LA Lo A AL Si LA S)

ystems 1 gt B Sop bty s
2yoftware pe7cl 2u_spin_unlock irqre
L....., !{esearch Gropp ;, ° Neace <ocked

-

On the Fault-tolerance and High
Performance of Replicated Transactional
Systems

Dr. Sachin Hirve
Virginia Tech

~

)

SCC uumms 10' September 2015 ¥ VirginiaTech

nt the Fu

tur

Distributed Operations

/ * Intoday’sworld distributed operations are ubiquitous

o

Example -

~

2

Image sources: rikbasra.com, database.bio, iconsplace.com, iconfinder.com, guillaumekurkdjian.com, mytay.mobi, prepareyourgroundzero.com, iconshut.com

What are Distributed Operations?

A logical unit of work that accesses shared data involving two \
or more servers on the network

Servers coordinate to service client requests while ensuring
consistency of data

Properties : Atomicity, Consistency, Isolation, Durability

Example -
ij C——) ﬁ
tx_start: o o
x=x -10;
[J \ /
tx_end
el

(((

Image sources: rikbasra.com, database.bio, iconsplace.com

Distributed Operations

/ * Desired properties
— Fault-tolerance
— High resiliency
— Failure masking
e State Machine Replication (SMR) [Schneider, 93] is a general
approach to achieve these dependability properties.

System Model

A distributed system consists of N nodes{P;, P, ..., B, }, also
called servers/replicas

For f number of faults, system size N = 2f +1 [Lamport, 98]
Datais replicated on all nodes

Only replicacrash (non-byzantine) faults are considered
Clients may or may not be co-located with replicas

Commands are client requests, that includes operations on
shared data

~

State Machine Replication (SMR)

SMR implements fault-tolerant services by replicating servers \
and coordinating clientinteractions with servers

State machine consists of
— State variables that encode the state of the system
— Commands that transform this state

Building blocks

— Ordering layer

— Execution layer

State Machine Replication (SMR)

R-1

Reqg-1
Reqg-3

Network

R-2

Reg-1
Reqg-3
Req-2

=2

Network
—)
Req-2

R-3
)
Reqg-1

I

|

Ordering Layer

Execution Layer

J

State Machine Replication (SMR)

R-1

Reqg-1

Network

R-2

Reg-1
Reqg-3
Req-2

4

Reqg-1
Reqg-3

Req-2

Network
—)
Req-2

R-3
)
Reqg-1

I

Reqg-1

Reqg-3

Req-2

Ordering Layer

Execution Layer

J

How SMR meets dependability properties?

/ * Propertiesof SMR

— Consistent state
— High availability

— Failure masking

~

SMR — Ordering layer
/° Total order \

— Replicas define order of requests “blindly”, without looking at conflicts

— Generally request are serially executed

— Examples — Paxos [Lamport, 98], Mencius (baseline) [Mao, 08]
* Partial Order

— Order is defined among conflicting requests
— Better possible concurrency for request execution

— Examples — Generalized Paxos [Lamport, 05], Epaxos [Moraru, 13]

10

SMR — Execution layer

/ Deferred Update Replication (DUR) \

— Requests are executed optimistically prior to order finalization and at
final order, they are validated and committed

— High concurrency and performance for rare conflicts among requests

— Fails to exploit concurrency in high conflict scenarios

* Deferred Execution Replication (DER)
— Requests are executed after the order is finalized

— Requests are executed post final-order, therefore conflicts do not lead
to aborts

— Fails to benefit from concurrency

11

Research Contributions

on - — -

Ordering Layer

Total order Partial order
Optimistic- |[Rule based
| Delivery . routing |

N NN NS N NN NN NN NN NN N NN BN NN SN NS N NN B N RS S

N e

/,

o™ I —

Execution Layer

[Light-weight | .]
2 .g Speculation

| commit | J

[Multi-version)| Concurrent

_ Objects J|__processing
Lock-free | [Deferred

| execution J|_ Update

’

N R R R R R

\i—-—-—-—-———

12

Research Contributions

Ordering Layer Execution Layer
g So
[Light-weight \
____________________________ - ! & 'g][Speculation ||
Iy S L commit :
4 é 1| |r p H
i Total order Partial order i | Multi-version Concurrent ||
i - 7\ 7 i | Objects processing i
1 . o« e [: 1 7 1
1| Optimistic- Rule based : : Tl e D :

