
Thesis	Defense—Master	of	Science
Utkarsh Pandey

Advisor:	Binoy	Ravindran

Systems	Software	Research	Group

Virginia	Tech

Optimizing	Distributed	Transactions:	Speculative	

Client	Execution,	Certified	Serializability,	and	

High	Performance	Run-Time	



2

Overview

• Introduction

• Motivation

• Contributions

– PXDUR

– TSAsR

– Verified Jpaxos

• PXDUR

• Experimental Results

• Conclusions



3

Transactional Systems

• Back end - online services.

• Usually backed by one or more Database 
Management Systems (DBMS).

• Support multithreaded operations.

• Require concurrency control.

• Employ transactions to execute user requests.

• Transactions – Unit of atomic operation.



4

Replication in services

• Replication	– Increased	availability,	fault	

tolerance.

• Service	replicated	on	a	set	of	server	replicas.

• Distributed	algorithms	– Co-ordination	among	

distributed	servers.

• State	Machine	Replication	(SMR)	–

– All	replicated	servers	run	command	in	a	common	

sequence.	

– All	replicas	follow	the	same	sequence	of	states.



5

Distributed Transactional Systems

• Distributed system:
– Service running on multiple servers (replicas).
– Data replication (full or partial).
– Transactional systems - support multithreading.

• Deferred Update Replication (DUR):
– A method to deploy a replicated service.
– Transactions run locally, followed by ordering and certification.

• Fully partitioned data access:
– A method to scale the performance of DUR based systems.

– No remote conflicts.
– The environment studied here.

• Bottlenecks in fully-partitioned DUR systems:
– Local conflicts among application threads.
– Rate of certification post total order establishment.



6

SMR algorithms

• Distributed	algorithms:

– Backbone	of	replicated	services.

– Based	on	State	Machine	Replication	(SMR).

• Optimization	of	SMR	algorithm:

– Potential	of	huge	benefits.

– Involve	high	verification	cost.

• Existing	methods	to	ease	verification:

– Functional	languages	lending	easily	to	verification	–

EventML,	Verdi.

– Frameworks	for	automated	verification	– PSYNC.	

• Modeled	algorithms	- low	performance.



7

Centralized Database 
Management Systems

• Centralized	DBMS:

– are	standalone	systems.

– Employ	transactions	for	DBMS	access.

– Support	multithreading	- exploit	multicore	hardware	

platforms.

• Concurrency	control:

– Prevent	inconsistent	behavior.

– Serializability - Gold	standard	isolation	level.

• Eager-locking	protocols:	

– Used	to	enforce	serializability.

– Too	conservative	for	many	applications.

– Scale	poorly	with	increase	in	concurrency.



8

Motivation for Transactional 
Systems Research

Problems
• Alleviate local contention in distributed servers(DUR based) 

through speculation and parallelism.
• Low scalability of centralized DBMS with increased 

parallelism.
• Lack of high performance SMR algorithms which lend 

themselves easily to formal verification.

Research Goals
• Broad: Improve system performance while ensuring ease of 

deployment. 
• Thesis: Three contributions – PXDUR, TSAsR and Verified 

JPaxos.



9

Research Contributions

• PXDUR:
– DUR	based	systems	suffer	from	local	contention	and	limited	by	
committer’s	performance.

– Speculation	can	reduce	local	contention.

– Parallel	speculation	improves	performance.

– Commit	optimization	provides	added	benefit.

• TSAsR :
– Serializability:	Transactions	operate	in	isolation.
– Too	conservative	requirement	for	many	applications.

– Ensure	serializability using	additional	meta-data	while	keeping	
the	system’s	default	isolation	relaxed.



10

Research Contributions

• Verified JPaxos
– SMR	based	algorithms	not	easy	to	verify.

– Algorithms	produced	by	existing	verification	frameworks	

perform	poorly.

– JPaxos based	run-time	for	easy	to	verify	Multipaxos algorithm,	

generated	from	HOL	specification.	



11

PXDUR : Related Work

• DUR	:

– Introduced	as	an	alternative	to	immediate	update	

synchronization.

