
Designing, Modeling, and Optimizing
Transactional Data Structures

Ahmed Hassan

Electrical and Computer Engineering Department

Virginia Tech

September 1, 2015

PhD Dissertation Defense

State of the Art

 Multi-core architectures.

 Synchronization
– Critical sections.
– Using locks.

 Efficient synchronization:
– Cache coherence protocols.
– Atomic instructions

 (e.g. CAS operations).
From www.microway.com

Concurrent Data StructuresConcurrent Data Structures

Example: Linked List

1052 706050

Example: Linked List

1052 706050

55

X

7

X

T
1

T
2

Synchronization in Concurrent Data Structures

 Coarse-grained locking
– Easy to implement, good for low number of small threads .
– But minimizes concurrency.

 Fine-grained locking
– Allows more concurrency.
– But error prone.

 Non-Blocking Designs
– Lock-free, obstruction-free, wait-free, …
– Progress guarantees But more complex designs.

Transactional Memory

 Use an underlying TM framework to guarantee consistency,
atomicity, and isolation.

 Programmable (like coarse-grained locking).
 Allows concurrency (like fine-grained locking).

Thread 1

@Atomic

foo1()

{

seqList.add(5)

}

Transactional Memory Gains Traction!!

 Intel Haswell's TSX Extensions.

 IBM Power8.

 STM support in C++ and GCC.

What about data structures?

 New APIs
 New synchronization

primitives.
 New TM libraries
 New compiler

support.
 New hardware

components.

Transactional Programming
Model

Concurrent Data Structures

 Customized Designs
 Optimizations
 Different Primitives

What about data structures?

 New APIs
 New synchronization

primitives.
 New TM libraries
 New compiler

support.
 New hardware

components.

Transactional Programming
Model

Concurrent Data Structures

 Customized Designs
 Optimizations
 Different Primitives

Simpler interface
less complex designs

What about data structures?

Transactional Programming
Model

Concurrent Data Structures

 Customized Designs
 Optimizations
 Different Primitives

Simpler interface
less complex designs

Atomic transaction
instead of atomic operations

 New APIs
 New synchronization

primitives.
 New TM libraries
 New compiler

support.
 New hardware

components.

What about data structures?

Transactional Programming
Model

Concurrent Data Structures

 Customized Designs
 Optimizations
 Different Primitives

Simpler interface
less complex designs

Atomic transaction
instead of atomic operations

Hardware Support
possible performance improvement

 New APIs
 New synchronization

primitives.
 New TM libraries
 New compiler

support.
 New hardware

components.

Our Goal

From Concurrent to Transactional Data Structures

Our Goal

From Concurrent to Transactional Data Structures

Challenges

 Composability.

 Integration with generic transactions.

 Modeling.

Composability

Shared data: concurrentList

atomicFoo()
{

concurrentList.add(x);
concurrentList.add(y);

}

Shared data: concurrentList1
Shared data: concurrentList2

atomicFoo()
{

concurrentList1.remove(x);
concurrentList2.add(x);

}

Shared data: concurrentList

atomicFoo()
{

concurrentList.add(x);
}

Composability

Shared data: concurrentList

atomicFoo()
{

concurrentList.add(x);
concurrentList.add(y);

}

Shared data: concurrentList1
Shared data: concurrentList2

atomicFoo()
{

concurrentList1.remove(x);
concurrentList2.add(x);

}

Shared data: concurrentList

atomicFoo()
{

concurrentList.add(x);
}

Modify the design of concurrentList?
More complex designs

Composability

Shared data: concurrentList

atomicFoo()
{

concurrentList.add(x);
concurrentList.add(y);

}

Shared data: concurrentList1
Shared data: concurrentList2

atomicFoo()
{

concurrentList1.remove(x);
concurrentList2.add(x);

}

Shared data: concurrentList

atomicFoo()
{

concurrentList.add(x);
}

Modify the design of concurrentList?
More complex designs

Transactional Memory?
Lose optimizations of concurrentList

Integration

Shared data: concurrentList

atomicFoo()
{

If(concurrentList.add(x))
n1++;

Else
n2++;

}

Modeling

 Different Designs and Implementations
– Different ad-hoc approaches for proving

correctness.