. . 1
_Delivery JL_routing i ik
4)

HiperTM: High Performance Fault-Tolerant Transactional Memory
[ICDCN 2013]

Research Contributions

o T

Ordering Layer Execution Layer
————
! Light-weight Speculation ‘l
""""""""""""""" R L commit J{)
’ 4 N | > < <
Total order Partial order i | Multi-version Concurrent ||
\, J) 1 . . 1
) i E | Objects | processing i
Optlmlstlc- Rule b-ased i i Lockfree) Deferred i
L D@Ilvery) routing J,,' \\ L execution JU Update J,’
S ————— —— ——— — N ’

N R R R N R

Archie: A Speculative Replicated Transactional System
[Middleware2014]

Research Contributions

/ Ordering Layer Execution Layer \
g So
/| Light-weight 1t
____________________________ - ![)][Speculation ||
Iy p N\ : commit)!
I 1 I N ~ |
I'| Total order Partial order i [Multi-version [Concurrent ||
\ J \ y ! . . 1
i : ' Objects processing J!
1 .. - (1 I 1
1| Optimistic- Rule based |! : lodleiee ‘[Deferred :
o . 1 1
\\Delvey J__routing), [oxccution Jl__Update)
4)
_ J

Speculative Client Execution in Deferred Update Replication
k [MWA4NG 2014] /

15

Research Contributions

-

Ordering Layer

W R S R R R S R S R R S S R S R S

Total order

Partial order

P

Optimistic-
Delivery

Rule based
N routing

N N N N NS NN NN NN NN NN SN NN NS N NN NS SN RN NS SN RN S S

-

Execution Layer

Light-weight][Speculation

commit

’

J

. . 1
Multi-version

|

X
Concurrent

\i—-—-—-—-———

Objects processing
Lock-free | [Deferred
execution | Update |
N e o o /,
\

Regulating Consensus under the Authority of Caesar
To be submitted to [Eurosys 2016]

16

Research Contributions

o

o —

’

Ordering Layer

Total order Partial order

Optimistic- [Rule based
Delivery routing

-

\

Execution Layer

Light-weight][Speculation

commit

’

J

. . 1
Multi-version

|

X
Concurrent

Objects processing |
Lock-free | [Deferred
execution | Update |

\i—-—-—-—-———

N R R R R R

_

J

Scaling up Active Replication using Staleness
Submitted to [TPDS] /

17

Research Contributions

/ What is so special about this set of contributions?
— These systems are composed of plugins
— Plugins are not specific to a single system or problem

— Can be mix-matched to create another system solving different
problem

18

Portability of Contributions — Examplel

/ Ordering Layer Execution Layer

T | St

\S
\
U
e

)

commit

/4
! |
((! | 4
i Total order [Partialorder i E[Multi-version‘[Concurrfent i
: . v J : : Objects processmL :
{ [Optimistic- [Rule based i (" Lodkfree)~ Deferred !
Nee—— [execution [Update)/
(. \)
Speculation
e
Total order [DRI]
R) Update))

k Speculative Client Execution in Deferred Update Replication with partial order

Portability of Contributions — Example2

/ Ordering Layer Execution Layer
o AN
____________________________ [nght-wel.ght][Speculation
s - commit

(|
1 1
() | |
'l Total order [Partial order || i Multi-versionj[Concurrent ||
I L y J| 1 X) 1
! : : Objects processing) |
I ST 1 1 ~ 1
| Ogtllmlstlc [Rule based | (" Lockfree [Deferred | !
__Delivery TG) ; ‘| execution Update),
N o ———————————————— - 4 \\ ,/
(Lock-free A
| execution |
[.] Concurrent
Partial order [ST]
\C g 7/

\ Optimizing query performance under the Authority of Caesar

Post-Prelim Contributions

/ e Speculative Client Executionin Deferred Update Replication \

— ACM/IFIP/USENIX 15t Middleware Workshop for Next Generation Computing
(MW4NG 14)

* Regulating Consensus underthe Authority of Caesar
— To be submitted to EuroSys 16

21

Post-Prelim Contributions

/ e Speculative Client Executionin Deferred Update Replication \

— ACM/IFIP/USENIX 15t Middleware Workshop for Next Generation Computing
(MW4NG 14)

