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State of the Art

 Multi-core architectures.

 Synchronization
– Critical sections.
– Using locks.

 Efficient synchronization:
– Cache coherence protocols.
– Atomic instructions

 (e.g. CAS operations).
From www.microway.com



Concurrent Data StructuresConcurrent Data Structures



Example: Linked List

1052 706050



Example: Linked List

1052 706050

55

X

7

X

T
1

T
2



Synchronization in Concurrent Data Structures

 Coarse-grained locking
– Easy to implement, good for low number of small threads .
– But minimizes concurrency.

 Fine-grained locking
– Allows more concurrency.
– But error prone.

 Non-Blocking Designs
– Lock-free, obstruction-free, wait-free, …
– Progress guarantees But more complex designs.



Transactional Memory

 Use an underlying TM framework to guarantee consistency, 
atomicity, and isolation.

 Programmable (like coarse-grained locking).
 Allows concurrency (like fine-grained locking).

Thread 1

@Atomic

foo1()

{

seqList.add(5)

}



Transactional Memory Gains Traction!!

 Intel Haswell's TSX Extensions.

 IBM Power8.

 STM support in C++ and GCC.



What about data structures?

 New APIs
 New synchronization 

primitives.
 New TM libraries
 New compiler 

support.
 New hardware 

components.
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What about data structures?

Transactional Programming 
Model

Concurrent Data Structures

 Customized Designs
 Optimizations
 Different Primitives

Simpler interface
less complex designs

Atomic transaction
instead of atomic operations

Hardware Support
possible performance improvement

 New APIs
 New synchronization 

primitives.
 New TM libraries
 New compiler 

support.
 New hardware 

components.
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Challenges

 Composability.

 Integration with generic transactions.

 Modeling.



Composability

Shared data: concurrentList

atomicFoo()
{

concurrentList.add(x);
concurrentList.add(y);

}

Shared data: concurrentList1
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Composability

Shared data: concurrentList

atomicFoo()
{

concurrentList.add(x);
concurrentList.add(y);

}

Shared data: concurrentList1
Shared data: concurrentList2

atomicFoo()
{

concurrentList1.remove(x);
concurrentList2.add(x);

}

Shared data: concurrentList

atomicFoo()
{

concurrentList.add(x);
}

Modify the design of concurrentList?
More complex designs

Transactional Memory?
Lose optimizations of concurrentList



Integration

Shared data: concurrentList

atomicFoo()
{

If(concurrentList.add(x))
n1++;

Else
n2++;

}



Modeling

 Different Designs and Implementations
– Different ad-hoc approaches for proving 

correctness.

 Is there a unified model for concurrent data 
structures?
– General enough
– Easy to use
– Includes composability and integration
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 Composability and Integration

– Transactional Memory.

– Transactional Boosting.

  Modeling

– SWMR Model



Transactional Memory

 Software Transactional Memory (STM)
– SW meta-data (e.g. read-sets and write-sets) on the current 

HW.

 Hardware Transactional Memory (HTM)
– New HW (modify cache coherency protocols).

 Hybrid Transactional Memory (Hybrid TM)
– HTM transactions fall-back to STM
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TM Limitation: False Conflict

1052 706050

55

All “red” nodes are in the read-set
“50” and “55” are in the write-set

What if a concurrent transaction deletes “5”??

False Conflict

Example: Linked list (Insert “55”)
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 Convert highly concurrent data structures to be transactional.

 Composable (like STM)
 And efficient (like lazy/lock-free linked-list)

34



Transactional Boosting

 Convert highly concurrent data structures to be transactional.

 Composable (like STM)
 And efficient (like lazy/lock-free linked-list)

 Issues:
– Eager locking.
– Inverse operations.
– Black-box concurrent data structure.
– No Straightforward Integration

35
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Past Solutions

Sequential Tree

TM-BEGIN

TM-END

Concurrent Tree

Acquire Semantic Locks

Release Semantic Locks

Transactional Memory Transactional Boosting

General, BUT not optimized.
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Traversal 
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Commit 
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Concurrent Operation (add, remove, contains, ...)

OTB's Three Guidelines



● G2: Compose phases.

OTB's Three Guidelines
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● G2: Compose phases

Commit(op1)

Traversal(Op2) Commit(op2)

Atomic Block
(Tx)
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● G3: Optimize

– Specific to each data structure.

● Our Contribution:

– Linked-list-based Set.

– Skip-list-based Set.

– Skip-list-based Priority Queue.

– Balanced Tree

OTB's Three Guidelines



Lazy Vs Boosting Vs Optimistic Boosting

48



Example
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Example
Bootsing “lazy” concurrent linked list



Concurrent
Non-optimized 
Transactional

G1 & G2

Optimized 
Transactional

G3

OTB Methodology

50
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Example

 Lazy Linked list (Insert “55”)
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Example

 Lazy Linked list (Insert “55”)

 Traversal (unmonitored)

 Validation

 Commit
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To Make it Transactional

 Results of traversal are saved in local objects:

– Semantic read-set: to be validated.

– Semantic write-set: to be published at commit.



To Make it Transactional

 Example: Linked list (Insert “55”)

1052 706050



To Make it Transactional

 Example: Linked list (Insert “55”)
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To Make it Transactional

 Example: Linked list (Insert “55”)

 Guidelines to guarantee opacity (see OPODIS'14 paper)

1052 706050

read-set 
entry

● Pred:50, curr:60

write-set 
entry

● Pred:50, curr:60, new:55



 Example optimizations on Linked-List and Skip-List

– Local elimination:
● Ex. Add(x) then Remove(x).
● No need to access the shared data structure.

