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Lock-based concurrency control  
has serious drawbacks 

q  Coarse grained locking 
q  Simple 
q  But no concurrency 
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Fine-grained locking is better,  
but… 

q  Excellent performance 
q  Poor programmability 

q  Lock problems don’t go 
away! 
q  Deadlocks, livelocks,      

lock-convoying, priority 
inversion,…. 

q  Most significant difficulty –  
composition 
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Lock-free synchronization overcomes some of 
these difficulties, but… 

“
lo
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Transactional memory 

q  Like database transactions 
q  ACI properties (no D) 
q  Easier to program 
q  Composable 

q  First HTM, then STM, later HyTM 

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for    
lock-free data structures. ISCA. pp. 289–300. 
N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213. 
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Optimistic execution yields performance gains at 
the simplicity of coarse-grain, but no silver bullet 

STM 
Fine-grained 

locking 

Coarse-grained 
locking 

Threads 

Time 

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP) 

q  High data dependencies 
q  Irrevocable operations 
q  Interaction between 

transactions and              
non-transactions 

q  Conditional waiting 
q  ……  

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)  



 

 

 

 

 

 

 

 

 

Three key mechanisms needed to create    
atomicity illusion 

atomic{!
    x = x + y;!
} !

Versioning 

Where to store new x until 
commit? 
q  Eager: store new x in 

memory; old in undo log 
q  Lazy: store new x in write 

buffer 

atomic{!
    x = x + y;!
} !

atomic{!
    x = x / 25;!
} !

T0 ! T1 !

Conflict detection 

How to detect conflicts between          
T0 and T1? 
q  Record memory locations read in 

read set 
q  Record memory locations wrote in 

write set 
q  Conflict if one’s read or write set 

intersects the other’s write set 
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Distributed TM (or DTM) 

q  Extends TM to distributed systems 
q  Nodes interconnected using message passing links 

q  Execution and network models 
q  Execution models 

Ø Data flow DTM (DISC 05) 
p  Transactions are immobile 
p  Objects migrate to invoking transactions 

Ø Control flow DTM (USENIX 12) 
p  Objects are immobile 
p  Transactions move from node to node 

q  Herlihy’s metric-space network model (DISC 05) 
Ø Communication delay between every pair of nodes 
Ø Delay depends upon node-to-node distance 

1st hop 2nd hop 3rd hop 4th hop 5th hop 
Distance 

1.499 ms 9.095 ms 16.613 ms 13.709 ms 15.016 ms 
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Replication models in (dataflow) DTM 

q  No replication: non-fault-tolerant 

 
q  Full replication: fault-tolerant, but non-scalable 

 

q  Partial replication: fault-tolerant and scalable 

Only one copy for each object 

All objects replicated on all nodes 

Each object replicated only at a subset of nodes 
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Paper’s motivations 

q  C++ preferred for high performance products 
q  No JVM Overhead 
q  Manual Memory Management 

q  No automatic garbage collector 

q  Low-level optimization for network management 
q  No current complete DTM support in C++ 
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HyflowCPP advantages 

q  First ever DTM support for C++ 
q  Pluggable support for different 

algorithm and policies 
q  Performance oriented design 
q  Support of various features: 

q  Strong Atomicity 
q  Nesting supports 

Ø Open Nesting 
Ø Close Nesting 

q  Checkpointing 

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)  



 

 

 

 

 

 

 

 

 

Why HyflowCPP? 

q  First ever DTM support for C++ 
q  Pluggable support for different 

algorithm and policies 
q  Performance oriented design 
q  Support of various features: 

q  Strong Atomicity 
q  Nesting supports 

Ø Open Nesting 
Ø Close Nesting 

q  Checkpointing 

Integration with transactional 
systems in C++ without 
additional layer 

Ready for complex distributed 
concurrency controls and 
replication models 

Support for avoiding false-conflicts in 
distributed transactional data structures 