22

Deferred Update Replication - Definitions

o

Optimistic execution

— A transaction execute assuming all objects accessed by it are up-to-
date and no other concurrent transaction accesses those objects

Readset

— Collection of objects and versions that are read by transaction
Writeset

— Collection of objects that are updated by transaction
Validation

— Verifying the validity of objects at commit time that were read earlier
during optimistic execution

Commit

— Updating the main memory with object updates by the current
transaction

~

23

Deferred Update Replication

/ e Execution model

committed
R-1

-

>

L

Network

— Requests are executed optimistically

R-2

L

Network

R-3

=
Tx-1: Tx-2: x-4: Tx-3: o
TX'2 e —
Sm— W(X) R(X), W(Y) | W(Y) W(X) &
k =N J g J

Ordering Layer

— Transaction updates go through certification phase before they can be

~

24

Deferred Update Replication

Tx-4
Tx-3

Tx-2

Tx-1

R-1

(

>

| |

L

Tx-1:
W(X)

Network

/ e A transaction execution model

— Requests are executed optimistically

R-2

L

Network

e
Tx-2: Tx-4:
R(X), W(Y) | W(Y)
\§ J

R-3

Tx-3:
W(X)

Ordering Layer

Execution Layer

— Transaction updates go through certification phase before they can be
committed

~

25

Deferred Update Replication

/ e Certification phase

— Defines an order for transaction updates

R-1 R-2 R-3
(" Tx-2: R(X), W(Y) (” Tx-2: R(X), W(Y) (" Tx-2: R(X), W(Y))]
Tx-1: W(X) Network Tx-1: W(X) Network Tx-1: W(X) g
T*-3: W(X) T-3: W(X) Tx-3: W(X) E,
Tx-4 W(Y) Tx-4 W(Y) Tx-4 W(Y) g
o
Tx-4 — %
TX-3 e S — §
=]
TX-2 [— g
K L e J \§ J _ J

26

Deferred Update Replication

/ e Certification phase

— Validatestransaction updates w.r.t. the defined order

R-1

(" T%-2: R(X), W(Y)
Tx-1: W(X)
Tx-3: W(X)

Tx-4 W(Y)

Tx-2: R(X), W(Y)
Tx-1: W(X)
Tx-3: W(X)

Tx-4 W(Y)

Network

R-2

(" Tx-2: R(X), W(Y)
Tx-1: W(X)
Tx-3: W(X)
Tx-4 W(Y)

Tx-2: R(X), W(Y)

Tx-1: W(X)
Tx-3: W(X)

C. -4 W(Y)

Network

— On successful validation commits transaction by updating objects
— On failingvalidation, aborts the transaction and re-executes

R-3

(" Tx-2: R(X), W(Y))
Tx-1: W(X)
Tx-3: W(X)
Tx-4 W(Y)

T™*-2: R(X), W(Y)
Tx-1: W(X)
C_x-3: W(X)

Tx-4 W(Y)

Ordering Layer

Execution Layer

27

Deferred Update Replication

/ e Salient points
— Inherent parallelism of transaction processing

— In case of rare conflicts among transactions, DUR gives the best
performance

— In high conflict situations, DUR performs poorly due to high number of
aborts
— Even in partitioned access, DUR suffers from aborts among local

transactions
* DUR presentsan interesting problemto address
— Applicable to certain applications e.g., TPC-C, an OLTP benchmark

— Can we avoid aborts among local transactions, even in presence of
higher number of conflicts?

Deferred Update Replication

Contention | Accounts WH Relations
Level
High 500 23 250
Medium 2000 115 500
Low 5000 230 1000

% Abort

100

80

60

40 }

20

/ * Impact of local aborts with varying the degree of conflicts

— Performance of DUR various benchmarks and different contention levels

High === Med === Low ——

=]
/]

TR
P te e

<0

vw‘
S,

<

45
R

TS
505K
32555

KA
32535232

Bank

TPC-C Vacation

% of aborted transactions on 11 nodes using PaxosSTM

~

J

X-DUR — Design goals

/ * Eliminating conflicts amonglocal concurrent transactions

— Local transaction ordering

— Speculation in optimistic execution

Eliminating aborts from possible reorderin certification phase

— Enforcing local transaction order to certification phase

~

30

X-DUR

Execution model

— Alocal order is defined among requests

— Speculation helps to pass on the object updates among locally ordered

transactions
R-1

(

>

a —
TX— 3 P
e Tx-1:

