L ads b ALl aii (A 2. o) A

ystems 1 Slatbo] | ok frossexob/axse
| Oftware > i ... ; d /0 .° ik
L.....; !{esearch Gropp ;. 24710 — elease sock+Ox1]

Improving Performance of Highly-Programmable

Concurrent Applications by Leveraging Parallel
Nesting and Weaker Isolation Levels

Thesis Defense—Master of Science
Duane Niles

Advisor: Binoy Ravindran
Systems Software Research Group
Virginia Tech

CCC uuwmumus . o ¥ VirginiaTech

nt the Futur

Overview

* Introduction
 Motivation

 Contributions
— SPCN
— AsR

 SPCN (Speculative Parallel Closed Nesting)
— Strict
— Relaxed

« Experimental Results
 Conclusions

Sggsvr?rse 2 lVlrglmaTech

Research Group nt the Futur

Computer Hardware

 Multi-core architectures became focus after the turn
of the century

Memory Controller

€ ..
gg%txezv?rse 3 @ VirginiaTech

Research Group Invent the Future

Concurrent Programming

* New design paradigm — Parallelism
 Many approaches not designed for sharing data
— E.g., MPI with separate, unique processes

* Require other forms to fully split one application
— Most common: Lock-based Synchronization

Sggsvr?rse 4 3 VlrglmaTech

eeeeee h Group nt the Futur

Concurrency with Locks

. public boolean add(int item) { public boolean add(int item) {
Coarse-grained: Node pred, curr head lock();
lock.lock(); Node pred = head;

' try { try {
S I m p I e r, b Ut Va Stly pred = head; Node curr = pred.next;
. . curr = pred.next; curr.lock();
I n effl Cl e nt while (curr.val < item) { try {

pred = curr; while (currval < item) {
F . . d curr = curr.next; pred.unlock();
- : } pred = curr;
I ne g ra I ne if (item == currval) { curr = curr.next;

curr.lock();

Great performance, | o flse :

Node node = new Node(item) ' (currkey == key) {

d Iffl CU It tO p rOg ra m node.next = curr; }return false;

red.next = node; .
ll?eturn e Node newNode = new Node(item);

Challenging to compose) reine: - oo

without low-level jfodeumiec al

) curr.unlock();

information (e.g., Yl

| pred.unlock();
deadlock, livelock, etc.) i

tem I
Sg%t\?vase 5 @ VirginiaTech

Research Group Invent the Future

Concurrency with Transactions

* Originated from database systems
* Atomic operation, speculative public boolean add(int em)

Node ‘pred. curr;
» Transaction context holds the data ‘=
while (curr.val < item) {

 Programmable like coarse-grained pred = curr;

curr = curr.next;

IOCki ng i}f (item =f:| CL'Jrr.vaI) {
« Aimed towards fine-grained ! Node node = new Nodefiem);
. , node.next = curr;
locking’s performance predne = node
. . }
» Easily composable — Nesting)
SZEESV?EG 6 W VirginiaTech

eeeeee h Group Invent the Future

Motivation for Transaction Research

Problems
* Trade-off between programmability and generality
* Unable to utilize internal program knowledge

Research Goals

 Broad: Enhance performance while keeping
programmability the same

* Thesis: Two approaches — SPCN and AsR

Sg%gvn;ﬁe 7 3 VlrglmaTech

Researc h Group nt the Futur

Research Contributions

« SPCN: Speculative Parallel Closed Nesting
— Composed transactions are typically sequential
— Parallelization can allow internal conflicts
— Automatic processing improves the performance

« AsR: As-Serializable Transactions

— Serializability: ordered synchronization of transactions
(as if they were sequentially operated)

— Too strict of a requirement in many systems

— Keep application serializable while detecting
Inconsistencies with meta-data; relax the system itself

Sggx(?vn;ﬁe 8 @ VirginiaTech

Researc h Group Invent the Future

Nested Transactions

atomic A {
atomic B1 {
write(x)
read(y)

}...

atomic B2 {
read (x)
read(z)

}...

