Tx-4 — %
TX-3 e S — §
=]
TX-2 [ — g
K L e J \§ J \_ J
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Deferred Update Replication

/ e Certification phase

— Validatestransaction updates w.r.t. the defined order

R-1

(" T%-2: R(X), W(Y)
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Tx-4 W(Y)
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C. -4 W(Y)

Network

— On successful validation commits transaction by updating objects
— On failingvalidation, aborts the transaction and re-executes

R-3
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T™*-2: R(X), W(Y)
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Tx-4 W(Y)

Ordering Layer

Execution Layer
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Deferred Update Replication

/ e Salient points
— Inherent parallelism of transaction processing

— In case of rare conflicts among transactions, DUR gives the best
performance

— In high conflict situations, DUR performs poorly due to high number of
aborts
— Even in partitioned access, DUR suffers from aborts among local

transactions
* DUR presentsan interesting problemto address
— Applicable to certain applications e.g., TPC-C, an OLTP benchmark

— Can we avoid aborts among local transactions, even in presence of
higher number of conflicts?




Deferred Update Replication

Contention | Accounts WH Relations
Level
High 500 23 250
Medium 2000 115 500
Low 5000 230 1000

% Abort
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60
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/ * Impact of local aborts with varying the degree of conflicts

— Performance of DUR various benchmarks and different contention levels
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X-DUR — Design goals

/ * Eliminating conflicts amonglocal concurrent transactions

— Local transaction ordering

— Speculation in optimistic execution

Eliminating aborts from possible reorderin certification phase

— Enforcing local transaction order to certification phase

~
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X-DUR

Execution model

— Alocal order is defined among requests

— Speculation helps to pass on the object updates among locally ordered

transactions
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Execution Layer

~
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X-DUR

A transaction execution model

— Requests are executed optimistically

— Transaction updates go through certification phase before they can be
committed
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Execution Layer
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X-DUR

/ e Certification phase

— Validatestransaction updates w.r.t. the defined order

— On successful validation commits transaction by updating objects

— On failingvalidation, aborts the transaction and re-executes
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—
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X-DUR : Evaluation

4 * Testbed—PRODbE cluster (23 nodes)

— AMD Opteron 6272, 64-core, 2.1 GHz CPU
— 128 GB RAM and 40 Gbps ethernet

Benchmarks

— Bank: A micro-benchmark that mimics bank operations
— TPC-C: A popular OLTP benchmark

— Vacation: Distributed version of vacation application in STAMP [Minh, 08]

 Mimics the operations of reserving flight, car etc. for vacation

Competitor

— PaxosSTM: a DUR-based system; it suffers from local aborts

34




Evaluation: Bank

/  Contention:500 objects(high), 2000 objects (medium) and 5000 objects (low) \

For low conflicts, PaxosSTM performs great due to high amount of parallelism

X-DUR outperforms PaxosSTM in medium-high conflict scenarios

PaxosSTM High ——— X-DUR High —Jli}—
PaxosSTM Med —&— X-DUR Med —4p—
PaxosSTM Low —&— X-DUR Low —@0—
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clients
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Evaluation: TPC-C

o

/- Contention: High, medium and low

X-DUR outperforms PaxosSTM in all scenarios

— Transaction length is moderately long

— Even low conflict leads to high number of aborts for PaxosSTM
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Post-Prelim Contributions

-~

* Regulating Consensus underthe Authority of Caesar
— To be submitted to EuroSys 16
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Can ordering layer be improved further?

All our previous works used total-order based ordering layer

Research contributions majorly focused on transaction
execution

— Speculation

— Concurrent processing

— Lightweight commit

It seems total-orderis restricting further improvement

— In DER, requests have to execute in order, irrespective of conflicts
— In DUR, transactions commit in order, irrespective of conflicts

— Are we loosing performance due to total-order?

~
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Ordering layer definitions

Leader

— A replica that is elected by all replicas

— Gets the right to propose the order of requests

— Tries to convince other replicas about the proposed order

Single-leader approaches

— Only one elected replica gets to propose the order of requests

Multi-leader approaches

— Each replica in the system gets to propose the order of requests

Communication steps

— Number of times a leader has to send messages to finalize the order
for a proposed request

39




Existing distributed ordering layer
implementations

/ e Total-order

— Multi-Paxos
* An optimization over Paxos [Lamport, 98]
* Single leader based ordering protocol

— Mencius (baseline) [Mao, 08]
* Multi-leader based ordering protocol
* Response from all nodes required to make progress
* Performance is defined by the slowest replica in the system

Partial-order

— Generalized Paxos [Lamport, 05]
e Multi-participant partial-order protocol with single conflict resolver
— EPaxos [Moraru, 13]

e Multi-leader based partial-order protocol
* Local conflict resolution using graph analysis

