
Enhancing Concurrency in Distributed
Transactional Memory through

Commutativity

Junwhan Kim, Roberto Palmieri, Binoy Ravindran

Virginia Tech
USA

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Lock-based concurrency control
has serious drawbacks

q  Coarse grained locking
q  Simple
q  But no concurrency

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Fine-grained locking is better,
but…

q  Excellent performance
q  Poor programmability

q  Lock problems don’t go
away!
q  Deadlocks, livelocks,

lock-convoying, priority
inversion,….

q  Most significant difficulty –
composition

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Transactional memory

q  Like database transactions
q  ACI properties (no D)
q  Easier to program
q  Composable

q  First HTM, then STM, later HyTM

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for
lock-free data structures. ISCA. pp. 289–300.
N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Optimistic execution yields performance gains at
the simplicity of coarse-grain, but no silver bullet

STM
Fine-grained

locking

Coarse-grained
locking

Threads

Time

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP)

q  High data dependencies
q  Irrevocable operations
q  Interaction between

transactions and
non-transactions

q  Conditional waiting
q  ……

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Contention management. Which transaction to abort?

 !
 x = x + y;!
 !

 !
 x = x / 25;!
 !

T0 ! T1 !

 !
 x = x / 25;!
 !

q  Contention manager
q  Can cause too many aborts, e.g., when a long running transaction

conflicts with shorter transactions
q  An aborted transaction may wait too long

q  Transactional scheduler’s goal: minimize conflicts (e.g., avoid repeated
aborts)

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Distributed TM (or DTM)

q  Extends TM to distributed systems
q  Nodes interconnected using message passing links

q  Execution and network models
q  Execution models

Ø Data flow DTM (DISC 05)
p  Transactions are immobile
p  Objects migrate to invoking transactions

Ø Control flow DTM (USENIX 12)
p  Objects are immobile
p  Transactions move from node to node

q  Herlihy’s metric-space network model (DISC 05)
Ø Communication delay between every pair of nodes
Ø Delay depends upon node-to-node distance

1st hop 2nd hop 3rd hop 4th hop 5th hop
Distance

1.499 ms 9.095 ms 16.613 ms 13.709 ms 15.016 ms

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Paper’s motivation

How to boost transactions’ processing in DTM

Read/Write
conflicts minimized thanks to
the multi-versioning support

Read/Read
No conflict

Write/Write
Conflict!

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

How?

q  How can a concurrency control manager allow write
conflicting transactions to commit concurrently without
affecting isolation/consistency?

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Exploiting commutable operations

Commutable operations by examples (Data Structures)

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

6	

1	
 4	

3	

9	

8	

7	

Thread1: Insert(2) Thread2: Insert(0)

NON COMMUTABLE

Commutable operations by examples (Data Structures)

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

6	

1	
 4	

3	

9	

8	

7	

Thread1: Insert(2) Thread2: Insert(5)

COMMUTABLE

Commutable operations by examples (TPC-C)

q  New Order transactions:
q  Read:

Ø Customer, District,
Warehouse, Item, Stock

q  Write:
Ø District, Stock

q  Payment:
q  Read:

Ø Warehouse, Customer,
District

q  Write:
Ø Warehouse, Customer,

District

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

q  New Order Transactions:
q  Write

Ø  district.D_NEXT_O_ID()
Ø …

q  Payment Transactions:
q  Write

Ø  district.D_YTD()
Ø …

Paper’s contribution

q  MV-TFA, a multi-versioned version of TFA (Transactional
Forwarding Algorithm) ensuring Snapshot Isolation
q  Read transactions don’t abort

q  CRF - Commutative Request First: a distributed transactional
scheduler integrated with MV-TFA
q  CRF assumes definition of commutable rules by programmer;
q  Minimize abort rate
q  Increase concurrency
q  Increase performance

q  Implementation and extensive experimental evaluation
q  Comparisons with state-of-the art DTMs
q  Experiments for the best tuning of the system

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

MV-TFA READ

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

N1- Owner O1 N2 - Owner O2 N0 - T1 N3 - T3

Read (O1)

Object (O1
0)

Write(O2)