 Is there a unified model for concurrent data
structures?
– General enough
– Easy to use
– Includes composability and integration

Our ContributionsOur Contributions

Our Contributions

Transactional
Data Structures

Composability Integration

Modeling

Our Contributions

Transactional
Data Structures

Composability Integration

Modeling

Optimistic Transactional Boosting
PPoPP 2014

OTB-Set
OPODIS 2014

TxCF-Tree
DISC 2015

Our Contributions

Transactional
Data Structures

Composability Integration

Modeling

Optimistic Transactional Boosting
PPoPP 2014

OTB-Set
OPODIS 2014

TxCF-Tree
DISC 2015

Integration with STM
TRANSACT 2014

Integration with HTM
Under submission

Remote Transaction Commit
IEEE TC 2015

Remote Invalidation
IPDPS 2014

Our Contributions

Transactional
Data Structures

Composability Integration

Modeling

Optimistic Transactional Boosting
PPoPP 2014

OTB-Set
OPODIS 2014

TxCF-Tree
DISC 2015

SWC and C-SWC Models
WTTM 2015, under submission

Integration with STM
TRANSACT 2014

Integration with HTM
Under submission

Remote Transaction Commit
IEEE TC 2015

Remote Invalidation
IPDPS 2014

Our Contributions

Transactional
Data Structures

Composability Integration

Modeling

Optimistic Transactional Boosting
PPoPP 2014

OTB-Set
OPODIS 2014

TxCF-Tree
DISC 2015

SWC and C-SWC Models
WTTM 2015, under submission

Integration with STM
TRANSACT 2014

Integration with HTM
Under submission

Remote Transaction Commit
IEEE TC 2015

Remote Invalidation
IPDPS 2014

Past and Related WorkPast and Related Work

Past and Related Work

 Composability and Integration

– Transactional Memory.

– Transactional Boosting.

 Modeling

– SWMR Model

Past and Related Work

 Composability and Integration

– Transactional Memory.

– Transactional Boosting.

 Modeling

– SWMR Model

Transactional Memory

 Software Transactional Memory (STM)
– SW meta-data (e.g. read-sets and write-sets) on the current

HW.

 Hardware Transactional Memory (HTM)
– New HW (modify cache coherency protocols).

 Hybrid Transactional Memory (Hybrid TM)
– HTM transactions fall-back to STM

TM Limitation: False Conflict

1052 706050

55

X

Example: Linked list (Insert “55”)

TM Limitation: False Conflict

1052 706050

55

All “red” nodes are in the read-set
“50” and “55” are in the write-set

Example: Linked list (Insert “55”)

TM Limitation: False Conflict

1052 706050

55

All “red” nodes are in the read-set
“50” and “55” are in the write-set

What if a concurrent transaction deletes “5”??

Example: Linked list (Insert “55”)

TM Limitation: False Conflict

1052 706050

55

All “red” nodes are in the read-set
“50” and “55” are in the write-set

What if a concurrent transaction deletes “5”??

False Conflict

Example: Linked list (Insert “55”)

Transactional Boosting

 Convert highly concurrent data structures to be transactional.

 Composable (like STM)
 And efficient (like lazy/lock-free linked-list)

34

Transactional Boosting

 Convert highly concurrent data structures to be transactional.

 Composable (like STM)
 And efficient (like lazy/lock-free linked-list)

 Issues:
– Eager locking.
– Inverse operations.
– Black-box concurrent data structure.
– No Straightforward Integration

35

Optimistic Transactional BoostingOptimistic Transactional Boosting

Past Solutions

Sequential Tree

TM-BEGIN

TM-END

Concurrent Tree

Acquire Semantic Locks

Release Semantic Locks

Transactional Memory Transactional Boosting

Past Solutions

TM-BEGIN

TM-END

Acquire Semantic Locks

Release Semantic Locks

Transactional Memory Transactional Boosting

Sequential Tree Concurrent Tree

Past Solutions

Sequential Tree

TM-BEGIN

TM-END

Concurrent Tree

Acquire Semantic Locks

Release Semantic Locks

Transactional Memory Transactional Boosting

General, BUT not optimized.

● G1: Split operation

Concurrent Operation (add, remove, contains, ...)

OTB's Three Guidelines

● G1: Split operation

Traversal
(long - unmonitored)

Commit
(short - monitored)

Concurrent Operation (add, remove, contains, ...)

OTB's Three Guidelines

● G2: Compose phases.

