

[<c219ec5f>] security_sk_free+0xf/0x20 [<c2451efb>] __sk_free+0x9b/0x120 [<c25ae7c1>] ? _raw_spin_unlock_irgres [<c2451ffd>] sk_free+0x1d/0x30 [<c24f1024>] unix release sock+0x174/0

On the Viability of Speculative Transactional Replication in Database Systems: a Case Study with PostgreSQL

Sebastiano Peluso, <u>Roberto Palmieri</u>, Francesco Quaglia, Binoy Ravindran

"Sapienza" University of Rome, Italy Virginia Tech. USA

A data storage device that uses solid-state memory to persist data

PostgreSQL benchmark over one million rows

(5amsolutions)

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

Context

- Fault tolerance is a desirable property of transactional systems
- Replication is the typical mean
- Replication protocol suited for distributed transactional systems relying on:
 - Active Replication, as a paradigm for coordinating replicas;
 - Speculative processing, for boosting local processing.

- Each replica keeps all shared data and executes the same transactions in the same order
- PRO (+)
 - Full failure masking
 - No coordination for read-only transactions
 - No communication during transaction processing
 - Prone to target performance issues
- CONS (-)
 - Agreement on common execution order
 - Deterministic business logic

- A way to exploit as much as possible available resources (tailored for multicore architectures)
- A mean of anticipating work filling waiting periods

State Machine Approach (SM)

- Implements Active Replication paradigm
- Based on Atomic Broadcast as group communication system
- Does not exploit any kind of optimism

Optimistic Approach (OPT)

- Based on Optimistic Atomic Broadcast as a group communication system
- It processes in optimistic manner:
 - At most one conflicting transaction
 - Any non-conflicting transactions

Limited Overlapping

 In case of fine-grain transactions, the overlapping between the coordination phase and local processing is very limited

Mean Transaction Execution Time

Traditional Scenarios

≈ 2m/10m sec

Modern Scenarios

≈ 2m/500µ sec

Coordination phase Processing Coordination phase

Target: Maximize the overlap

Coordination delay Vs Local transaction processing

How: Speculative Processing

- Basic ideas:
 - Activate all transactions as soon as they are optimistic delivered
 - Explore (in depth and/or in breadth) multiple serialization orders

Contribution

- Integration of the active replication paradigm with speculation in existing PostgreSQL
 - Centralized
 - Non fault-tolerant
 - Open-source DBMS
- Speculative supports embedded:
 - Transaction Demarcation and Commit
 - Enhanced Multiversioning
 - Speculative Transactions Forking

Transaction Demarcation and Commit

- Each transaction requested submitted by clients is a transaction *family*
- Speculative transactions belonging to the same family (activated on different snapshots) are siblings
- Transactions are identified with:
 - FAMILY ID: the family's identification
 - INSTANCE ID: the unique id valid in the context a family
- Hash-Map stores families' information and their speculative transactions to always have a picture of the current execution status.

Enhanced Multiversioning

- Speculation requires non- blocking tuple access
- Post-images of inserted/updated tuples must be visible before the writing transaction is committed

Speculative Transactions Forking

- Read operations return more than one version per tuple
- A forking mechanism is needed for allowing transactions to explore different serialization order

Evaluation

- Synthetic benchmarks and TPC-C
- 32 core machine HP ProLiant server, equipped with four 2GHz AMD Opteron 6128 and 64GB RAM

SELECT commands

The 12th IEEE International Symposium on Network Computing and Applications (IEEE NCA13)

UPDATE commands

Evaluation

Performance of TPC-C

Performance comparison Spec Vs Non Spec execution

Actual number of speculative transactions generated

Lesson, Conclusion & Questions

- Speculative processing in DBMS is doable
- Overhead is limited especially having multicore architecture
- The number of speculative transactions generated depends on the concurrency control rules