• SDUR:

– Introduces	the	idea	of	using	fully	partitioned	data	access.

– Significant	improvement	in	performance.

• Conflict	aware	load	balancing:

– Reduce	local	contention	by	putting	grouping	conflicting	

requests	on	replicas.

• XDUR	:

– Alleviate	local	contention	by	speculative	forwarding.



12

Fully Partitioned Data Access

Ordering	

Layer	(e.g.,	

Paxos)

Replica	1

A
B
C

A

Replica	3

Replica	2

B
C

B

D
C

D

F

E

D
E
F

E

F

A



13

Deferred Update Replication

Local	Execution	Phase

Replica

1

Replica	

3

Replica	

2
T1	Begin

T1	Local	

Commit

T1	

Execute

Clients

Clients

Clients

T
3
	B
e
g
in

T
3
	

E
x
e
c
u
te

T
3
	L
o
c
a
l	

C
o
m
m
it

Ordering	

Layer	

(Paxos)



14

Deferred Update Replication

Global	Ordering	Phase

Replica

1

Replica	

3

Replica	

2
T1

Clients

Clients

Clients

T
3

T1 T2 T3Ordering	

Layer	

(Paxos)



15

Deferred Update Replication

Certification	Phase:

Replica

1

Replica	

3

Replica	

2

Clients

Clients

Clients

Ordering	

Layer	

(Paxos)

Certify	

T1
Certify	

T3

Certify
T2

Certify	

T1

Certify	

T1

Certify
T2

Certify
T2

Certify	

T3

Certify	

T3



16

Deferred Update Replication

Remote	conflicts	in	DUR:

T1

T3

Ordering	

Layer(Paxos)

Replica	1

A

B
C

A

Replica	3

Replica	2

B
C

A

C
B

T2

D
E
F

D
E
F

D
E
F



17

Deferred Update Replication

Remote	conflicts	in	DUR:

T1

{A,B}

T3

{A,C}

Ordering	

Layer	

(Paxos)

Replica	1

A

B
C

A

Replica	3

Replica	2

B
C

A

C
B

Conflict

T2

{B,C}

T1,	T2	and	T3	conflict.	

Thus	depending	upon	the	

global	order,	only	one	of	

them	will	commit	after	

the	certification	phase

D
E
F

D

D
E

E

F

F



18

Deferred	Update	Replication

Fully	partitioned	data	access:

T1

T3

Ordering	

Layer	

(Paxos)

Replica	1

A
B
C

A

Replica	3

Replica	2

B
C

B

D
C

T2

D

F

E

D
E
F

E
F

A

The	shared	objects	are	fully	

replicated,	but	transactions	

on	each	replica	only	access	

a	mutually	exclusive	subset	

of	objects.

With	fully	partitioned	

data	access,	T1,	T2	and	

T3	do	not	conflict.	They	

all	will	commit	after	the	

total	order	is	

established.



19

Bottlenecks in fully partitioned DUR 
systems

• Fully	partitioned	access	- Prevents	remote	

conflicts.

• Other	factors	which	limit	performance:

– Local	contention	among	application	threads.

– Rate	of	post	total-order	certification.



20

PXDUR

• PXDUR	or	Parallel	XDUR.

• Addresses	local	contention	through	

speculation.

• Allows	speculation	to	happen	in	parallel:

– Improvement	in	performance.

– Flexibility	in	deployment.

• Optimizes	the	commit	phase:

– Skip	the	read-set	validation	phase,	when	safe.



21

PXDUR Overview



22

Reducing local contention

• Speculative	forwarding	:	Inherited	from	XDUR.

• Active	transactions	- Read	from	the	snapshot	

generated	by	completed	local	transactions,	

awaiting	global	order.

• Ordering	protocol	respects	the	local	order:

– Transactions	are	submitted	in	batches	respecting	

the	local	order.	



23

Local	contention	in	DUR

A

B

C

D

E

F

T1T1		and	T2	both	

read	object	B	and	

modify	it.

