
HyflowCPP: A Distributed Transactional
Memory Framework for C++

Sudhanshu Mishra, Alexandru Turcu, Roberto
Palmieri, Binoy Ravindran

Virginia Tech

USA

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Lock-based concurrency control
has serious drawbacks

q  Coarse grained locking
q  Simple
q  But no concurrency

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Fine-grained locking is better,
but…

q  Excellent performance
q  Poor programmability

q  Lock problems don’t go
away!
q  Deadlocks, livelocks,

lock-convoying, priority
inversion,….

q  Most significant difficulty –
composition

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Lock-free synchronization overcomes some of
these difficulties, but…

“
lo

ck
-fr

ee
 re

try
 lo

op
”

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Transactional memory

q  Like database transactions
q  ACI properties (no D)
q  Easier to program
q  Composable

q  First HTM, then STM, later HyTM

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for
lock-free data structures. ISCA. pp. 289–300.
N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Optimistic execution yields performance gains at
the simplicity of coarse-grain, but no silver bullet

STM
Fine-grained

locking

Coarse-grained
locking

Threads

Time

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP)

q  High data dependencies
q  Irrevocable operations
q  Interaction between

transactions and
non-transactions

q  Conditional waiting
q  ……

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Three key mechanisms needed to create
atomicity illusion

atomic{!
 x = x + y;!
} !

Versioning

Where to store new x until
commit?
q  Eager: store new x in

memory; old in undo log
q  Lazy: store new x in write

buffer

atomic{!
 x = x + y;!
} !

atomic{!
 x = x / 25;!
} !

T0 ! T1 !

Conflict detection

How to detect conflicts between
T0 and T1?
q  Record memory locations read in

read set
q  Record memory locations wrote in

write set
q  Conflict if one’s read or write set

intersects the other’s write set

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Distributed TM (or DTM)

q  Extends TM to distributed systems
q  Nodes interconnected using message passing links

q  Execution and network models
q  Execution models

Ø Data flow DTM (DISC 05)
p  Transactions are immobile
p  Objects migrate to invoking transactions

Ø Control flow DTM (USENIX 12)
p  Objects are immobile
p  Transactions move from node to node

q  Herlihy’s metric-space network model (DISC 05)
Ø Communication delay between every pair of nodes
Ø Delay depends upon node-to-node distance

1st hop 2nd hop 3rd hop 4th hop 5th hop
Distance

1.499 ms 9.095 ms 16.613 ms 13.709 ms 15.016 ms

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Replication models in (dataflow) DTM

q  No replication: non-fault-tolerant

q  Full replication: fault-tolerant, but non-scalable

q  Partial replication: fault-tolerant and scalable

Only one copy for each object

All objects replicated on all nodes

Each object replicated only at a subset of nodes

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Paper’s motivations

q  C++ preferred for high performance products
q  No JVM Overhead
q  Manual Memory Management

q  No automatic garbage collector

q  Low-level optimization for network management
q  No current complete DTM support in C++

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

HyflowCPP advantages

q  First ever DTM support for C++
q  Pluggable support for different

algorithm and policies
q  Performance oriented design
q  Support of various features:

q  Strong Atomicity
q  Nesting supports

Ø Open Nesting
Ø Close Nesting

q  Checkpointing

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Why HyflowCPP?

q  First ever DTM support for C++
q  Pluggable support for different

algorithm and policies
q  Performance oriented design
q  Support of various features:

q  Strong Atomicity
q  Nesting supports

Ø Open Nesting
Ø Close Nesting

q  Checkpointing

Integration with transactional
systems in C++ without
additional layer

Ready for complex distributed
concurrency controls and
replication models

Support for avoiding false-conflicts in
distributed transactional data structures

Partial abort mechanisms already provided
by the framework and ready for programmers

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Programming Interface

q  Atomic section based support using Macros

q  HYFLOW_PUBLISH(obj),
q  HYFLOW_DELETE(obj)
q  HYFLOW_FETCH(objId, isRead)
q  HYFLOW_CHECKPOINT_HERE() and more….

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

System Architecture

q  API level design
q  ~12K LoC
q  Modular Architecture
q  Pluggable support for

different component.
q  Dependencies:

q  Boost Thread
q  Boost Serialization
q  ZeroMQ
q  Pthread
q  Intel TBB

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Flat Nesting

q  Composable Transaction.
q  No real nesting support.

q  Thread Context factory to provide thread specific context.
q  Merge inner transaction to parent transaction at commit time.

