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Thesis Contribution

● Implemented Java-based quorum replication framework, QR-DTM

● We present protocols for supporting partial aborts in fault-tolerant

 DTM, QR-CN and QR-CHK.

● QR-ACN, a framework for automating closed nesting in DTM

● We present three protocols for reducing validation cost in DTM

 QR-ON, QR-OON, and QR-ER.
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Concurrency

● CPU clock speeds 
 are increasing

● Speedup limited 
 by sequential code

● Parallelize applications

● Hardware capability

               Multiprocessor programming is tough!!!
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Lock-based Concurrency
Control

● Coarse grained locking

● Programming simple

● No concurrency

● Performance similar to 

 serial execution
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Lock-based Concurrency
Control

● Fine grained locking

● Better parallelism

● Difficult to program 

● Problems
● Deadlocks
● Livelocks
● Priority inversion
● Not Composable
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Transactional Memory (TM)

● Similar to database transactions

● Atomicity, Consistency, Isolation

● Easy to program

● Composability
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How does TM work?

●  Optimistic execution

●  Transactions log changes to shared objects in read-set and write-set

●  Validate objects to detect read/write & write/write conflicts

●  Two transactions conflict, one of them is aborted, other is committed.

●  Aborted transaction roll-back the changes and restarts
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TM Performance

● Comparable to fine-grained locking

                                                McRT-STM [61]  
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TM is Gaining Traction

●  Hardware TM

● Oracle, AMD and Intel have released hardware with HTM support

● Software TM

● GCC - Language extension for STM support

● Intel – C++ compiler with STM support

● Hybrid TM

● STM + best-effort HTM
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    Distributed Transactional 
            Memory (DTM)

● Extension of TM in distributed systems

● Classification based on system architecture :

● Cache Coherent (cc) DTM – metric space communication

● Cluster DTM – local and remote cluster

● Classification based on execution model :

● Data Flow: Transactions immobile, objects migrate

● Control Flow: Objects immobile, transactions invoke RPC
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    Distributed Transactional 
            Memory (DTM)

● Durability by persistence in databases

● DTM has replication strategies

● Partial Replication

● Full Replication

● Synchronization among replicas

● Atomic Broadcast – Non-scalable

● Quorum-based replication uses Multicast

We consider cc DTM with full replication, quorum-based replication
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Partial Transactional Abort

● Traditional TM's conservative approach (Flat nesting)

● Conflict in later part, earlier part is conflict-free

● Still rollback entire transaction !!!

● Incur computation cost and remote calls

● Partially rollback till conflict-free and resume execution

● Suited for replicated systems, where operations are costly
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Problem Definition

● What application workload will benefit from partial abort, as compared
 to flat nesting?

● What is the potential performance improvement or degradation due to
 partial abort? 

● Which parameters of a transaction will affect partial abort’s 
performance?
 

● How should the transaction code be transformed to obtain maximum
 benefits from partial abort?

In context of fault-tolerant DTM
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Thesis Solutions:
 Partial Rollback

●  Closed Nesting (QR-CN)

● Transaction consists of multiple inner closed nested transactions
● Inner transactions commit locally
● Abort independently of outer transaction

●  Checkpointing (QR-CHK) 

● Checkpoints created by saving transactional execution state
● Partially rollback to resolve conflict and resume execution

● Automated Nesting (QR-ACN)

● Dynamically determine contention
● Compose closed nested transactions
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Reducing Validation Costs

● False conflict

● Independent high-level operations, conflict at low-level

● High-level: Add element to set, Low-level: Add object to sorted list

● Performance degradation especially in fault-tolerant DTM

● Reduce validation cost approach to resolve false conflicts

● Commit sub-transactions to expose partial changes

● Selectively drop read-set objects
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Problem Definition

• What is the performance improvement that can be obtained by

  reducing the validation cost?

• Which approach has the least performance degradation with

   increasing number of operations within a transaction?

• What applications are most suited for what validation cost reduction

  approaches?
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Thesis Solution:
Reducing Validation Costs

● Open Nesting (QR-ON)

● Inner transactions commit globally
● Objects released, not validated during commit

● Optimistic Open Nesting (QR-OON)

● Commit phase cost, make non-blocking commit
● Next transaction executes speculatively

● Early Release (QR-ER)

● Release objects that do not affect transaction semantics
● Suited for transactional data structures
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Thesis Contribution

● Evaluation of QR-CN and QR-CHK. QR-CN improves throughput by 53%

 over flat nesting.