T2

Replica

Local	

conflict



24

Local	contention	in	DUR

A

B

C

D

E

F

T1

T2

Replica

Local	

Certification

Global	

order

T1	local	

commit

T2	aborts	

and	restarts

B



25

Speculation	in	PXDUR

A

B

C

D

E

F

T1T1	reads	

object	B	and	

modifies	it.

T1	commits	

locally,	and	

awaits	total	

order.

T1

{B}

T2	wants	to	

read	object	

B.

T2 T2	reads	T1’s	

committed	

version	of	B

Replica

Single	thread	Speculation



26

Speculation	in	PXDUR

A

B

C

D

E

F

T1 T0	

{B}
T2

T0	modified	

B,	locally	

committed	

and	awaits	

global	order

Replica

Speculation	in	parallel

T4 T3

Active	Transactions



27

Speculation in parallel

• Concurrent	transactions	speculate	in	parallel.

• Concurrency	control	employed	to	prevent	

inconsistent	behavior:

– Extra	meta-data	added	to	objects.

• Transactions:

– Start	in	parallel.

– Commit	in	order.

• Allows	for	scaling	of	single	thread	XDUR.	



28

Commit Optimization

• Fully	partitioned	data	access:	

– Transactions	never	abort	during	final	certification.

• We	use	this	observation	to	optimize	the	

commit	phase.

• If	a	transaction	does	not	expect	conflict:	

– Skip	the	read-set	validation	phase	of	the	final	

commit.



29

Commit Optimization

• Array	of	contention	maps	present	on	each	replica:

– Each	array	entry	corresponds	to	one	replica.

– Contention	maps	contain	the	object	IDs	which	are	

suspected	to	cause	conflicts.

• A	transaction	cannot	skip	the	read-set	validation	if:

– It	performed	cross-partitioned	access.

– The	contention	map	corresponding	to	its	replica	of	

origination	is	not	empty.

• Contention	maps	fill	when:

– A	transaction	doing	cross-partition	access	commits.

– A	local	transaction	aborts.



30

Commit Optimization

T1

Ordering	

Layer	

(Paxos)

Replica	1

A
B
C

A

Replica	3

Replica	2

B
C

B

D
C

1

D

F

E

D
E
F

E
F

A

32

Contention	

map	array

1

1

2

2

3

3

Transaction	T1	

originating	on	Replica	1	

access	Object	D,	which	

lies	in	Replica	2’s	logical	

partition.



31

Commit Optimization

T1	

commits

Ordering	

Layer	

(Paxos)

Replica	1

A
B
C

A

Replica	3

Replica	2

B
C

B

D
C

1

D

F

E

D
E
F

E
F

A

32

Contention	

map	array

1

1

2

2

3

3

Transaction	T1	commits.	As	

a	result	an	entry	for	Object	

D	is	added	to	the	

contention	map	

corresponding	to	Replica	2	

on	every	Replica.

T1	

commits

T1	

commits

Now	it	is	not	safe	for	any	

transaction	local	to	

Replica	2	to	skip	the	

read-set	validation	as	it	

may	conflict	with	the	

updates	made	by	T1.

Object	D	added	to	

Replica	2’s	contention	

map



32

Evaluation Results

PRObE Cluster.
AMD Opteron, 64 core, 2.1 GHz CPU.

128 GB of memory, 40Gb Ethernet.

Benchmarks: Bank, TPC-C.

Configuration:

• Each benchmark studied under fully partitioned data access.

• Experiments conducted for low, medium and high local 

contention.
• Up to 23 replicas were used.

.



33

TPC-C

Low	contention

High	contention

Medium	contention



34

Bank

Low	contention

High	contention

Medium	contention



35

Evaluation results

• PXDUR	reaps	the	benefit	of	both	parallelism	

and	speculation	for	low	and	medium	

contention	scenarios.

• For	high	contention	scenarios,	it	still	gives	

good	performance	due	to	speculation.



36

Conclusion

• Contributions:

– PXDUR

– TSAsR

– Verified	Jpaxos

• Significant	performance	improvement.

• Ease	of	usability.

• Improved	performance	scalability	with	the	

increase	in	cores.


