
On Partial Aborts and Reducing
Validation Costs in Fault-tolerant
Distributed Transactional Memory

Committee Members:

Binoy Ravindran, Co-Chair

Eli Tilevich, Co-Chair

Wu-chun Feng

Presented by Aditya Dhoke

 09/04/2013

2

Thesis Contribution

● Implemented Java-based quorum replication framework, QR-DTM

● We present protocols for supporting partial aborts in fault-tolerant

 DTM, QR-CN and QR-CHK.

● QR-ACN, a framework for automating closed nesting in DTM

● We present three protocols for reducing validation cost in DTM

 QR-ON, QR-OON, and QR-ER.

3

Concurrency

● CPU clock speeds
 are increasing

● Speedup limited
 by sequential code

● Parallelize applications

● Hardware capability

 Multiprocessor programming is tough!!!

4

Lock-based Concurrency
Control

● Coarse grained locking

● Programming simple

● No concurrency

● Performance similar to

 serial execution

5

Lock-based Concurrency
Control

● Fine grained locking

● Better parallelism

● Difficult to program

● Problems
● Deadlocks
● Livelocks
● Priority inversion
● Not Composable

6

Transactional Memory (TM)

● Similar to database transactions

● Atomicity, Consistency, Isolation

● Easy to program

● Composability

7

How does TM work?

● Optimistic execution

● Transactions log changes to shared objects in read-set and write-set

● Validate objects to detect read/write & write/write conflicts

● Two transactions conflict, one of them is aborted, other is committed.

● Aborted transaction roll-back the changes and restarts

8

TM Performance

● Comparable to fine-grained locking

 McRT-STM [61]

9

TM is Gaining Traction

● Hardware TM

● Oracle, AMD and Intel have released hardware with HTM support

● Software TM

● GCC - Language extension for STM support

● Intel – C++ compiler with STM support

● Hybrid TM

● STM + best-effort HTM

10

 Distributed Transactional
 Memory (DTM)

● Extension of TM in distributed systems

● Classification based on system architecture :

● Cache Coherent (cc) DTM – metric space communication

● Cluster DTM – local and remote cluster

● Classification based on execution model :

● Data Flow: Transactions immobile, objects migrate

● Control Flow: Objects immobile, transactions invoke RPC

11

 Distributed Transactional
 Memory (DTM)

● Durability by persistence in databases

● DTM has replication strategies

● Partial Replication

● Full Replication

● Synchronization among replicas

● Atomic Broadcast – Non-scalable

● Quorum-based replication uses Multicast

We consider cc DTM with full replication, quorum-based replication

12

Partial Transactional Abort

● Traditional TM's conservative approach (Flat nesting)

● Conflict in later part, earlier part is conflict-free

● Still rollback entire transaction !!!

● Incur computation cost and remote calls

● Partially rollback till conflict-free and resume execution

● Suited for replicated systems, where operations are costly

13

Problem Definition

● What application workload will benefit from partial abort, as compared
 to flat nesting?

● What is the potential performance improvement or degradation due to
 partial abort?

● Which parameters of a transaction will affect partial abort’s
performance?

● How should the transaction code be transformed to obtain maximum
 benefits from partial abort?

In context of fault-tolerant DTM

14

Thesis Solutions:
 Partial Rollback

● Closed Nesting (QR-CN)

● Transaction consists of multiple inner closed nested transactions
● Inner transactions commit locally
● Abort independently of outer transaction

● Checkpointing (QR-CHK)

● Checkpoints created by saving transactional execution state
● Partially rollback to resolve conflict and resume execution

● Automated Nesting (QR-ACN)

● Dynamically determine contention
● Compose closed nested transactions

15

Reducing Validation Costs

● False conflict

● Independent high-level operations, conflict at low-level

● High-level: Add element to set, Low-level: Add object to sorted list

● Performance degradation especially in fault-tolerant DTM

● Reduce validation cost approach to resolve false conflicts

● Commit sub-transactions to expose partial changes

● Selectively drop read-set objects

16

Problem Definition

• What is the performance improvement that can be obtained by

 reducing the validation cost?

• Which approach has the least performance degradation with

 increasing number of operations within a transaction?

• What applications are most suited for what validation cost reduction

 approaches?