atomic B3 {
write(y)
write(z)
commit()
}
}

ystems
oftware

Research Group

@ VirginiaTech

Invent the Future

Nested Transactions

atomic A {
atomic B1 {
write(x)
read(y)

}...

atomic B2 {
read(x)
read(z)

}...

atomic B3 {
write(y)
write(z)
commit()
}
}

tem I
ngtsvarse 10 @ VirginiaTech

Research Group Invent the Future

oo Parent

Nested Transactions

atomic A {

! atomic B1 {
write(x)
read(y)

}...

atomic B2 {
read(x)

E read(z)

Parent

}...

atomic B3 {
write(y)
write(z)
commit()

}

tem I
ngtsvarse 1 @ VirginiaTech

Research Group Invent the Future

Sequential Nesting

Parent

atomic A {

! atomic B1 {
write(x)
read(y)

}...

atomic B2 {
read (x)

E read(z)

O
Q
)
v
Q
P

}...

atomic B3 {
write(y)
write(z)
commit()
}
}

— Ve~ B | >

B3

S

stems

ortware
Research Group

12

@ VirginiaTech

Invent the Future

Sequential Nesting

* Flat: No proper nesting (single-level transaction)

« Closed: Transactions operate piece-by-piece (able
to restart with some completed work)

* Open: Optimistic; nested transactions commit
early—must be undone later if conflicting (using
abstract locks)

SY%temS . @VlrglmaTech

ortware
Researc h Group nt the Futur

Parallel Nesting

Parent

atomic A {

O
Q
)
v
Q
P

}

atomic B1 {
write(x)
read(y)

}...

atomic B2 {
read(x)
read(z)

}...

atomic B3 {
write(y)
write(z)
commit()

}

——

B1

A

ﬂ

B3

ystems

oftware
Research Group

14

@ VirginiaTech

Invent the Future

SPCN: Speculative Parallel Closed Nesting

* Pessimism of closed nesting—no early commit
« Enforces order of operation

« Two versions
— Strict: Hard boundary of commits; lighter processing
— Relaxed: Out-of-order commits; more meta-data

€
ngtsvr?rse 15 @ VirginiaTech

eeeeee h Group Invent the Future

External Transaction Processing

« Store operations with read-set and write-set
* Abort if conflicts occur during locking or validation

 Validation utilized for correctness; varies per system
(e.g., eager-locking, lazy validation, etc.)

* Correct validation allows commit
— Make updates public and release locks

 Different contention schemes process conflicts in
other manners

Sggx(?vn;ﬁe 16 @ VirginiaTech

eeeeee h Group Invent the Future

SPCN Strict

Total order on nested transactions

Futures: Scala primitive to allocate sub-transactions
Validation performed after all previous siblings
Write-After-Read: Conflict of sibling transactions

A (the root) begins all transactions, and A finishes all of them.

I
A B1F»{B2 —»{B3
|

Sggsvr?rse 17 @ VirginiaTech

eeeeee h Group Invent the Future

SPCN Strict

I atomic A .

e BL{ Order of Operation

i 85 write(x) All :

{ ! read(y) ° sub-transactions start

I Q! :

=y B1 commits (no errors)

i a:z:ggx‘;“ « B2 detects conflict—aborts,
Sl read(2) restarts (immediate commit)
S « B3 commits (no errors)

! atomic B3 {

i write(y)

i write(z)

i commit()

)

)

Sggsvr?rse I8 @ VirginiaTech

Research Group Invent the Future

SPCN Strict — Good Example

for (k <- 1 to lines.length) {
atomic { implicit txn =>

// Parse order line.
val ol = lines(k)

val item = Hyflow.diropen|[Tpccltem](Name.l(ol))

// Get item info.

val I_PRICE = item.I_PRICE()
val _NAME = item.I_ NAME()
val _DATA = item.I_DATA()

// Get stock info.

