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Transactional Systems

• Back end - online services.

• Usually backed by one or more Database 
Management Systems (DBMS).

• Support multithreaded operations.

• Require concurrency control.

• Employ transactions to execute user requests.

• Transactions – Unit of atomic operation.
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Replication in services

• Replication	– Increased	availability,	fault	

tolerance.

• Service	replicated	on	a	set	of	server	replicas.

• Distributed	algorithms	– Co-ordination	among	

distributed	servers.

• State	Machine	Replication	(SMR)	–

– All	replicated	servers	run	command	in	a	common	

sequence.	

– All	replicas	follow	the	same	sequence	of	states.
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Distributed Transactional Systems

• Distributed system:
– Service running on multiple servers (replicas).
– Data replication (full or partial).
– Transactional systems - support multithreading.

• Deferred Update Replication (DUR):
– A method to deploy a replicated service.
– Transactions run locally, followed by ordering and certification.

• Fully partitioned data access:
– A method to scale the performance of DUR based systems.

– No remote conflicts.
– The environment studied here.

• Bottlenecks in fully-partitioned DUR systems:
– Local conflicts among application threads.
– Rate of certification post total order establishment.
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SMR algorithms

• Distributed	algorithms:

– Backbone	of	replicated	services.

– Based	on	State	Machine	Replication	(SMR).

• Optimization	of	SMR	algorithm:

– Potential	of	huge	benefits.

– Involve	high	verification	cost.

• Existing	methods	to	ease	verification:

– Functional	languages	lending	easily	to	verification	–

EventML,	Verdi.

– Frameworks	for	automated	verification	– PSYNC.	

• Modeled	algorithms	- low	performance.
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Centralized Database 
Management Systems

• Centralized	DBMS:

– are	standalone	systems.

– Employ	transactions	for	DBMS	access.

– Support	multithreading	- exploit	multicore	hardware	

platforms.

• Concurrency	control:

– Prevent	inconsistent	behavior.

– Serializability - Gold	standard	isolation	level.

• Eager-locking	protocols:	

– Used	to	enforce	serializability.

– Too	conservative	for	many	applications.

– Scale	poorly	with	increase	in	concurrency.
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Motivation for Transactional 
Systems Research

Problems
• Alleviate local contention in distributed servers(DUR based) 

through speculation and parallelism.
• Low scalability of centralized DBMS with increased 

parallelism.
• Lack of high performance SMR algorithms which lend 

themselves easily to formal verification.

Research Goals
• Broad: Improve system performance while ensuring ease of 

deployment. 
• Thesis: Three contributions – PXDUR, TSAsR and Verified 

JPaxos.
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Research Contributions

• PXDUR:
– DUR	based	systems	suffer	from	local	contention	and	limited	by	
committer’s	performance.

– Speculation	can	reduce	local	contention.

– Parallel	speculation	improves	performance.

– Commit	optimization	provides	added	benefit.

• TSAsR :
– Serializability:	Transactions	operate	in	isolation.
– Too	conservative	requirement	for	many	applications.

– Ensure	serializability using	additional	meta-data	while	keeping	
the	system’s	default	isolation	relaxed.
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Research Contributions

• Verified JPaxos
– SMR	based	algorithms	not	easy	to	verify.

– Algorithms	produced	by	existing	verification	frameworks	

perform	poorly.

– JPaxos based	run-time	for	easy	to	verify	Multipaxos algorithm,	

generated	from	HOL	specification.	
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PXDUR : Related Work

• DUR	:

– Introduced	as	an	alternative	to	immediate	update	

synchronization.

• SDUR:

– Introduces	the	idea	of	using	fully	partitioned	data	access.

– Significant	improvement	in	performance.

• Conflict	aware	load	balancing:

– Reduce	local	contention	by	putting	grouping	conflicting	

requests	on	replicas.

• XDUR	:

– Alleviate	local	contention	by	speculative	forwarding.
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Fully Partitioned Data Access
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Deferred Update Replication
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Deferred Update Replication

Global	Ordering	Phase
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Deferred Update Replication

Certification	Phase:
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Deferred Update Replication

Remote	conflicts	in	DUR:
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Deferred Update Replication

Remote	conflicts	in	DUR:
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Deferred	Update	Replication

Fully	partitioned	data	access:
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Bottlenecks in fully partitioned DUR 
systems

• Fully	partitioned	access	- Prevents	remote	

conflicts.

• Other	factors	which	limit	performance:

– Local	contention	among	application	threads.

– Rate	of	post	total-order	certification.
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PXDUR

• PXDUR	or	Parallel	XDUR.

• Addresses	local	contention	through	

speculation.

• Allows	speculation	to	happen	in	parallel:

– Improvement	in	performance.

– Flexibility	in	deployment.

• Optimizes	the	commit	phase:

– Skip	the	read-set	validation	phase,	when	safe.
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PXDUR Overview
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Reducing local contention

• Speculative	forwarding	:	Inherited	from	XDUR.

• Active	transactions	- Read	from	the	snapshot	

generated	by	completed	local	transactions,	

awaiting	global	order.

• Ordering	protocol	respects	the	local	order:

– Transactions	are	submitted	in	batches	respecting	

the	local	order.	
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Local	contention	in	DUR
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Local	contention	in	DUR
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Speculation	in	PXDUR
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Speculation	in	PXDUR
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Speculation in parallel

• Concurrent	transactions	speculate	in	parallel.

• Concurrency	control	employed	to	prevent	

inconsistent	behavior:

– Extra	meta-data	added	to	objects.

• Transactions:

– Start	in	parallel.

– Commit	in	order.

• Allows	for	scaling	of	single	thread	XDUR.	
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Commit Optimization

• Fully	partitioned	data	access:	

– Transactions	never	abort	during	final	certification.

• We	use	this	observation	to	optimize	the	

commit	phase.

• If	a	transaction	does	not	expect	conflict:	

– Skip	the	read-set	validation	phase	of	the	final	

commit.
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Commit Optimization

• Array	of	contention	maps	present	on	each	replica:

– Each	array	entry	corresponds	to	one	replica.

– Contention	maps	contain	the	object	IDs	which	are	

suspected	to	cause	conflicts.

• A	transaction	cannot	skip	the	read-set	validation	if:

– It	performed	cross-partitioned	access.

– The	contention	map	corresponding	to	its	replica	of	

origination	is	not	empty.

• Contention	maps	fill	when:

– A	transaction	doing	cross-partition	access	commits.

– A	local	transaction	aborts.



30

Commit Optimization
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Commit Optimization
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Evaluation Results

PRObE Cluster.
AMD Opteron, 64 core, 2.1 GHz CPU.

128 GB of memory, 40Gb Ethernet.

Benchmarks: Bank, TPC-C.

Configuration:

• Each benchmark studied under fully partitioned data access.

• Experiments conducted for low, medium and high local 

contention.
• Up to 23 replicas were used.

.
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TPC-C
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Evaluation results

• PXDUR	reaps	the	benefit	of	both	parallelism	

and	speculation	for	low	and	medium	

contention	scenarios.

• For	high	contention	scenarios,	it	still	gives	

good	performance	due	to	speculation.
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Conclusion

• Contributions:

– PXDUR

– TSAsR

– Verified	Jpaxos

• Significant	performance	improvement.

• Ease	of	usability.

• Improved	performance	scalability	with	the	

increase	in	cores.