Read (O2)

Object (O2
1)

Validate (O2)

OK(O2
1)

Commit (O2
1)

CH Ow (O2
0, O2

1)

Object(O2
0)

CRF – WRITE without concurrent validations

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

N1/Owner O1

N0/T1

Write (O1, [X])

Object (O1)

Write(O1, [X])

N4/T2
{[T1;X]} {[T2;X]}

Object (O1
1)

Validate (O1)

OK(O1
1)

Commit (O1) Abort

NON
COMMUTABLE

Restart

CRF – WRITE with concurrent validations

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

N1/Owner O1

N0/T1

Write (O1, [X])

Object (O1)
Write(O1, [Y])

N4/T2
{[T1;X]}

Object (O1)

Validate (O1)

OK(O1)

Commit (O1)

COMMUTABLE

Validate (O1)

OK(O1)

Commit (O1)

{[T2;X]}

CRF – WRITE with concurrent validations

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

N1/Owner O1

N0/T1

Write (O1, [X])

Object (O1)
Write(O1, [Y])

N4/T2

{[T1;X]}

Object (O1)

Validate (O1)

OK(O1)

Commit (O1)

COMMUTABLE

Validate (O1)

OK(O1)

Commit (O1)

{[T2;Y]} N5/T3

Write(O1, [Y])

Object (O1)

NON
COMMUTABLE

Validate (O1)

Abort

Restart

{[T3;Y]}

Depth of validation (MaxD)

q  Transaction commit phase is
stretched depending on the
concurrent validating transactions

q  Depth of validation (MaxD): the
number of transactions involved
in the validation

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

N1/Owner O1

N0/T1

Write (O1, [X])

Object (O1)
Write(O1, [Y])

N4/T2
{[T1;X]}

Object (O1)

Validate (O1)

OK(O1)

Commit (O1)

Validate (O1)

OK(O1)

Commit (O1)

{[T2;X]}

!me$

T2$validates$o1.$
Depth$$
of$Valida!on$

EpochofValida!on$

T4$validates$o1.$

T3$validates$o1.$

Epochs

q  CRF prioritizes commutable transactions for increasing
concurrency. However adverse schedules can penalize
non-commutable transactions

q  CRF defines execution epochs:
q  In each epoch, commutative transactions concurrently

participate in validation. In the next epoch, the non-commutative
transactions stored in the scheduling queue restart and validate

q  Epoch shift is triggered when MaxD is reached or commitment
process ends

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Experiments

q  Test-bed:
q  Cluster of 10 nodes interconnected by a Gigabit

connection
q  Each node equipped with 12 cores
q  2 up to 120 concurrent threads in the system

q  Competitors:
q  DecentSTM, MV-TFA (without scheduling)

q  Benchmarks:
q  Micro Benchmarks:

Ø Linked-List, Skip-list. Both implementation of Commutable Set

q  Macro Benchmarks:
Ø TPC-C. Field-based commutativity

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Finding depth of validation

q  Run experiments measuring the performance of the system
varying the depth of validation parameter

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

1
2

3
4

5
6

7

0
10

20
30

40
50

60
100

200

300

400

500

600

700

800

900

1000

Number of NodesThreshold
Tr

an
sa

ct
io

na
l T

hr
ou

gh
pu

t
1

2
3

4
5

6
7

0
10

20
30

40
50

60
500

1000

1500

2000

2500

3000

3500

Number of NodesThreshold

Tr
an

sa
ct

io
na

l T
hr

ou
gh

pu
t

Linked List
Max Depth = 10

TPC-C
Max Depth = 5

Linked List

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Enhancing Concurrency in Distributed Transactional Memory 157

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

T
ra
ns
ac
ti
on
al

T
hr
ou
gh
pu

t

Linkedlist(CRF-MV-TFA), 10% Read

(a) CRF-MV-TFA, 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Linkedlist(MV-TFA), 10% Read

(b) MV-TFA, 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Linkedlist(DcentSTM), 10% Read

1 thread
2 threads
4 threads
6 threads
8 threads
12 threads

(c) DecentSTM, 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

4000

4500

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Linkedlist(CRF-MV-TFA), 90% Read