RS WS Prev
[tem 1 Empty Empty
Item 2| | Empty T,
[tem N

Empty | | Ty

* Transactions used to create parts of

an order—easily split the work

S

stems

ortware
Research Group

19

@ VirginiaTech

Invent the Future

SPCN Strict — Bad Example

Root Transaction

I I I 1 « Strict delays the short

read (x)

read(y)
write(X)
read(z)
write(z)

read(a)
read(b)
write(c)

read(a)
read(c)
write(d)

write(x)
read(d)

sub-transactions

 Conflicts are resolved
slowly after the first
sub-transaction

ystems
oftware

Research Group

20

@ VirginiaTech

Invent the Future

SPCN Relaxed — Good Example

Root Transaction

£ I I 1 * Allow them to work in

read(y | | F24@ | read@) | a different order
read(y) Vr\,el.?fe(g:)) Vf,i?ti((% read(d) | * Relaxed can process

write(X) the later transactions
read(z) while the first runs
write(z)

tem I
%Xﬁﬁvaﬁe 21 @ VirginiaTech

Research Group Invent the Future

SPCN Relaxed

Allows early completion (after validation)

» Requires multi-versioned data

ReadHash: Track visible reads of sub-transactions
VerTree: Track multiple versions via AVL Tree

o

@/ \@ / \
9

€ . .
ngtsvr?rse 2 VirginiaTech

Researc h Group Invent the Future

SPCN Relaxed

I atomic A .
e BL{ Order of Operation
585 write(x) . Al b-t f tart
4! read(y) sub-transactions star
i i ey
2 « Can commitin any order
| atomic B2 « If B2 commits before B1:

oy read(x)

o read(z) — B1 signals conflict

e) — B2’s data is removed
i atomic B3 { — B2 is restarted
: write(y) _ .
i write(2) * B3 can commit with no
commito problems
)

Sggsvr?rse 23 @ VirginiaTech

Research Group Invent the Future

Experimental Results

Amazon EC2 Cluster
« Up to 20 ¢3.8xlarge nodes

Intel Xeon E5-2680 v2 (lvy Bridge) processors
32 vCPU, 60 GB of memory

« Benchmarks: Bank, TPC-C, STMBench7, YCSB

€
ngtsvr?rse 2 3 VlrglmaTech

Researc h Group nt the Futur

TPC-C: Scalability

2000
1800
1600
1400
1200
1000 w
800
600
400
200

—&—Closed (0% Local)

—@-—Strict (0% Local)

-——--:';----;g

-~ Closed (25% Local)

Throughput (txn/s)

=M= Strict (25% Local)

2 4 6 8 10 12 14 16 18 20
Nodes

8 threads per node. Varying locality of operations.

tem I
Sg%tsvarse 25 @ VirginiaTech

Research Group Invent the Future

TPC-C: Read-Only

2500
—&—Closed (4 sub)
0
E =@-Strict (4 sub)
'!5:'_ —@—Relaxed (4 sub)
0
3 -~ Closed (8 sub)
<
= == Strict (8 sub)
0 -~ Relaxed (8 sub)
2 4 6 8
Threads Per Node
10 nodes. Varying number of sub-transactions.
tem e e
Sfeware 2 @ VirginiaTech

Research Group Invent the Future

Bank: Scalability

8000

7000 =@—Closed (20%)
— 6000 —@—Strict (20%)
S~
g 5000 ~@—Relaxed (20%)
§_ 4000 B Closed (50%)
< == Strict (50%)
% 3000
o -~ Relaxed (50%)
= 2000 -+ Closed (80%)

1000 . Strict (80%)

0 -«A-- Relaxed (80%)
2 4 6 8 10 12 14 16 18 20
Nodes

500k accounts. 8 threads per node. 8 operations per transaction.

ystems

oftware 27 @ VirginiaTech

Research Group Invent the Future

Bank and YCSB: Contention

M Bank (50%)
[YCSB (20%)

2 4 8 12
Threads Per Node

20 nodes.

tem .
gg%txezvarse 28 @ VirginiaTech

Invent the Future

Research Group

Conclusions

 Contributions
— SPCN
— AsR

» Large performance increases
» Great accessibility for developers
* Improved parallelism for multi-core systems

Thank you for your time!
Any questions?

€
ngtsvr?rse 29 @ VirginiaTech

eeeeee h Group Invent the Future