OTB's Three Guidelines

Traversal(Op1)

● G2: Compose phases

Commit(op1)

Traversal(Op2) Commit(op2)

Atomic Block
(Tx)

OTB's Three Guidelines

Traversal(Op1)

● G2: Compose phases

Commit(op1)

Traversal(Op2) Commit(op2)

Atomic Block
(Tx)

Traversal(Op1) Commit(op2)Traversal(Op2) Commit(op1)

Traversal(Tx) Commit(Tx)

OTB's Three Guidelines

● G3: Optimize

OTB's Three Guidelines

● G3: Optimize

– Specific to each data structure.

● Our Contribution:

– Linked-list-based Set.

– Skip-list-based Set.

– Skip-list-based Priority Queue.

– Balanced Tree

OTB's Three Guidelines

● G3: Optimize

– Specific to each data structure.

● Our Contribution:

– Linked-list-based Set.

– Skip-list-based Set.

– Skip-list-based Priority Queue.

– Balanced Tree

OTB's Three Guidelines

Lazy Vs Boosting Vs Optimistic Boosting

48

Example
Bootsing “lazy” concurrent linked list

Example
Bootsing “lazy” concurrent linked list

Concurrent
Non-optimized
Transactional

G1 & G2

Optimized
Transactional

G3

OTB Methodology

50

General Data Structure
Specific

Example

 Lazy Linked list (Insert “55”)

1052 706050

51

Example

 Lazy Linked list (Insert “55”)

 Traversal (unmonitored)

1052 706050

52

Example

 Lazy Linked list (Insert “55”)

 Traversal (unmonitored)

 Validation

1052 706050

53

Example

 Lazy Linked list (Insert “55”)

 Traversal (unmonitored)

 Validation

 Commit

1052 706050

54

55

X

To Make it Transactional

 Results of traversal are saved in local objects:

– Semantic read-set: to be validated.

– Semantic write-set: to be published at commit.

To Make it Transactional

 Example: Linked list (Insert “55”)

1052 706050

To Make it Transactional

 Example: Linked list (Insert “55”)

1052 706050

read-set
entry

● Pred:50, curr:60

write-set
entry

● Pred:50, curr:60, new:55

To Make it Transactional

 Example: Linked list (Insert “55”)

 Guidelines to guarantee opacity (see OPODIS'14 paper)

1052 706050

read-set
entry

● Pred:50, curr:60

write-set
entry

● Pred:50, curr:60, new:55

 Example optimizations on Linked-List and Skip-List

– Local elimination:
● Ex. Add(x) then Remove(x).
● No need to access the shared data structure.

Specific Optimizations

Results

Skip-list 512 Nodes

5 ops/transaction

Skip-list 64K Nodes

5 ops/transaction

60

Transactional Interference-less Balanced TreeTransactional Interference-less Balanced Tree

Transactional Interference-less Balanced Trees

● Transactional: Functionality (following OTB's G1, G2).

● Interference-less: Performance (following OTB's G3).

The Next Question

● Which concurrent balanced tree design fits OTB?

The Next Question

● Which concurrent balanced tree design fits OTB?

Contention-Friendly Tree
Crain, Gramoli, & Raynal'13

CF-Tree

10

20

10

20

30

20

30 10

● Example: Insert 30.

CF-Tree

10

20

10

20

30

20

30 10

{10, 20} {10, 20, 30} {10, 20, 30}

● Example: Insert 30.

CF-Tree

10

20

10

20

30

20

30 10

{10, 20} {10, 20, 30} {10, 20, 30}Semantic Structural

● Example: Insert 30.

CF-Tree

10

20

10

20

30

20

30 10

{10, 20} {10, 20, 30} {10, 20, 30}Semantic Structural

● Example: Insert 30.

Application Thread Helper Thread

Our Proposal

Transactionalizing CF-Tree using OTB
(TxCF-Tree)

TxCF-Tree

10

20

10

20

30

20

30 10

Application Thread Helper Thread

TxCF-Tree

10

20

10

20

30

20

30 10

Application Thread Helper Thread

TxCF-Tree

10

20

Application Thread

TxCF-Tree

10

20

Application Thread

unmonitored
traversal

TxCF-Tree

10

20

Application Thread

unmonitored
traversal

Lock &
Validate

TxCF-Tree

10

20

30

Application Thread

unmonitored
traversal

Lock &
Validate

Insert

TxCF-Tree

10

20

30

Application Thread

unmonitored
traversal

Lock &
Validate

Insert

Commit

Traversal

Remove is similar...