(d) CRF-MV-TFA, 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

4000

4500

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Linkedlist(MV-TFA), 90% Read

(e) MV-TFA, 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

500

1000

1500

2000

2500

3000

3500

4000

4500

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Linkedlist(DcentSTM), 90% Read

1 thread
2 threads
4 threads
6 threads
8 threads
12 threads

(f) DecentSTM, 90% Read

Fig. 5. Throughput of CRF, MV-TFA, and DecentSTM Using LinkedList

provided by the programmer, indicating the fields accessed by each transaction
profile. We configured the benchmark with a limited number of warehouses (#4)
in order to generate high conflicts. We recall that, in data flow model, objects
are not bound on fixed nodes but move, increasing likelihood of conflicts.

Experimental Setup. Our test-bed consists of 10 nodes connected via a
switched 1 Gigabit network connection. Each node is comprised of 12 Intel Xeon
1.9GHz processor cores. We use the Ubuntu Linux 10.04 server OS. We mea-
sured the transactional throughput (number of committed transactions per sec-
ond). To manage garbage collection, versions that are no longer accessible, need
to be marked. Unlike multiprocessors, determining old versions for live transac-
tions in distributed systems incurs communication overheads. Thus, we consider
a threshold-based garbage collector [4], which checks the number of versions and
disposes the oldest if the number of versions exceeds a pre-defined threshold. We
consider threshold 4 for measuring the basic event model’s throughput, because
the observed that the speed-up is relatively less increased after the threshold.

Finding a Depth. The large number of concurrent validations may lead to a
significant scheduling overhead due to delayed non-commutative transactions.
For the balance of commutative and non- requesting transactions, we consider
a threshold-based control, switching the next epoch when either a depth or a
number of non-commutative transactions enqueued meets a predefined thresh-
old, called MaxD. Figure 4 shows throughput moving the MaxD from 1 to 50.
By the plot is clear that CRF’s throughput is not improved after MaxD=10
for LinkedList and MaxD=5 for TPC-C due to the increasing number of non-
commutative transactions aborted. With the previous values of MaxD, CRF
reaches its maximum throughput, so we used those for the experiments.

Skip List

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

Enhancing Concurrency in Distributed Transactional Memory 159

transaction execution time, scheduling commutative operations highly impacts
the overall performance. In fact, the conflicting transactions generated by the
benchmark are well managed by CRF and this results observing that CRF per-
forms better than DecentSTM as much as 5× over 10 nodes.

2 3 4 5 6 7 8 9 10
Number of Nodes

1000

2000

3000

4000

5000

6000

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Skiplist(CRF-MV-TFA), 10% Read

(a) CRF-MV-TFA, 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

1000

2000

3000

4000

5000

6000

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Skiplistlist(MV-TFA), 10% Read

(b) MV-TFA, 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

1000

2000

3000

4000

5000

6000

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Skiplist(Decent), 10% Read

1 thread
2 threads
4 threads
6 threads
8 threads
12 threads

(c) DecentSTM, 10% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

1000

2000

3000

4000

5000

6000

7000

8000

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Skiplist(CRF-MV-TFA), 90% Read