17

Thesis Solution:
Reducing Validation Costs

● Open Nesting (QR-ON)

● Inner transactions commit globally
● Objects released, not validated during commit

● Optimistic Open Nesting (QR-OON)

● Commit phase cost, make non-blocking commit
● Next transaction executes speculatively

● Early Release (QR-ER)

● Release objects that do not affect transaction semantics
● Suited for transactional data structures

18

Thesis Contribution

● Evaluation of QR-CN and QR-CHK. QR-CN improves throughput by 53%

 over flat nesting.

 “On Closed Nesting and Checkpointing in Fault-tolerant DTM”, IPDPS 2013

● QR-ACN, an automated closed nesting framework, improves performance by

 51% over flat nesting

“Automated Closed Nested Transactions in DTM” (To be submitted in CGO 2014)

● Evaluation of QR-ON, QR-OON, and QR-ER show QR-ER outperforms
 QR-ON and QR-OON by up to 10x

 “On Reducing Validation Costs in DTM” (To be submitted in IPDPS 2014)

●

19

Quroum-based Replication
(QR-DTM)

● Logical Ternary Tree

● Read quorum : Majority at a level ---> read/write requests

● Write quorum : Majority at all levels ---> commit requests

● Read and write quorum always intersect

20

Quorum Nodes in QR-DTM

21

QR-CN: Closed Nesting in
QR-DTM

T1

Read O1 Read O2

Quorum Node

 Incremental Validation
 If (success)

Return Obj
Else
 Abort Inner/Outer

Obj O1 Abort inner

T2

22

QR-CN: Commit Operation

● Inner transaction commit :

● Merge read and write set with outer transaction

● Incremental validation ensures that data-set is valid at commit time

● Outer transaction commit:

● Commit using write quorum

23

QR-CHK:
Checkpointing in QR-DTM

● Transaction (client node) creates checkpoint locally for every read

● Remote node :

● Validates the data-set

● Records the checkpoint ID for each read

● On conflict

● Finds checkpoint ID that has all its objects valid

● Transaction rolls back to ID and resumes

24

QR-ACN: Automated Closed Nesting
in QR-DTM

● Easy programmability in TM

● Performance Improvement from Closed Nesting

● Automation can achieve both!

● Closed nesting effective when transactions access high contention

 objects later in execution

● Determine the contention of objects

● Move high contention objects towards commit

25

QR-ACN: Code for Bank Transaction

26

Experimental Evaluation

● Benchmarks

● Bank, Hashmap, RBTree, SkipList, Vacation (STAMP), TPC-C

● Experimental Setup

● Each node is running AMD Opteron processor on Linux 10.04

● Each node assigned same read and write quorum

● Testbed consisted of 40 quorum nodes

● Up to 30 clients

27

Evaluation of Partial Abort Protocols

Bank Benchmark

28

TPC-C: QR-ACN versus QR-DTM

% Throughput Improvement for Payment

29

Conclusion: Partial Abort

● Closed nesting best applies for applications with high contention

● Performance of closed nesting increases with increase in the level of

 contention and transaction length

● Automated closed nesting is best suited for applications where

 workload changes during run-time

● Checkpointing has performance degradation

30

QR-ON: Open Nesting in QR-
DTM

● Client Node

● Acquire abstract lock to protect change

● Commit inner transaction globally

● On abort, compensation for already committed transactions

● Remote Node

● Manage abstract locks

31

QR-OON: Optimistic Open
Nesting in QR-DTM

● Client Node

● Current inner transaction commits asynchronously

● Next inner transaction reads speculatively

● If current commits, next continues its execution

● If current aborts, abort next too and restart current

● Remote Node

● Same as QR-ON

32

QR-ER: Early Release
in QR-DTM

● Local Node

● Release objects from read-set which will not affect transaction

semantics

● For these objects set flat validate to false

● Validate request only consists of validate objects

● Remote Node

● Same as QR-DTM

33

QR-OON vs QR-ON

Hashmap: % Throughput Improvement over QR-ON

34

QR-ER vs QR-ON
T

hr
ou

gh
pu

t

Hashmap: Variation with #Object and Nested Calls

35

QR-ER vs QR-ON

TPC-C: Variation with Nodes

36

Conclusion: Reduce Validation
Costs

● Open nesting has significant commit overhead

● Optimistic open nesting can outperform open nesting in low

 contention scenarios

● Early release can provide improvement – up to an order of magnitude

– over its open nesting counter-parts

37

Thank you! Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