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Open Nesting

q  Abstract lock overhead, lock issues like livelock.

q  Acquire the abstract lock in inner transaction.
q  Outer most transaction release the abstract locks.
q  Performance improvement by removing false conflict.

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Closed Nesting

q  Performance improvement by retrying inner transaction
q  Partial rollback limited to current inner transaction executing

q  Inner-transaction commit operation merges the inner-
transaction’s read-/write-set to parent transaction

q  Parent-transaction globally commits when all the inner
transactions are successfully executed

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Checkpoitning (no-nesting model)

q  Performance improvement by partial rollback.
q  Non negligible memory overhead.

q  Transaction creates checkpoints locally
q  Checkpoints saved along with the object accessed
q  Conflict during execution phase, can restart from appropriate

checkpoint

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Atomicity, consistency, and isolation
in data-flow DTM

q  Transactional Forwarding Algorithm (TFA)
q  Early validation of remote objects
q  Atomicity for object operations in the presence of asynchronous

clocks

t1
LC =14

Object o1’s
owner node N0

time t2

T2’s validate request

T1, T2, and T3 request o1

T4 requests o1 and aborts

o1 is updated at 30;
T2 commits & becomes
o1’s owner

t3

T1 and T3’s validate request, but they abort,
because LC=30, was 14

t4 t5

(LC is local clock)

T1’s node: N1
T2’s node: N2

T3’s node: N3

T4’s node: N4

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Experiments

q  Test-bed:
q  Cluster of 48 nodes interconnected by a Gigabit

connection
q  Each node equipped with 2 application threads

running
q  Ubuntu Linux 10.04 server OS

q  Competitors (JVM-based DTM frameworks):
q  GenRSTM, DecentSTM, HyflowJava & HyflowScala.

q  Benchmarks:
q  Micro Benchmarks:

Ø Bank, Linked-List, Skip-list, Binary Search Tree, Hash-table

q  Macro Benchmarks:
Ø Loan, Vacation, TPCC

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Flat Nesting

q  Bank benchmark

q  Best competitor is HyflowScala.
q  HyflowCPP speed-up is around 4x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50

T
h
ro

u
g
h

p
u

t
(t

ra
n
sa

ct
io

n
s/

s)

Number of Nodes

HyflowCPP
HyflowJava

HyflowScala
DecentSTM
GenRSTM

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50
T

h
ro

u
g
h

p
u

t
(t

ra
n
sa

ct
io

n
s/

s)
Number of Nodes

HyflowCPP
HyflowJava

HyflowScala
DecentSTM
GenRSTM

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Bank 20% read workload Bank 80% read workload

q  Hash Table benchmark
q  {20,50,80}% of read workload
q  3 inner-transactions

Open Nesting

q  Hash Table benchmark
q  {2,3,4,8} inner-transactions
q  20% read workload

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 3

 3.3

 3.6

 3.9

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
re

la
tiv

e
 t

o
 f

la
t

n
e

st
in

g

Number of Nodes

Flat-Nesting
Open-Nesting-2

Closed-Nesting-2
Open-Nesting-3

Closed-Nesting-3
Open-Nesting-4

Closed-Nesting-4
Open-Nesting-8

Closed-Nesting-8

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 3

 3.3

 3.6

 3.9

 0 10 20 30 40 50

T
h
ro

u
g
h
p
u
t
re

la
tiv

e
 t
o
 f
la

t
n
e

st
in

g

Number of Nodes

Flat-Nesting
Open-Nesting-Reads20

Closed-Nesting-Reads20
Open-Nesting-Reads50

Closed-Nesting-Reads50
Open-Nesting-Reads80

Closed-Nesting-Reads80

q  Relative throughput to flat nesting
q  Maximum speed-up 1.5x due to overhead of compensating actions in

case of abort

Closed Nesting and Checkpointing

q  Bank benchmark
q  {1,2,5,10} granularity of Checkpointing and Closed-Nesting
q  Relative throughput to flat nesting

q  HyflowCPP speed-up is around 2x
q  Checkpointing is better than Closed-Nesting

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 3

 3.3

 3.6

 3.9

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
re

la
tiv

e
 t

o
 f

la
t

n
e

st
in

g

Number of Nodes

Flat-Nesting
Checkpointing-1
Close-Nesting-1
Checkpointing-2
Close-Nesting-2
Checkpointing-5
Close-Nesting-5

Checkpointing-10
Close-Nesting-10

Thank you for the attention & Questions

HyflowCPP is available as open-source software at:
http://www.hyflow.org/hyflow/wiki/HyflowCPP

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