— W(X)
Tl |

Network

R-2

>

| 4

Tx-2: R(X), W(Y)

Y=Y

Tx-4: W(Y')
YI :> YII

Network

g J

R-3

Tx-3:
W(X)

Ordering Layer

Execution Layer

~

31

X-DUR

A transaction execution model

— Requests are executed optimistically

— Transaction updates go through certification phase before they can be
committed

Tx-4
Tx-3

Tx-2

Tx-1

R-1

(" Tx-2: R(X), W(Y)
Tx-4 W(Y’)
Tx-1: W(X)
Tx-3: W(X)

>

*

Network

R-2

Tx-1: W(X)
Tx-3: W(X)

(" Tx-2: R(X), W(Y)
T*-4 W(Y’)

>

Tx-1:
W(X)

_

1)

—
Tx-2: R(X), W(Y)
Y=Y
— Tx4:W(Y)
YI :> YII

Network

J

R-3

(" Tx-2: R(X), W(Y))
Tx-4 W(Y’)
Tx-1: W(X)
Tx-3: W(X)

> 4

*

Tx-3:
W(X)

Ordering Layer

Execution Layer

~

32

X-DUR

/ e Certification phase

— Validatestransaction updates w.r.t. the defined order

— On successful validation commits transaction by updating objects

— On failingvalidation, aborts the transaction and re-executes

R-1

(" Tx-2: R(X), W(Y)
Tx-4 W(Y’)

Tx-1: W(X)

Tx-3: W(X)

Tx-2: R(X), W(Y)
Tx-1: W(X)
Tx-3: W(X)

Tx-4 W(Y)

R-2

(" Tx-2: R(X), W(Y)
T*-4 W(Y’)

Tx-1: W(X)
Tx-3: W(X)

Network

—
Tx-2: R(X), W(Y)
Tx-1: W(X)
— Tx-3: W(X)
Tx-4 W(Y)

Network

R-3

(" Tx-2: R(X), W(Y))
Tx-4 W(Y’)
Tx-1: W(X)
Tx-3: W(X)

T™*-2: R(X), W(Y)
Tx-1: W(X)
C_x-3: W(X)

-4 W(Y)

Ordering Layer

Execution Layer

33

X-DUR : Evaluation

4 * Testbed—PRODbE cluster (23 nodes)

— AMD Opteron 6272, 64-core, 2.1 GHz CPU
— 128 GB RAM and 40 Gbps ethernet

Benchmarks

— Bank: A micro-benchmark that mimics bank operations
— TPC-C: A popular OLTP benchmark

— Vacation: Distributed version of vacation application in STAMP [Minh, 08]

 Mimics the operations of reserving flight, car etc. for vacation

Competitor

— PaxosSTM: a DUR-based system; it suffers from local aborts

34

Evaluation: Bank

/ Contention:500 objects(high), 2000 objects (medium) and 5000 objects (low) \

For low conflicts, PaxosSTM performs great due to high amount of parallelism

X-DUR outperforms PaxosSTM in medium-high conflict scenarios

PaxosSTM High ——— X-DUR High —Jli}—
PaxosSTM Med —&— X-DUR Med —4p—
PaxosSTM Low —&— X-DUR Low —@0—
180000
160000
, 140000
)]
9 120000
5 100000
S S
S 80000 / ~e M
S 60000 4/ - <
= 40000 P o
20000 [j/ —H
0

3 5 7 9 11 13 15 17 19 21 23
Replicas

Throughput for varying the number
of nodes

PaxosSTM High ———
PaxosSTM Med —&—

PaxosSTM Low —&—

Transaction per sec

X-DUR High —Jli}—
X-DUR Med —@—
X-DUR Low —@0—

200000
180000

160000

140000
o
120000

S
—

100000

80000

60000

N
40000 r/

600 750 900 1050 1200
Application threads

] |
—] =

Throughput for 7 nodes with varying number of
clients

35

Evaluation: TPC-C

o

/- Contention: High, medium and low

X-DUR outperforms PaxosSTM in all scenarios

— Transaction length is moderately long

— Even low conflict leads to high number of aborts for PaxosSTM

PaxosSTM High ——
PaxosSTM Med —&—

PaxosSTM Low —&—

PaxosSTM High ——
PaxosSTM Med —&—

PaxosSTM Low ——

25000

X-DUR High —Jl—
X-DUR Med —4—
X-DUR Low —@—

h

—_

20000 = ;t::‘*
S

15000

=

10000

Transaction per sec

5000

\\
C '¥>‘\\ \\f}\\,
0 i e————_

3 5 7 9 11 13 15 17 19 21 23

Replicas
Throughput for varying the number

of nodes

Py

Latency (ms)