40




State-of-the-art solution: EPaxos

Multi-leader approach: Each replicais leader for its proposals \
Distributes load evenly among all replicas
Exploits fast replicas

Decouplesrequest dependency finalization and deterministic
order

— Network layer finalizes dependencies for each request
* The set of committed requests and their dependencies form
a directed dependency graph

— Local execution layer defines order among conflicting requests

* Deterministic order using directed graph analysis at the time of execution of a
command

41



EPaxos: Protocol Details

/ * Request finalization process:

R1 PreAccept(A) Commit A, {}
A 7
A, {} [R-f}-j /'l N\r Sends the reply to the client
A if the client does not need
R2 ..--..'.‘, \__the result of the execution
A0
,I
R3 < Y T
_——t 1
. B, {A} ! Folees
e | ACKB |
" T ) “\ —————— “\
=t \ Akl Bil
B {}| |B1,] \ \
RS L ‘ Y ‘ b\
PreAccept(B) Accept(B) 1 Commit B, {A}
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State-of-the-art solution: EPaxos

/  What could go wrong?

— If a client waits for the result of an execution then the expensive cost
of the graph analysis appears in the client-perceived latency

~
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Can we do better?

Wish list

— Multi-leader approach
e All replicas help each other toimprove ordering layer performance

— Use of quorum to decide the order
* Exploit fastest replicas

— Finalize the request order in minimum possible communication delays
* Effort toreduce the expensive network communication steps

— Partial-order
* Order is defined only among conflicting requests

— Highly concurrent execution of transactions
* Exploit the partial order to achieve higher concurrency for request execution
— Use loosely synchronized clocks to timestamp requests

e Exploit natural advancement of physical clocks
* Ensure monotonically increasing clock
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Caesar

11

12

13

14 | 15

16

17

18

19

\_

Burnt slot: txs that conflict with T, cannot
be delivered in 1

N

T, does not
depend on T,
T, depends on T,

/
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Caesar

No predefined slots for requests originating from a replica \

— Caesar uses naturally advancing physical clocks to timestamp requests

No external clock synchronizationrequired

— Caesar forwards local clock in case timestamp received from other
replica is in future

LCipir = PCprq
PCbase= PCRl - LCinit =0 PCbase= PCRl" TS=-1
LC:PCR]_-PCbasezo LC:PCRl-PCbaS€=5

R1 | | | | | | PC
: / 7 Rl
! A, TS=5, {}
R2 T | | | | [
6 PCRZ




Handling Pre-Accept messages

Receive | Pre-Accept/ T, 2 | fromR2

Reply | Tp,2 2{T,}| Ack

{ T, and T, conflict J




Handling Accept/Stable messages

Receive | Accept [ Commit | from R2

\ Tp,2 9{Ta}

1 2 3 4

ACCEPTED
X Ta T )

R

Reply ACK




Don’t miss dependencies: Wait Condition 1

-~

Receive | Pre-Accept [ 7.0 | from RO
0 2 3 4
ACCEPTED
Te Ta T 1,1
-
T, and T, conflict. T, may burn slot O.
Wait for T, acceptance/stabilization
\_

Reply | 7,0 =>{} | Ack

~
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Aborting a message delivery: : Wait Condition 1

4 N

Receive | Pre-Accept [T.0 | fromRO

0 1 2 3 4
ACCEPTED
X 7:: 727 Tb {T }
a )

T, and T, conflict. T, may burn slot 0.

Wait for T, acceptance/stabilization
\. J

Suggest a retry at
slot 3 for T.

Reply | T.,3 D{T,} | NACK

o /
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Bound the delivery aborts: Wait Condition 2

4 N

Receive | Pre-Accept [ T;7 | from R2

There is a burnt, conflicting and non-empty
slot. T, waits for T_annihilation

Receive | Accept [T.5 | from RO

0 1 2 3 4 5 6 7
COMMIT
X T T, Ty 1) [ T,
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But did we get it right?

.

Thereis a potential deadlock situation \
@ Csl5 Ccl6
W1 W1 W2
Csl5 Ccl6 Cald
= ] = L[] [
Ng N, N, N, N,
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But did we get it right?

/  Thereis a potential deadlock situation
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How can we remove deadlocks?