Partial abort mechanisms already provided 
by the framework and ready for programmers 
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Programming Interface 

q  Atomic section based support using Macros 

q  HYFLOW_PUBLISH(obj),  
q  HYFLOW_DELETE(obj) 
q  HYFLOW_FETCH(objId,  isRead) 
q   HYFLOW_CHECKPOINT_HERE( ) and more…. 
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System Architecture 

q  API level design 
q  ~12K LoC  
q  Modular Architecture 
q  Pluggable support for 

different component. 
q  Dependencies: 

q  Boost Thread 
q  Boost Serialization 
q  ZeroMQ 
q  Pthread 
q  Intel TBB 
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Flat Nesting 

q  Composable Transaction. 
q  No real nesting support. 

q  Thread Context factory to provide thread specific context. 
q  Merge inner transaction to parent transaction at commit time. 
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Open Nesting 

q  Abstract lock overhead, lock issues like livelock. 

q  Acquire the abstract lock in inner transaction. 
q  Outer most transaction release the abstract locks.  
q  Performance improvement by removing false conflict. 
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Closed Nesting 

q  Performance improvement by retrying inner transaction 
q  Partial rollback limited to current inner transaction executing 

q  Inner-transaction commit operation merges the inner-
transaction’s read-/write-set to parent transaction 

q  Parent-transaction globally commits when all the inner 
transactions are successfully executed 
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Checkpoitning (no-nesting model) 

q  Performance improvement by partial rollback. 
q  Non negligible memory overhead. 

q  Transaction creates checkpoints locally 
q  Checkpoints saved along with the object accessed 
q  Conflict during execution phase, can restart from appropriate 

checkpoint 
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Atomicity, consistency, and isolation  
in data-flow DTM 

q  Transactional Forwarding Algorithm (TFA) 
q  Early validation of remote objects 
q  Atomicity for object operations in the presence of asynchronous 

clocks 

t1 
LC =14 

Object o1’s  
owner node N0 

time t2 

T2’s validate request 

T1,   T2, and T3 request o1  

T4 requests o1 and aborts 

o1 is updated at 30;  
T2 commits & becomes 
o1’s owner  

t3 

T1 and T3’s validate request, but they abort, 
because LC=30, was 14 

t4 t5 

(LC is local clock) 

T1’s node: N1 
T2’s node: N2 

T3’s node: N3 

T4’s node: N4 
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Experiments 

q  Test-bed: 
q  Cluster of 48 nodes interconnected by a Gigabit 

connection 
q  Each node equipped with 2 application threads 

running 
q  Ubuntu Linux 10.04 server OS 

q  Competitors (JVM-based DTM frameworks): 
q  GenRSTM, DecentSTM, HyflowJava & HyflowScala. 

q  Benchmarks: 
q  Micro Benchmarks: 

Ø Bank, Linked-List, Skip-list, Binary Search Tree, Hash-table 

q  Macro Benchmarks: 
Ø Loan, Vacation, TPCC   
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Flat Nesting 

q  Bank benchmark 

q  Best competitor is HyflowScala. 
q  HyflowCPP speed-up is around 4x 
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q  Hash Table benchmark 
q  {20,50,80}% of read workload 
q  3 inner-transactions 

Open Nesting 

q  Hash Table benchmark 
q  {2,3,4,8} inner-transactions 
q  20% read workload 
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q  Relative throughput to flat nesting 
q  Maximum speed-up 1.5x due to overhead of compensating actions in 

case of abort 



 

 

 

 

 

 

 

 

 

Closed Nesting and Checkpointing 

q  Bank benchmark 
q  {1,2,5,10} granularity of Checkpointing and Closed-Nesting 
q  Relative throughput to flat nesting 

q  HyflowCPP speed-up is around 2x 
q  Checkpointing is better than Closed-Nesting 
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Thank you for the attention & Questions 

HyflowCPP is available as open-source software at: 
http://www.hyflow.org/hyflow/wiki/HyflowCPP 
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