 “On Closed Nesting and Checkpointing in Fault-tolerant DTM”, IPDPS 2013

● QR-ACN, an automated closed nesting framework, improves performance by

 51% over flat nesting

“Automated Closed Nested Transactions in DTM” (To be submitted in CGO 2014)

● Evaluation of QR-ON, QR-OON, and QR-ER show QR-ER outperforms 
 QR-ON and QR-OON by up to 10x

 “On Reducing Validation Costs in DTM” (To be submitted in IPDPS 2014)
       

       

●
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Quroum-based Replication
(QR-DTM)

● Logical Ternary Tree

● Read quorum : Majority at a level ---> read/write requests

● Write quorum : Majority at all levels ---> commit requests

● Read and write quorum always intersect
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Quorum Nodes in QR-DTM
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QR-CN: Closed Nesting in 
QR-DTM

 
T1

Read O1 Read O2

Quorum Node

 Incremental Validation
 If (success)

Return Obj
Else
      Abort Inner/Outer

Obj O1 Abort inner

T2
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QR-CN: Commit Operation

● Inner transaction commit :

● Merge read and write set with outer transaction

● Incremental validation ensures that data-set is valid at commit time

● Outer transaction commit:

● Commit using write quorum
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QR-CHK:
Checkpointing in QR-DTM

● Transaction (client node) creates checkpoint locally for every read

● Remote node :

● Validates the data-set

● Records the checkpoint ID for each read

● On conflict

● Finds checkpoint ID that has all its objects valid

● Transaction rolls back to ID and resumes
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QR-ACN: Automated Closed Nesting 
in QR-DTM

● Easy programmability in TM

● Performance Improvement from Closed Nesting

● Automation can achieve both!

● Closed nesting effective when transactions access high contention

 objects later in execution

● Determine the contention of objects

● Move high contention objects towards commit
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QR-ACN: Code for Bank Transaction
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Experimental Evaluation

● Benchmarks

● Bank, Hashmap, RBTree, SkipList, Vacation (STAMP), TPC-C

● Experimental Setup 

● Each node is running AMD Opteron processor on Linux 10.04 

● Each node assigned same read and write quorum

● Testbed consisted of 40 quorum nodes

● Up to 30 clients
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Evaluation of Partial Abort Protocols

Bank Benchmark
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TPC-C: QR-ACN versus QR-DTM

% Throughput Improvement for Payment
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Conclusion: Partial Abort

● Closed nesting best applies for applications with high contention

● Performance of closed nesting increases with increase in the level of

 contention and transaction length

● Automated closed nesting is best suited for applications where

 workload changes during run-time

● Checkpointing has performance degradation
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QR-ON: Open Nesting in QR-
DTM

● Client Node

● Acquire abstract lock to protect change

● Commit inner transaction globally

● On abort, compensation for already committed transactions

● Remote Node

● Manage abstract locks
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QR-OON: Optimistic Open 
Nesting in QR-DTM

● Client Node

● Current inner transaction commits asynchronously

● Next inner transaction reads speculatively

● If current commits, next continues its execution

● If current aborts, abort next too and restart current

● Remote Node

● Same as QR-ON



32

QR-ER: Early Release
in QR-DTM

● Local Node

● Release objects from read-set which will not affect transaction 

semantics

● For these objects set flat validate to false

● Validate request only consists of validate objects

● Remote Node

● Same as QR-DTM
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QR-OON vs QR-ON 

Hashmap: % Throughput Improvement over QR-ON
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QR-ER vs QR-ON
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Hashmap: Variation with #Object and Nested Calls



35

QR-ER vs QR-ON

TPC-C: Variation with Nodes
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Conclusion: Reduce Validation 
Costs

● Open nesting has significant commit overhead

 

● Optimistic open nesting can outperform open nesting in low

 contention scenarios

● Early release can provide improvement – up to an order of magnitude

– over its open nesting counter-parts
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Thank you! Questions?
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