Specific Optimizations



Results

Skip-list 512 Nodes

5 ops/transaction

Skip-list 64K Nodes

5 ops/transaction

60
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Transactional Interference-less Balanced Trees

● Transactional: Functionality (following OTB's G1, G2).

● Interference-less: Performance (following OTB's G3).



The Next Question

● Which concurrent balanced tree design fits OTB?



The Next Question

● Which concurrent balanced tree design fits OTB?

Contention-Friendly Tree
Crain, Gramoli, & Raynal'13
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Our Proposal

Transactionalizing CF-Tree using OTB
(TxCF-Tree)
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Remove is similar...
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20(d)

30

Application Thread

unmonitored 
traversal

Lock &
Validate

Mark as “d”

Commit

Traversal
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Transactional Interference-less Tree

● How

– Step 1: CF-Tree!!

– Step 2: Always give the highest priority to semantic operations over 
structural operations.

● Why

– Aborting transactions rolls back all its operations (including the 
non-conflicting ones).

– Long transactions are more prone to interfere with the helper thread.



Two building blocks

● Structural Locks.

● Structural Invalidation.



Structural Locks
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What is the best to do in both cases?
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Structural Locks
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● Transaction T1 wants to delete 30.

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

20

30

A concurrent delete(30)

Structural 
Locks

Semantic 
Lock

Solution?

Two types of locks
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Structural Invalidation

● Transaction T1 wants to insert 15. 

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15
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30 10

T1 observes that the right child of “20” is not NULL
What is the best to do in both cases?

Continue
Traversal

Abort
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Structural Invalidation

● Transaction T1 wants to insert 15. 

● after traversal and before commit, assume 2 scenarios

A concurrent rotation

10

A concurrent insert(15)

20

30 15

20

30 10

Solution?

Continue Traversal anyway
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Evaluation

AMD 64-cores, size: 10K nodes , 32 threads, 50% reads, 5 ops/transaction
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Concurrent Data Structures

● Different Designs and Implementations
– Different ad-hoc approaches for proving correctness.

● Is there a unified model for concurrent data structures?

– General enough.

– Easy to use.



SWMR Model (Lev-Ari et. Al, DISC'14)
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Shared States

● Data Structure is represented as a set of shared variables.

● The values of those variables is the shared state of the data 
structure.

Operation“O”
Pre-state(O) Post-state(O)



Local States

● Operation is represented as a set of steps.

● The values of the operation's local variables before any step is 
the local state of the step.

Pre-state(O) Post-state(O)Step
1

Step
2

Step
n

L
1

L
2

L
n

Operation “O”



SWMR Scenario
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Validity
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Validity

● All Si  are sequentially reachable, so all UOi are valid.

● Stepi in RO is valid if there is Sj such that a sequential 
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Validity

● All Si  are sequentially reachable, so all UOi are valid.

● Stepj in RO is valid if there is Si such that a sequential 
execution of RO starting from Si reaches Lj.
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● All Si  are sequentially reachable, so all UOi are valid.

● Stepj in RO is valid if there is Si such that a sequential execution of RO 
starting from Si reaches Lj.

● Stepj in RO is valid if there is a “base point” where the “base condition” 
of  stepj holds.

Validity
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Validity

● How to prove validity for any data structure.

– Identify the base conditions for each step in each operation (it is 
sufficient to do so only for steps that access the shared memory).

– Prove that in any concurrent execution, every step has a base point that 
satisfies its base condition.
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Regularity

● Acceptable base points for RO's return step are only S1, S2, S3.

– Observes either the last update or a concurrent update.
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Where is the Problem?

It covers only single-writer designs

It does not cover composable designs

Can we cover a wider set?

Optimistic Composable Data Structures



Our Models

Single Writer Commit (SWC) 

Composable SWC (C-SWC)
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Even More...

● Do we really need single commit at a time:

– NO!!!

– It is enough to execute commit phases atomically with single lock 
atomicity (SLA) guarantees.

– More practical alternatives:

● HTM (e.g. Intel TSX).

● STM (e.g. NOrec “the SLA version”).
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Composable SWC Model (C-SWC)



Composable SWC Model (C-SWC)

Traversal(Op1) Commit(op1)

Traversal(Op2) Commit(op2)

Atomic Block
(Tx)

Traversal(Op1) Commit(op2)Traversal(Op2) Commit(op1)

Traversal(Tx) Commit(Tx)



What is remaining?

● Internal Consistency.

– The commit phase of each operation reflects what the operation 
observed in its traversal.

– The shared state of an operation is visible to subsequent operations in 
the same transaction.



How to prove internal consistency?

Traversal(Op1) Commit(op2)Traversal(Op2) Commit(op1)



How to prove internal consistency?

Traversal(Op1) Commit(op2)Traversal(Op2) Commit(op1)

L L L

Have the same base point



ConclusionsConclusions



Our Contributions

Transactional
Data Structures

Composability Integration

Modeling

Optimistic Transactional Boosting
PPoPP 2014

OTB-Set
OPODIS 2014

TxCF-Tree
DISC 2015

SWC and C-SWC Models
WTTM 2015, under submission

Integration with STM
TRANSACT 2014

Integration with HTM
Under submission

Remote Transaction Commit
IEEE TC 2015

Remote Invalidation
IPDPS 2014



Thanks!

Questions?

139
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