F’ ystems Slefbs] sk freesOxb/ox126
oYoftware oeTcl] 7 ~raw spin_unlock irare

L Resegr_cl’l‘G'r_lq}J_p 0 i cace <ocktl

Enhancing Concurrency in Distributed

Transactional Memory through
Commutativity

Junwhan Kim, Roberto Palmieri, Binoy Ravindran

Virginia Tech
USA

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Lock-based concurrency control
has serious drawbacks

o Coarse grained locking

public boolean add(int item) {

o Simple Node pred, curr;
lock.lock();
o But no concurrency try {
pred = head;

curr = pred.next;

while (curr.val < item) {
pred = curr;
curr = curr.next;

}

if (item == currval) {
return false;

} else {
-_>- é-ﬁ,--é Node node = new Node(item);
node.next = curr;

pred.next = node;
return true;

}

} finally {
lock.unlock();

}

}

___|
19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Fine-grained locking is better,
but...

o Excellent performance
a Poor programmability

o Lock problems don’t go
away!
o Deadlocks, livelocks,
lock-convoying, priority
inversion,....

o Most significant difficulty —
composition

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

public boolean add(int item) {
head.lock();
Node pred = head;
try {
Node curr = pred.next;
curr.lock();
try {
while (currval < item) {
pred.unlock();
pred = curr;
curr = curr.next;
curr.lock();
}
if (currkey == key) {
return false;
}
Node newNode = new Node(item);
newNode.next = curr;
pred.next = newNode;
return true;
} finally {
curr.unlock();
}
} finally {
pred.unlock();
}
}

Transactional memory

Like database transactions

public boolean add(int item) {

ACI properties (no D) Node pred, curr;

atomic {

Q
Q
o Easier to program pred = head;
Q

curr = pred.next;
Composable while (currval < item) {
pred = curr,

CUrr = curr.next;

o First HTM, then STM. later HyTM ! e == curma) {

return false;
} else {
Node node = new Node(item);
node.next = curr;
pred.next = node;
return true;

}
}

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for
lock-free data structures. ISCA. pp. 289-300.

N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.

___|
19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Optimistic execution yields performance gains at
the simplicity of coarse-grain, but no silver bullet

o High data dependencies

Time Coarse-grained
locking
o lIrrevocable operations
o Interaction between

STM transactions and
/ Fine-grained non-transactions

locking o Conditional waiting

————

‘>
Threads

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP)

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Contention management. Which transaction to abort?

TO T1

X =X + y; x =x / 25;

x X = x / 25;

o Contention manager

o Can cause too many aborts, e.g., when a long running transaction
conflicts with shorter transactions

o An aborted transaction may wait too long

o Transactional scheduler’'s goal: minimize conflicts (e.g., avoid repeated
aborts)

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Distributed TM (or DTM)

o Extends TM to distributed systems
o Nodes interconnected using message passing links

o Execution and network models

o Execution models

> Data flow DTM (DISC 05)
o Transactions are immobile
o Objects migrate to invoking transactions

» Control flow DTM (USENIX 12)
o Objects are immobile
o Transactions move from node to node

o Herlihy’ s metric-space network model (DISC 05)

» Communication delay between every pair of nodes
» Delay depends upon node-to-node distance

1499 ms 9.095 ms 16.613 ms 13.709ms 15.016 ms
1st hop 2nd hop 3rd hop 4th hop Sth hop

> Distance

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Paper’s motivation

How to boost transactions’ processing in DTM

Read/Read Write/Write ‘

No conflict Conflict! |
'

)"

Read/Write o/

conflicts minimized thanks to
the multi-versioning support

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

How?

o How can a concurrency control manager allow write
conflicting transactions to commit concurrently without
affecting isolation/consistency?

Exploiting commutable operations

___|
19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Commutable operations by examples (Data Structures)

Thread1: Insert(2) Thread2: Insert(0)

NON COMMUTABLE

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Commutable operations by examples (Data Structures)

Thread1: Insert(2) Thread2: Insert(5)

1 4 7 9

COMMUTABLE

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Commutable operations by examples (TPC-C)

o New Order transactions: | o New Order Transactions:
o Read: o Write
» Customer, District, > district.D_NEXT_O _ID()
Warehouse, ltem, Stock .
0 ertg: | o Payment Transactions:
» District, Stock a Write
o Payment: > district.D_YTD()
o Read: _
» Warehouse, Customer,
District
o Write:
» Warehouse, Customer,
District