8000
7000
6000
5000
4000
3000
2000
1000

0

X-DUR High —Jl}—
X-DUR Med —@p—
X-DUR Low —@0—

'

/.I

e
|

<

——

&

—=

-

3 5 7 9 11 13 15 17 19 21 23

Replicas
Latency for varying the number of

nodes

J

36

Post-Prelim Contributions

-~

* Regulating Consensus underthe Authority of Caesar
— To be submitted to EuroSys 16

37

Can ordering layer be improved further?

All our previous works used total-order based ordering layer

Research contributions majorly focused on transaction
execution

— Speculation

— Concurrent processing

— Lightweight commit

It seems total-orderis restricting further improvement

— In DER, requests have to execute in order, irrespective of conflicts
— In DUR, transactions commit in order, irrespective of conflicts

— Are we loosing performance due to total-order?

~

38

Ordering layer definitions

Leader

— A replica that is elected by all replicas

— Gets the right to propose the order of requests

— Tries to convince other replicas about the proposed order

Single-leader approaches

— Only one elected replica gets to propose the order of requests

Multi-leader approaches

— Each replica in the system gets to propose the order of requests

Communication steps

— Number of times a leader has to send messages to finalize the order
for a proposed request

39

Existing distributed ordering layer
implementations

/ e Total-order

— Multi-Paxos
* An optimization over Paxos [Lamport, 98]
* Single leader based ordering protocol

— Mencius (baseline) [Mao, 08]
* Multi-leader based ordering protocol
* Response from all nodes required to make progress
* Performance is defined by the slowest replica in the system

Partial-order

— Generalized Paxos [Lamport, 05]
e Multi-participant partial-order protocol with single conflict resolver
— EPaxos [Moraru, 13]

e Multi-leader based partial-order protocol
* Local conflict resolution using graph analysis

40

State-of-the-art solution: EPaxos

Multi-leader approach: Each replicais leader for its proposals \
Distributes load evenly among all replicas
Exploits fast replicas

Decouplesrequest dependency finalization and deterministic
order

— Network layer finalizes dependencies for each request
* The set of committed requests and their dependencies form
a directed dependency graph

— Local execution layer defines order among conflicting requests

* Deterministic order using directed graph analysis at the time of execution of a
command

41

EPaxos: Protocol Details

/ * Request finalization process:

R1 PreAccept(A) Commit A, {}
A 7
A, {} [R-f}-j /'l N\r Sends the reply to the client
A if the client does not need
R2 ..--..'.‘, __the result of the execution
A0
,I
R3 < Y T
_——t 1
. B, {A} ! Folees
e | ACKB |
" T) “\ —————— “\
=t \ Akl Bil
B {}| |B1,] \ \
RS L ‘ Y ‘ b\
PreAccept(B) Accept(B) 1 Commit B, {A}

42

State-of-the-art solution: EPaxos

/ What could go wrong?

— If a client waits for the result of an execution then the expensive cost
of the graph analysis appears in the client-perceived latency

~

43

Can we do better?