20

10

30

10

20(d)

30

10

30

{10, 20, 30} {10, 20} {10, 20}Semantic Structural

Application Thread Helper Thread

Remove is similar...

20

10

30

10

20(d)

30

10

30

{10, 20, 30} {10, 20} {10, 20}Semantic Structural

Application Thread Helper Thread

Remove is similar...

10

20(d)

30

Application Thread

unmonitored
traversal

Lock &
Validate

Mark as “d”

Commit

Traversal

Transactional Interference-less Tree

Transactional Interference-less Tree

● How

– Step 1: CF-Tree!!

– Step 2: Always give the highest priority to semantic operations over
structural operations.

Transactional Interference-less Tree

● How

– Step 1: CF-Tree!!

– Step 2: Always give the highest priority to semantic operations over
structural operations.

● Why

– Aborting transactions rolls back all its operations (including the
non-conflicting ones).

– Long transactions are more prone to interfere with the helper thread.

Two building blocks

● Structural Locks.

● Structural Invalidation.

Structural Locks

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

T1 observes that “30” is locked
What is the best to do in both cases?

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

T1 observes that “30” is locked
What is the best to do in both cases?

Do Nothing Abort

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

Solution?

Structural Locks

10

20

30

● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

Structural
Locks

Semantic
Lock

Solution?

Two types of locks

Structural Invalidation

Structural Invalidation

10

20

30

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent insert(15)

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

T1 observes that the right child of “20” is not NULL
What is the best to do in both cases?

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

T1 observes that the right child of “20” is not NULL
What is the best to do in both cases?

Continue
Traversal

Abort

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

Solution?

Structural Invalidation

● Transaction T1 wants to insert 15.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

Solution?

Continue Traversal anyway

Evaluation

AMD 64-cores, size 10K nodes, 50% reads, 5 ops/transaction

Evaluation

AMD 64-cores, size: 10K nodes , 32 threads, 50% reads, 5 ops/transaction

Modeling Transactional Data StructuresModeling Transactional Data Structures

Concurrent Data Structures

● Different Designs and Implementations
– Different ad-hoc approaches for proving correctness.

● Is there a unified model for concurrent data structures?

– General enough.

– Easy to use.

SWMR Model (Lev-Ari et. Al, DISC'14)

UO
1

UO
2

UO
n

UO
3

RO
1

RO
2

Shared States

● Data Structure is represented as a set of shared variables.

● The values of those variables is the shared state of the data
structure.

Operation“O”
Pre-state(O) Post-state(O)

Local States

● Operation is represented as a set of steps.

● The values of the operation's local variables before any step is
the local state of the step.

Pre-state(O) Post-state(O)Step
1

Step
2

Step
n

L
1

L
2

L
n

Operation “O”

SWMR Scenario

UO
1

UO
2

UO
n

UO
3

Step
1

Step
2

Step
n

L
1

L
2

L
n

RO

S
0

S
1

S
2

S
3

S
n

Validity

Validity

UO
1

UO
2

UO
n

UO
3

Step
1

Step
2

Step
n

L
1

L
2

L
n

RO

S
0

S
1

S
2

S
3

S
n

Validity

● All Si are sequentially reachable, so all UOi are valid.

UO
1

UO
2

UO
n

UO
3

Step
1

Step
2

Step
n

L
1

L
2

L
n

RO

S
0

S
1

S
2

S
3

S
n

Validity

● All Si are sequentially reachable, so all UOi are valid.

● Stepi in RO is valid if there is Sj such that a sequential
execution of RO starting from Sj reaches Li.

UO
1

UO
2

UO
n

UO
3

Step
1

Step
2

Step
n

L
1

L
2

L
n

RO

S
0

S
1

S
2

S
3

S
n

Validity

● All Si are sequentially reachable, so all UOi are valid.

● Stepj in RO is valid if there is Si such that a sequential
execution of RO starting from Si reaches Lj.

UO
1

UO
2

UO
n

UO
3

Step
1

Step
2

Step
n

L
1

L
2

L
n

RO

S
0

S
1

S
2

S
3

S
n

● All Si are sequentially reachable, so all UOi are valid.

● Stepj in RO is valid if there is Si such that a sequential execution of RO
starting from Si reaches Lj.

● Stepj in RO is valid if there is a “base point” where the “base condition”
of stepj holds.

Validity

UO
1

UO
2

UO
n

UO
3

Step
1

Step
2

Step
n

L
1

L
2

L
n

RO

S
0

S
1

S
2

S
3

S
n

Validity

● How to prove validity for any data structure.