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Paper’ s contribution

o MV-TFA, a multi-versioned version of TFA (Transactional
Forwarding Algorithm) ensuring Snapshot Isolation

o Read transactions don’t abort

o CRF - Commutative Request First: a distributed transactional
scheduler integrated with MV-TFA

o CRF assumes definition of commutable rules by programmer;
o Minimize abort rate
o Increase concurrency
o Increase performance
o Implementation and extensive experimental evaluation
o Comparisons with state-of-the art DTMs
o Experiments for the best tuning of the system

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

MV-TFA READ

NO-T1 N1-OwnerO, N2-OwnerO, N3-T3

my: My

T Read(Oy)
<Object (013) |
< Write(O,)
Obiject (021;
Validate (O,)
OK(021)>
Commit (0,1
CI:I Ow (0,0, O,")
Read (O,) g S
<Object(Ozo)

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

CRF — WRITE without concurrent validations

N1/Owner O,
{[T1XHIT2;X]}

N4/T2

e

\éVrite(OL [X])
Object (011;
Validate (O4)
~OK(©O,)

NO/T1

NON
COMMUTABLE

"Write (O, X)

_Object (O,)

Abort

Restart

Commit (O,)
>

&
~

x

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

o,

CRF — WRITE with concurrent validations

N1/Owner O,
NO/T1 [{THLXITZX] N4/T2
__VVrite(O1,[)§]) / COMMUTABLE

_Object (O,) _

- \éVrite(O1, [Y])

Object (01;

Validate (O)

OK(O,) |

Validate (O,)
. OK(O,)

-

Commit (>O1) ¢
¢) Commit (O,)

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

CRF — WRITE with concurrent validations

N1/Owner O,
NO/T1 [{TEXHIT2;YIHITS; Y]} N5/T3 | COMMUTABLE
_ N4/T2 _
Write (O, [>§]) < Write(O, [Y])
_ Object (O,) — Object (O,) _
< Write(O, [Y]) ” NON
< _ —
Object (Oy) COMMUTABLE
Validate (O,)
~ 0K(0,)
Validate (O) | > Validate (O,)
_ OK(O)) Abort
h Commit (O) ’ x
¢ Commit (O,) Restart
<

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Depth of validation (MaxD)

n Transaction commit phase is N1/Owner O,
stretched depending on the Vp—
concurrent validating transactions NO/T1 [{TEXHIT2XD - NA/T2

a Depth of valldatlon_(Ma{(D): the TWrite (O, [X])
number of transactions involved >
. . . B Object (O,) —
in the validation < Wite(0, V)
Object (OQ
EpOCh of Validation > . Validate (01) ——
> time <
Depth —_— OK(O,) S
T,validates 0,. of Validation Validate (01;
T,validateso,. | OK(O,)
<) >—
T, validates o,. : Commit (>O1)
Commit (O,)
S —

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Epochs

o CRF prioritizes commutable transactions for increasing
concurrency. However adverse schedules can penalize

non-commutable transactions

o CRF defines execution epochs:
o In each epoch, commutative transactions concurrently
participate in validation. In the next epoch, the non-commutative
transactions stored in the scheduling queue restart and validate

o Epoch shift is triggered when MaxD is reached or commitment
process ends

Non-Commutative Non-Commutative

Commutative Epoch Non-commutative Epoch ~ Commutative Epoch

& ~ & ~ &< =
< e < e ~ -

04 > time

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Experiments

o lest-bed:

o Cluster of 10 nodes interconnected by a Gigabit
connection

o Each node equipped with 12 cores

a 2 up to 120 concurrent threads in the system
o Competitors:

o DecentSTM, MV-TFA (without scheduling)
o Benchmarks:

a Micro Benchmarks:
» Linked-List, Skip-list. Both implementation of Commutable Set

o Macro Benchmarks:
» TPC-C. Field-based commutativity

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Finding depth of validation

Transactional Throughput

o Run experiments measuring the performance of the system
varying the depth of validation parameter

-
o
o
o

Transactional Throughput

Threshold Number of Nodes Threshold

Linked List TPC-C
Max Depth = 10 Max Depth =5

Number of Nodes

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Linked List

[
Ut
o
(=)

15007

1500¢

3500 _ Linkedlist(CRE-MV-TFA), 10% Read 3500 __ Linkedlist(MV-TFA), 10% Read 3500 __ Linkedlist(DeentSTM), 10% Read
aa] thread
- 3000f 3000+ 1 3000¢ oo 2 threads
5 w4 threads
22500/ 25007 25007 +-+ 6 threads
5 e - 8 threads
E 20005 2000¢ 20001 =~ % 12 threads |q