(d) CRF-MV-TFA, 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

1000

2000

3000

4000

5000

6000

7000

8000

T
ra
ns
ac
ti
on
al

T
hr
ou
gh
pu

t

Skiplist(MV-TFA), 90% Read

(e) MV-TFA, 90% Read

2 3 4 5 6 7 8 9 10
Number of Nodes

1000

2000

3000

4000

5000

6000

7000

8000

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

Skiplist(Decent), 90% Read

1 thread
2 threads
4 threads
6 threads
8 threads
12 threads

(f) DecentSTM, 90% Read

Fig. 7. Throughput of CRF, MV-TFA, and DecentSTM Using SkipList

5 Related Work

Transactional scheduling has been explored in a number of multiprocessor STM
efforts [8,1,25,7]. In [8], is described an approach that dynamically schedules
transactions based on their predicted read/write access sets. In [1], the au-
thors discuss the Steal-On-Abort transaction scheduler, which queues an aborted
transaction behind the non-aborted transaction, and thereby prevents the two
transactions from conflicting again. In [25] is presented Adaptive Transaction
Scheduler (ATS), that adaptively controls the number of concurrent transac-
tions based on the contention intensity: when the intensity is below a threshold,
the transaction begins normally; otherwise, the transaction stalls and does not
begin until dispatched by the scheduler. CAR-STM scheduling approach [7] uses
per-core transaction queues and serializes conflicting transactions by aborting
one and queueing it on the other’s queue, preventing future conflicts. In [3]
has been proposed the Proactive Transactional Scheduler (PTS). This scheme
detects hot spots of contention that can degrade performance, and proactively
schedules affected transactions around the hot spots.

TPC-C

19th International European Conference on Parallel and Distributed Computing (Euro-Par 2013)

158 J. Kim, R. Palmieri, and B. Ravindran

2 3 4 5 6 7 8 9 10
Number of Nodes

200

400

600

800

1000

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

TPC-C(CRF-MV-TFA)

(a) CRF-MV-TFA

2 3 4 5 6 7 8 9 10
Number of Nodes

200

400

600

800

1000

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

TPC-C(MV-TFA)

(b) MV-TFA

2 3 4 5 6 7 8 9 10
Number of Nodes

200

400

600

800

1000

Tr
an

sa
ct

io
na

lT
hr

ou
gh

pu
t

TPC-C(DecentSTM)

1 thread
2 threads
4 threads
6 threads
8 threads
12 threads

(c) DecentSTM

Fig. 6. Throughput of CRF, MV-TFA, and DecentSTM Using TPC-C

Evaluation. Figures 5,7 show the throughput of CRF, MV-TFA and DecentSTM
using LinkedList(Figure 5) and SkipList(Figure 7) benchmarks. The legend has
to be considered for all the plots and shows the colors differentiate for number of
running threads. Each micro-benchmark has been evaluated using two workloads
representative of read intensive (10% writes and 90% reads) and write intensive
(90% writes and 10% reads) scenarios. The tests have been performed varying
the number of nodes and the number of threads per node. Each thread submits
requests to the distributed system.

Summarizing, we span scenarios from 2 up to 120 concurrent threads in the
system. This allows to exhaustive assess the behavior of CRF. The comparison
between CRF and MV-TFA shows how much CRF enhances the concurrency
of write transactions. For the LinkedList and SkipList, the new value to add or
delete is randomly selected using a uniform distribution. According to the in-
creasing number of threads and nodes, CRF performs better due to the detection
of a large number of commutative operations. Even though the throughput of
CRF is slightly better than MV-TFA in scenario characterized by most read-only
transactions (due to the limited number of commutative write operations), the
maximum gain of CRF against competitors is reached in write-intensive workload
where CRF exploits the ability to validate and commit concurrently conflicting
transactions. In additional the plot reveals that, in write dominated workload,
CRF scales better than MV-TFA and DecentSTM. In fact, in contrast with
CRF, their performance stall when increasing the number of concurrent threads
in the system. This is also confirmed by the plots in Figure 7(a) and 7(b) where
CRF outperforms MV-TFA by as much as 2×.

As a competitor, DecentSTM [2] is based on a snapshot isolation algorithm,
which requires searching the history of objects to find a valid snapshot. This
algorithm incurs a significant overhead. Thus, we observe that the transactional
throughput of DecentSTM is not improved as long as requesting nodes increase.

Our evaluations reveal that CRF improves throughput over MV-TFA and De-
centSTM by as much as (average) 2× and 3× under 10% read transactions, re-
spectively. Further, our evaluations show that MV-TFA outperforms DecentSTM
in throughput as much as 2×. Figure 6 shows the throughput of CRF, MV-TFA,
and DecentSTM using TPC-C benchmark. We used the amount of read and
write transactions that the specification of TPC-C recommends. TPC-C bench-
mark accesses large tables to read and write values. Due to the non-negligible

q  % of transaction profiles as in the original specification
q  # warehouse = 4 to increase the conflict probability

Thank you! Questions?

http://www.ssrg.ece.vt.edu/ http://www.hyflow.org/