/ * Reason of deadlocks
— Both waiting conditions W1 and W2 conflict
— Waiting condition W1 ensures performance
— Waiting condition W2 ensures correctness

e Can we getrid of W27

— Exchange dependencies in response to Accept message
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Avoiding wait condition W2: 1

Receive | Pre-Accept [T,7 | fromR2

There is a burnt, conflicting and non-empty
slot. T, waits for T_annihilation

Receive | Accept [ T.5 | from RO

0 1 2 3 4 5 6 7
COMMIT
T, T, Ty 1) [ Ty

Accept-Ack () () Reply
Te 5, 1}

Ty, 7,{Tc}
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Avoiding wait condition W2: 2

Receive | Pre-Accept [ T;4 | from R2
Receive | Accept [T.5 | from RO
0) 2 3 4 5 6
COMMIT
T Ty Ty ) Ty T
Reply (2() Accept-Ack
T, ,4,{T} T.,5,{T;}
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Caesar at work

R2

R1

RO

R3

R4

Pre-Accept(T,, 2)

i 2

T2, {} | | To2,{}| ACK :

Stable
(T2,2,{})

Execute [T,]

with all Acks, Decide
on Fast-Path

. N\
Same dependencies

J

Execute after
dependencies are

executed; No graph
analysis needed

Different dependencies

with all Acks, Decide on

Fast-Path

[/

Tbl4r {}

[

Pre-Accept(T,, 4)

Execute T, after T, ]

Commit(Tp,4, 2{T,})
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Caesar: Evaluation

. Testbed — PRODbE cluster (15 nodes)

o

— AMD Opteron 6272, 64-core, 2.1 GHz CPU
— 128 GB RAM and 40 Gbps ethernet

Benchmarks

— Key-Value: A micro-benchmark that does single object read/write
operations

— TPC-C: A popular OLTP benchmark
— Vacation: Distributed version of vacation application in STAMP [Minh, 08]
* Mimics the operations of reserving flight, car etc. for vacation
Competitors

— Multi-Paxos : Total order, post final delivery serial execution
— Mencius: Multi-leader total order, post final delivery serial execution
— EPaxos: Multi-leader partial order, post final delivery parallel processing
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Evaluation: Key-Value

Partitioned access: 0-conflicts

EPaxos suffers from high cost of graph processing
— Performace of NG-Epaxos i.e., EPaxos without graph processing, confirms high cost of

graph processing

Mencius suffers from serial execution and need to hear from all replicas

Paxos shows single-leader bottelneck

Paxos 1 NG-EPaxos E&
Mencius CAESAR m=m
EPaxos EZZ=d

90000
80000 |
70000
60000 |
50000 |
40000
30000 |
20000 |
10000 |

A AT I

[ T T T T 7 A

11 13 15
Number of nodes

Throughput (Exec/sec)
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Evaluation: Key-Value

/  Performance under varying conflicts

o

EPaxos suffers from high cost of graph processing with increasing conflicts

Increasing conflicts also impact EPaxos’s probability of fast-paths

90000

Throughput (Exec/sec)

Paxos ——1 EPaxos & EPaxos Exz@CAESAR ===

Mencius CAESAR ==

80000 ¢
70000 ¢
60000 ¢
50000 ¢
40000 ¢
30000 ¢
20000 ¢
10000 ¢

100
L
T T 1 1 T =
cU
¢ 80
7 o4 z«
a 5 5
= = ~ ~ ~ LL 60 r :::::: o
p 2
o 5 K
g 40 i
c 590 oo
3 X i
o 20+t 5
5 -
., e I W
0 2 3 4 6 0 2 3 4 6
Number of conflicts Number of conflicting clients per object

Ordering layer performance for 11 nodes and varying number of conflicting clients per object

60




Evaluation: TPC-C

Contention: high (200 warehouses) and low (1000 warehouses) \
Cost of transaction processing impacts serial execution in Paxos and Mencius
Epaxos exploits concurrency in low conflict scenarios

Caesar outperforms all of the competitors
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Conclusion

/ * Contributions are modular in design \

— Different contributions can be mix-matched to solve another set of problems in
distributed transaction processing

e Speculation pays off
— DER and DUR both can benefit

* Ordering layer optimizations help execution layer too

— Optimistic order helps speculation; partial order helps concurrent processing

62



Thank You! Questions?

/ List of Contributions

* HiperTM: High Performance, Fault-Tolerant Transactional Memory
— ICDCN 14

* Extended version of HiperTM: High Performance, Fault-Tolerant Transactional Memory
— Submitted to TCS

* SMASH: speculative state machine replication in transactional systems
— Middleware 13

* Archie: ASpeculative Replicated Transactional System
— Middleware 14

e Speculative Client Execution in Deferred Update Replication
—  MWANG 14

* Regulating Consensus under the Authority of Caesar
— To be submitted to EuroSys 16

* Scaling Up Active Replication using Staleness
— Submitted to TPDS

* Automated Data Partitioning for Highly Scalable and Strongly Consistent Transactions
— TPDS 15

* On Transactional Memory Concurrency Control in Distributed Real-time Programs
—  Cluster13
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