Wish list

— Multi-leader approach
e All replicas help each other toimprove ordering layer performance

— Use of quorum to decide the order
* Exploit fastest replicas

— Finalize the request order in minimum possible communication delays
* Effort toreduce the expensive network communication steps

— Partial-order
* Order is defined only among conflicting requests

— Highly concurrent execution of transactions
* Exploit the partial order to achieve higher concurrency for request execution
— Use loosely synchronized clocks to timestamp requests

e Exploit natural advancement of physical clocks
* Ensure monotonically increasing clock

44

Caesar

11

12

13

14 | 15

16

17

18

19

_

Burnt slot: txs that conflict with T, cannot
be delivered in 1

N

T, does not
depend on T,
T, depends on T,

/

45

Caesar

No predefined slots for requests originating from a replica \

— Caesar uses naturally advancing physical clocks to timestamp requests

No external clock synchronizationrequired

— Caesar forwards local clock in case timestamp received from other
replica is in future

LCipir = PCprq
PCbase= PCRl - LCinit =0 PCbase= PCRl" TS=-1
LC:PCR]_-PCbasezo LC:PCRl-PCbaS€=5

R1 | | | | | | PC
: / 7 Rl
! A, TS=5, {}
R2 T | | | | [
6 PCRZ

Handling Pre-Accept messages

Receive | Pre-Accept/ T, 2 | fromR2

Reply | Tp,2 2{T,}| Ack

{ T, and T, conflict J

Handling Accept/Stable messages

Receive | Accept [Commit | from R2

\ Tp,2 9{Ta}

1 2 3 4

ACCEPTED
X Ta T)

R

Reply ACK

Don’t miss dependencies: Wait Condition 1

-~

Receive | Pre-Accept [7.0 | from RO
0 2 3 4
ACCEPTED
Te Ta T 1,1
-
T, and T, conflict. T, may burn slot O.
Wait for T, acceptance/stabilization
_

Reply | 7,0 =>{} | Ack

~

49

Aborting a message delivery: : Wait Condition 1

4 N

Receive | Pre-Accept [T.0 | fromRO

0 1 2 3 4
ACCEPTED
X 7:: 727 Tb {T }
a)

T, and T, conflict. T, may burn slot 0.

Wait for T, acceptance/stabilization
\. J

Suggest a retry at
slot 3 for T.

Reply | T.,3 D{T,} | NACK

o /

50

Bound the delivery aborts: Wait Condition 2

4 N

Receive | Pre-Accept [T;7 | from R2

There is a burnt, conflicting and non-empty
slot. T, waits for T_annihilation

Receive | Accept [T.5 | from RO

0 1 2 3 4 5 6 7
COMMIT
X T T, Ty 1) [T,

51

But did we get it right?

.

Thereis a potential deadlock situation \
@ Csl5 Ccl6
W1 W1 W2
Csl5 Ccl6 Cald
=] = L[] [
Ng N, N, N, N,

52

But did we get it right?

/ Thereis a potential deadlock situation

53

How can we remove deadlocks?

/ * Reason of deadlocks
— Both waiting conditions W1 and W2 conflict
— Waiting condition W1 ensures performance
— Waiting condition W2 ensures correctness

e Can we getrid of W27

— Exchange dependencies in response to Accept message

52

Avoiding wait condition W2: 1

Receive | Pre-Accept [T,7 | fromR2

There is a burnt, conflicting and non-empty
slot. T, waits for T_annihilation

Receive | Accept [T.5 | from RO

0 1 2 3 4 5 6 7
COMMIT
T, T, Ty 1) [Ty

Accept-Ack () () Reply
Te 5, 1}

Ty, 7,{Tc}
55 /

Avoiding wait condition W2: 2

Receive | Pre-Accept [T;4 | from R2
Receive | Accept [T.5 | from RO
0) 2 3 4 5 6
COMMIT
T Ty Ty) Ty T
Reply (2() Accept-Ack
T, ,4,{T} T.,5,{T;}

56

Caesar at work

R2

R1

RO

R3

R4

Pre-Accept(T,, 2)

i 2

T2, {} | | To2,{}| ACK :

Stable
(T2,2,{})

Execute [T,]

with all Acks, Decide
on Fast-Path

. N\
Same dependencies

J

Execute after
dependencies are

executed; No graph
analysis needed

Different dependencies

with all Acks, Decide on

Fast-Path

[/

Tbl4r {}

[

Pre-Accept(T,, 4)

Execute T, after T,]

Commit(Tp,4, 2{T,})

57

Caesar: Evaluation

. Testbed — PRODbE cluster (15 nodes)

o

— AMD Opteron 6272, 64-core, 2.1 GHz CPU
— 128 GB RAM and 40 Gbps ethernet

Benchmarks

— Key-Value: A micro-benchmark that does single object read/write
operations

— TPC-C: A popular OLTP benchmark
— Vacation: Distributed version of vacation application in STAMP [Minh, 08]
* Mimics the operations of reserving flight, car etc. for vacation
Competitors

