
Thesis Defense—Master of Science 

Sean Moore 
 

Advisor: Binoy Ravindran 

Systems Software Research Group 

Virginia Tech 

Mutex Locking versus Hardware Transactional 
Memory: An Experimental Evaluation 



2 

Multiprocessing - the Future is Now 

• Processors with multiple cores are widely available. 

• CPU improvements aiding serial performance has 

largely ceased. 



3 

Motivation 

• PARSEC’s fluidanimate 

– Smoothed Particle Hydrodynamics for animation 

• Fine-grained Futex: complex, fast 

• Global Futex: simple, slow (~6.62x slower) 

• Global Fallback HTM: simple, quick (~1.16x slower) 

 Configuration (at 8 threads) Region-of-Interest Duration (s) 

Fine-grained Futex 69.1243 

Global Futex 457.904 

Fine-grained HTM 76.3357 

Global HTM 79.861 



4 

Contributions 

• Global locking glibc 

– Available under open source 

• Global lock fallback HTM is competitive with fine-

grained futex 

– 23 applications 

– No source code modification necessary 

• Describe lock cascade failure 



5 

Background: Mutex Locks 

• Acquire and release semantics 

– Critical sections 

– Blocks thread process on contention 

– Pessimistic, mutually exclusive access 

• Does not directly protect data 

– Protect data, not code 

• Constrains race conditions which may cause 

inconsistent state 



6 

Background: Race Conditions 

• Two threads increment a variable 

– No synchronization: lost increments 

– Synchronization: no lost increments 

• What if b were a dereference? 

– How does b need to be protected? 

– Does locking b’s mutex violate a lock 

ordering scheme? 

c = b 

c = c+1 

b = c 

lock(a) 

c = b 

c = c+1 

b = c 

unlock(a) 

Potential Data Race 

Removed Data Race 



7 

Background: Livelock and Deadlock 

• Deadlock 

– N≥1 threads eventually depend on themselves 

progressing to progress 

– Lock ordering scheme (DAG) 

• May require acquisition in an inefficient order 

• Livelock 

– N≥1 threads perform work but cannot ultimately progress 

– Lock ordering schema circumvented with trylock+rollback 

– Complex analysis (see thesis for extended example) 

• Efficient to program? Efficient to maintain? 



8 

Background: Transactional Memory 

• Begin and commit semantics 

– Atomic sections 

– Does not necessarily block thread progress on contention 

– Optimistic, allows mutually shared access 

• Directly Protects Data 

– Read-sets and write-sets 

• Redo work when race conditions are detected 



9 

Background: Fallback Locks 

• STM and (best-effort-only) HTM 

– Intel’s Restricted Transactional Memory (RTM) 

• Best-effort-only cannot guarantee completion 

– Various abort causes plus true conflicts 

• HTM fallback onto futex locks 

• Elision-Fallback Path Coherence 

– Eager subscription 

– Lazy subscription 



10 

Related Work: C++ Draft TM in GCC 

• Proposal to add TM to C++ language 

– Implements syntactic atomic sections 

• Acts as if guarded by a global lock 

• Requires source code modifications 

• Neither STM nor HTM-specific 

– Duplicated functions for instrumentation 

 



11 

Related Work: TM memcached 

• Ruan et al. converted memcached for C++ TM 

– Convert critical sections to atomic sections 

– Modify condition synchronization 

– Replace atomic and volatile variables 

• Concluded that incremental transactionalization is 

not generally likely 

• Logically simple C library functions incur irrevocable 

serialization 

– String length 



12 

Related Work: glibc RTM 

• GNU C Library (glibc) implements elision locking 

– Intel RTM with fine-grained futex fallbacks 

• Attempts outermost transaction 3 times 

– Except for trylocks, only tries once 

• No anti-lemming effect code 

• Transaction backoff with a no-retry abort 

– Acquire lock at least 3 times before eliding again 

 



13 

glibc Library: Global Lock 

• Added support for a library-private global lock 

• Transparently substitutes global lock in-library 

• Recursive locking 
– Acquire lock a then b, must be recursive when reduced 

– Recursion counter is allocated thread-local 

• Full function called only when recursion counter is 0 
– Acquire succeeds immediately when non-0 



14 

glibc Library: Statistics Gathering 

• Statistics structures initialized/updated efficiently 

– Done on thread’s first interaction with a lock 

– Statistics tracked per-thread combined near program exit 

– Initialized wait-free 

• Tracks: 

– Flat xbegin and xend 

– Time spent on aborted and successful transactions 

– Occurrences of abort codes (including trylock aborts) 



15 

glibc Library: Semantic Differences 

• Deadlock introduction and hiding 

– Fine-grained deadlocks may disappear with a global lock 

• Communicating critical sections 

– Explicit synchronization may deadlock without locks 

• Empty critical sections 

– May impede progress via global lock semantics 

• Time spent in synchronized sections 

– May be higher for elision than mutexes 



16 

Lock Cascade Failure 

• glibc associates tries with the lock only 

– Tries are not associated with the thread 

– Elision backoff does not carry between mutexes 

• Quadratic amount of work for a linear task 

– Occurs under a reliable abort and multiple transactions 

– Outermost atomic section repeatedly peeled off 

• Bounded by: 

– MAX_RTM_NEST_COUNT=7 (see thesis for detection) 

– Periodic aborts 



17 

Lock Cascade Failure 



18 

Results: Experimental Setup 

• Hardware 

– Haswell 64-bit x86 i7-4770, 3.40GHz 

– 8 Hyper-thread CPUs, 4 cores, 1 socket, 1 NUMA zone 

– 16GiB memory 

– 32KB L1d, 256KB L2, 8192KB L3 cache 

– MAX_RTM_NEST_COUNT=7 

• Software 

– glibc version 2.19, compiled with -O2 

– g++ version 4.9.2 

– Ubuntu 14.04 LTS, Linux 3.13.0-63-generic 



19 

Results: memcached 

• In-memory object cache 
– Capable of distributed caching 

– Meant to relieve processing done by web databases 

• Setup 
– memcached version 1.4.24 

– memslap from libmemcached-1.0.18 

• Notable synchronization methods 
– Nested trylocks 

– Condition variables 

– Hanging atomic sections 



20 

Results: memcached 

Region-of-Interest 

Lower is 
better 



21 

Results: PARSEC and SPLASH-2x 

• Suites of parallel programs (22 programs used) 

– PARSEC 3.0: general programs 

– SPLASH-2x : high-performance computing 

• According to SPLASH-2x’s authors: PARSEC and 

SPLASH-2 complement each other 

– Diverse cache miss rate 

– Working set size 

– Instruction distribution 



22 

Results: PARSEC and SPLASH-2x 

Region-of-Interest 

futex-fine 
baseline 

Higher is 
better 



23 

Results: dedup, fluidanimate and 

Other Trends 

• PARSEC: dedup 

– Slowdown for global futex and global fallback HTM 

– Despite ~½ transactions committing 

• PARSEC: fluidanimate 

– Slowdown for global futex, less so for global fallback HTM 

– Significant time spent in committed transactions 

• General Trends 

– Very few programs spend significant time in transactions 

– Generally very little change in performance 



24 

Conclusion 

• Global lock fallback HTM competes with fine-grained 

locking in a large majority of cases. 

• Global locking is largely simplified over fine-grained 

locking 

– HTM makes it more competitive 

• Introduced lock cascade failure 

• Provide a method to easily experiment with HTM 

and global locking in real word applications 



25 

Question and Answer 

 

 

 

Questions? 

 

 

 

Thank You 