– Identify the base conditions for each step in each operation (it is
sufficient to do so only for steps that access the shared memory).

– Prove that in any concurrent execution, every step has a base point that
satisfies its base condition.

Validity

● How to prove validity for any data structure.

– Identify the base conditions for each step in each operation (it is
sufficient to do so only for steps that access the shared memory).

– Prove that in any concurrent execution, every step has a base point that
satisfies its base condition.

Regularity

UO
1

UO
2

UO
n

UO
3

RO
1

RO
2

Regularity

UO
1

UO
2

UO
n

UO
3

RO
1

RO
2

UO
1

UO
2

UO
n

UO
3

RO
1

UO
1

UO
2

UO
n

UO
3

RO
2

Regularity

UO
1

UO
2

UO
n

UO
3

RO
1

RO
2

UO
1

UO
2

UO
n

UO
3

RO
1

UO
1

UO
2

UO
n

UO
3

RO
2

LinearizableLinearizable

Regularity

UO
1

UO
2

UO
n

UO
3

Step
1

Step
2

Step
n

RO

S
0

S
1

S
2

S
3

S
n

Regularity

● Acceptable base points for RO's return step are only S1, S2, S3.

– Observes either the last update or a concurrent update.

UO
1

UO
2

UO
n

UO
3

Step
1

Step
2

Step
n

L
n

RO

S
0

S
1

S
2

S
3

S
n

Example

Example

Example

Where is the Problem?

It covers only single-writer designs

It does not cover composable designs

Can we cover a wider set?

Optimistic Composable Data Structures

Our Models

Single Writer Commit (SWC)

Composable SWC (C-SWC)

SWC Model

UO
1

Step
1

Step
2

Step
n

RO

UO
2

UO
3

UO
5

UO
4

SWC Model

Step
1

Step
2

Step
n

RO

T
4

C
4

T
1

C
1

T
2

C
2

T
3

C
3

T
5

C
5

SWC Model

T
4

C
4

T
1

C
1

T
2

C
2

T
3

C
3

T
5

C
5

S
0

S
1

S
2

S
3

S
5

S
4

Step
1

Step
2

Step
n

RO

SWC Model

T
4

C
4

T
1

C
1

T
2

C
2

T
3

C
3

T
5

C
5

S
0

S
1

S
2

S
3

S
5

S
4

Step
1

Step
2

Step
n

L
1

L
2

L
n

RO

L
1

L
2

L
n

L
1

L
2

L
n

L
1

L
2

L
n

L
1

L
2

L
n

L
1

L
2

L
n

Even More...

● Do we really need single commit at a time:

– NO!!!

– It is enough to execute commit phases atomically with single lock
atomicity (SLA) guarantees.

– More practical alternatives:

● HTM (e.g. Intel TSX).

● STM (e.g. NOrec “the SLA version”).

Example

Example

Example

Composable SWC Model (C-SWC)

Composable SWC Model (C-SWC)

Traversal(Op1) Commit(op1)

Traversal(Op2) Commit(op2)

Atomic Block
(Tx)

Traversal(Op1) Commit(op2)Traversal(Op2) Commit(op1)

Traversal(Tx) Commit(Tx)

What is remaining?

● Internal Consistency.

– The commit phase of each operation reflects what the operation
observed in its traversal.

– The shared state of an operation is visible to subsequent operations in
the same transaction.

How to prove internal consistency?

Traversal(Op1) Commit(op2)Traversal(Op2) Commit(op1)

How to prove internal consistency?

Traversal(Op1) Commit(op2)Traversal(Op2) Commit(op1)

L L L

Have the same base point

ConclusionsConclusions

Our Contributions

Transactional
Data Structures

Composability Integration

Modeling

Optimistic Transactional Boosting
PPoPP 2014

OTB-Set
OPODIS 2014

TxCF-Tree
DISC 2015

SWC and C-SWC Models
WTTM 2015, under submission

Integration with STM
TRANSACT 2014

Integration with HTM
Under submission

Remote Transaction Commit
IEEE TC 2015

Remote Invalidation
IPDPS 2014

Thanks!

Questions?

139

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Earlier Solution: Transactional Boosting
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Lazy Vs Boosting Vs Optimistic Boosting
	Slide 49
	G3: Specific Optimizations
	G1: Split Operation
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Results
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Thanks!
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139