— Multi-Paxos : Total order, post final delivery serial execution
— Mencius: Multi-leader total order, post final delivery serial execution
— EPaxos: Multi-leader partial order, post final delivery parallel processing

58

Evaluation: Key-Value

Partitioned access: 0-conflicts

EPaxos suffers from high cost of graph processing
— Performace of NG-Epaxos i.e., EPaxos without graph processing, confirms high cost of

graph processing

Mencius suffers from serial execution and need to hear from all replicas

Paxos shows single-leader bottelneck

Paxos 1 NG-EPaxos E&
Mencius CAESAR m=m
EPaxos EZZ=d

90000
80000 |
70000
60000 |
50000 |
40000
30000 |
20000 |
10000 |

A AT I

[T T T T 7 A

11 13 15
Number of nodes

Throughput (Exec/sec)

(a) Throughput.

Latency (msec)

80

70
60
50
40

Paxos C—1 NG-EPaxos E
Mencius CAESAR m™@
EPaxos EZ=XZR

20 1
10

Number of nodes

(b) Latency.

Ordering layer performance with varying the number of nodes

~

59

Evaluation: Key-Value

/ Performance under varying conflicts

o

EPaxos suffers from high cost of graph processing with increasing conflicts

Increasing conflicts also impact EPaxos’s probability of fast-paths

90000

Throughput (Exec/sec)

Paxos ——1 EPaxos & EPaxos Exz@CAESAR ===

Mencius CAESAR ==

80000 ¢
70000 ¢
60000 ¢
50000 ¢
40000 ¢
30000 ¢
20000 ¢
10000 ¢

100
L
T T 1 1 T =
cU
¢ 80
7 o4 z«
a 5 5
= = ~ ~ ~ LL 60 r :::::: o
p 2
o 5 K
g 40 i
c 590 oo
3 X i
o 20+t 5
5 -
., e I W
0 2 3 4 6 0 2 3 4 6
Number of conflicts Number of conflicting clients per object

Ordering layer performance for 11 nodes and varying number of conflicting clients per object

60

Evaluation: TPC-C

Contention: high (200 warehouses) and low (1000 warehouses) \
Cost of transaction processing impacts serial execution in Paxos and Mencius
Epaxos exploits concurrency in low conflict scenarios

Caesar outperforms all of the competitors

Throughput (Exec/sec)

Paxos C——1 EPaxos Paxos ——1 EPaxos &z
Mencius CAESAR === Mencius CAESAR ==
50000 - '8‘* 50000 —
40000 | 1 o S 40000 | I
30000 | i 30000 F g o .
] M M N o N N N]
20000 | § 8 20000 1 | ‘§
10000 { { (= 10000 | : { { (é
0 =] ’7 =] I-E 0 ’7 §
3 5 7 9 11 13 15 3 5 7 9 11 13 15
Number of nodes Number of nodes
TPC-C transaction throughput for varying number TPC-C transaction throughput for varying number
of nodes under high conflicts(200 WH) of nodes under low conflicts(1000 WH)

61

Conclusion

/ * Contributions are modular in design \

— Different contributions can be mix-matched to solve another set of problems in
distributed transaction processing

e Speculation pays off
— DER and DUR both can benefit

* Ordering layer optimizations help execution layer too

— Optimistic order helps speculation; partial order helps concurrent processing

62

Thank You! Questions?

/ List of Contributions

* HiperTM: High Performance, Fault-Tolerant Transactional Memory
— ICDCN 14

* Extended version of HiperTM: High Performance, Fault-Tolerant Transactional Memory
— Submitted to TCS

* SMASH: speculative state machine replication in transactional systems
— Middleware 13

* Archie: ASpeculative Replicated Transactional System
— Middleware 14

e Speculative Client Execution in Deferred Update Replication
— MWANG 14

* Regulating Consensus under the Authority of Caesar
— To be submitted to EuroSys 16

* Scaling Up Active Replication using Staleness
— Submitted to TPDS

* Automated Data Partitioning for Highly Scalable and Strongly Consistent Transactions
— TPDS 15

* On Transactional Memory Concurrency Control in Distributed Real-time Programs
— Cluster13

63

Thank Youll

2

ol