Transactional Throughput
Transactional Throughput

1000} { " 1000} {71000}

W=7 35 ¢ 7 & o 10 M3 1 5 ¢ 7 s 9 10 3 1 5 6 7 8§ 9 10
Number of Nodes Number of Nodes Number of Nodes
(a) CRF-MV-TFA, 10% Read (b) MV-TFA, 10% Read (c) DecentSTM, 10% Read
4500 __ Linkedlist(CRE-MV-TFA), 90% Read 4500 Linkedlist(MV-TFA), 90% Read 4500 _ Linkedlist(DcentSTM), 90% Read
ava] thread
~ 4000 | ~ 4000 oo 2 threads
2.3500} i §3500’ woow 4 threads
?30007 ?30007 -4 (threads
5 i 5 e -o g threads
= 2500 : = 2500¢ w -+ 12 threads |
<2000} < 2000}
Z 1500} 21500}
1000t] 1000§
Wo—3—71T 5 6 7 s 9 10 Y371 35 6 7 s 9 10 Y31 5 6 7 s 9 10
Number of Nodes Number of Nodes Number of Nodes
(d) CRF-MV-TFA, 90% Read (e) MV-TFA, 90% Read (f) DecentSTM, 90% Read

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Skip List

__ Skiplist(CREF-MV-TFA). 10% Read _ Skiplistliss(MV-TFA), 10% Read ‘ Skiplist(Decent), 10% Read ‘
60007 P {6000t 1 6000¢ 1 thread
Tl oo 2 threads

E s E E wx 4 threads
2 5000f ®eTeT 1.2 5000 2 5000f treads
%n X ‘—__:::::/ Eﬂ %ﬁ‘ & -2 threads
§4000r_——:':: T e p 1E 4000} 1 & 4000 e-e 8threads ||
= : DT 2 = =~ 12 threads
S e . J— {z E
S3000f o P | < 3000¢ E
N
T2000f T . {7 2000} 1

W5 6 7 & 9 10 W37 S0 10

Number of Nodes Number of Nodes Number of Nodes
(a) CRF-MV-TFA, 10% Read (b) MV-TFA, 10% Read (c) DecentSTM, 10% Read
Skiplist(CRE-MV-TFA), 90% Read i Skiplist(MV-TFA), 90% Read i ‘ Skiplist(Decent), 90% Read

8000t 8000+t aa] thread

oo 2 threads

~1
o
S
S
-1
o
S
S

#x 4 threads
= 000l & -4 (threads
e -9 8 threads
+ - 12 threads ||

6000f
5000
4000

5000¢
4000¢

-
o

L e E
"

LW
o
o
o
LW
o
o
(=)
1
1
1
lI
> @ *
1
1
1
1
1
1
:
Bé %

Transactional Throughput
Transactional Throughput

2000f 2000}

W75 ¢ 7 s 9 103735 6 7 s 9 10 W 37T 5 6 7 § 0 10
Number of Nodes Number of Nodes Number of Nodes

(d) CRF-MV-TFA, 90% Read (e) MV-TFA, 90% Read (f) DecentSTM, 90% Read

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Transactional Throughput

TPC-C

o % of transaction profiles as in the original specification
o # warehouse = 4 to increase the conflict probability

_TPC-C(CRF-MV-TFA) _

1000t)]
ol e
600‘ ------ | |
400:::'12".:'..”..‘.'.‘.'..'.'.'.':,',ﬂ.‘.‘f.‘,v..‘........‘v.v.\‘....:.l::::;;;;;;;;::::iiii-‘-'f-**"“"

wl B

2 3 1 5 6 7 § 0 1

Number of Nodes

(a) CRF-MV-TFA

Transactional Throughput

1000t
800}
600¢
400¢

200}
23 4 5 6 7 8 9

TPC-C(MV-TFA)

Number of Nodes

(b) MV-TFA

Transactional Throughput

10007

TPC-C(DecentSTM)

800

600¢

400¢

1 thread
2 threads
4 threads
6 threads
8 threads
12 threads |1

Number of Nodes

(C) DecentSTM

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Thank you! Questions?

VirginiaTech
Invent the Future
YSte ms
ortware
Research Group

http://www.hyflow.org/ http://www.ssrg.ece.vt.edu/

