
Scheduling Transactions in Replicated
Distributed Transactional Memory

Junwhan Kim and Binoy Ravindran

Virginia Tech
USA

{junwhan,binoy}@vt.edu	

CCGrid 2013

Concurrency control on chip multiprocessors
significantly affects performance (and programmability)

q  Improve performance by exposing greater concurrency
q  Amdahl’s law: relationship between

sequential execution time and
speedup reduction is not linear

S
un

 T
20

00
 N

ia
ga

ra

(8

-c
or

e)

Lock-based concurrency control
has serious drawbacks

q  Coarse grained locking
q  Simple
q  But no concurrency

Fine-grained locking is better,
but…

q  Excellent performance
q  Poor programmability

q  Lock problems don’t go
away!
q  Deadlocks, livelocks,

lock-convoying, priority
inversion,….

q  Most significant difficulty –
composition

Lock-free synchronization overcomes some of
these difficulties, but…

“
lo

ck
-fr

ee
 re

try
 lo

op
”

Transactional memory

q  Like database transactions
q  ACI properties (no D)
q  Easier to program
q  Composable

q  First HTM, then STM, later HyTM

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for
lock-free data structures. ISCA. pp. 289–300.
N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.

Optimistic execution yields performance gains at
the simplicity of coarse-grain, but no silver bullet

STM
Fine-grained

locking

Coarse-grained
locking

Threads

Time

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP)

q  High data dependencies
q  Irrevocable operations
q  Interaction between

transactions and
non-transactions

q  Conditional waiting
q  ……

Three key mechanisms needed to create
atomicity illusion

atomic{!
 x = x + y;!
} !

Versioning

Where to store new x until
commit?
q  Eager: store new x in

memory; old in undo log
q  Lazy: store new x in write

buffer

atomic{!
 x = x + y;!
} !

atomic{!
 x = x / 25;!
} !

T0 ! T1 !

Conflict detection

How to detect conflicts between
T0 and T1?
q  Record memory locations read in

read set
q  Record memory locations wrote in

write set
q  Conflict if one’s read or write set

intersects the other’s write set

Third mechanism is contention management

 !
 x = x + y;!
 !

 !
 x = x / 25;!
 !

T0 ! T1 !

 !
 x = x / 25;!
 !

Which transaction to abort?
q  Greedy: favor those with an earlier start time
q  Karma: ….

Transactional scheduler is not necessary,
but can boost performance

q  Contention manager
q  Can cause too many aborts, e.g., when a long running

transaction conflicts with shorter transactions
q  An aborted transaction may wait too long

q  Transactional scheduler’s goal: minimize conflicts (e.g., avoid
repeated aborts)

Walther M. et al. (2010). Scheduling support for transactional memory
contention management, PPoPP, pp 79 - 90

Distributed TM (or DTM)

q  Extends TM to distributed systems
q  Nodes interconnected using message passing links

q  Execution and network models
q  Execution models

Ø Data flow DTM (DISC 05)
p  Transactions are immobile
p  Objects migrate to invoking transactions

Ø Control flow DTM (USENIX 12)
p  Objects are immobile
p  Transactions move from node to node

q  Herlihy’s metric-space network model (DISC 05)
Ø Communication delay between every pair of nodes
Ø Delay depends upon node-to-node distance

1st hop 2nd hop 3rd hop 4th hop 5th hop
Distance

1.499 ms 9.095 ms 16.613 ms 13.709 ms 15.016 ms

Past research have developed several
transactional schedulers

q  Multi-core systems
q  BiModal transactional scheduler (OPODIS 09)
q  Proactive transactional scheduler (MICRO 09)
q  Adaptive transactional scheduler (SPAA 08)
q  Steal-On-Abort (HiPEAC 09)
q  CAR-STM (PODC 08)

q  Distributed systems
q  Bi-interval transactional scheduler (SSS 10)

Ø Single-copy
q  Reactive transactional scheduler (IPDPS 12)

Ø Single-copy (and closed-nested transactions)

Replication models in (dataflow) DTM

q  No replication: non-fault-tolerant

q  Full replication: fault-tolerant, but non-scalable

q  Partial replication: fault-tolerant and scalable

Only one copy for each object
Single points of failure

All objects replicated on all nodes
Atomic broadcasting of updates is non-scalable

N. Schiper, P. Sutra, and F. Pedone (2010). P-store: Genuine
partial replication in wide area networks. SRDS. pp. 214–224

Each object replicated only at a subset of nodes
Updates atomically broadcast to only node subset

Paper’s contribution

q  Scheduling in partially replicated DTM
q  Extend TFA for partial replication
q  Cluster-based transactional scheduler (CTS)

q  Competitive ratio analysis
q  Implementation and experimental studies

q  Comparisons with state-of-the art DTMs

M. Saad and B. Ravindran (2011). Hyflow: A high performance distributed
software transactional memory framework, HPDC, pp. 265-266

Atomicity, consistency, and isolation
in data-flow DTM

q  Transactional Forwarding Algorithm (TFA)
q  Early validation of remote objects
q  Atomicity for object operations in the presence of asynchronous

clocks

t1
LC =14

Object o1’s
owner node N0

time t2

T2’s validate request

T1, T2, and T3 request o1

T4 requests o1 and aborts

o1 is updated at 30;
T2 commits & becomes
o1’s owner

t3

T1 and T3’s validate request, but they abort,
because LC=30, was 14

t4 t5

(LC is local clock)

M. Saad and B. Ravindran (2011). Hyflow: A high performance distributed
software transactional memory framework, HPDC, pp. 265-266

T1’s node: N1
T2’s node: N2

T3’s node: N3

T4’s node: N4

Motivating example for CTS

T1 T2 T3

o1

o2

o3

o2

o3

o4 Conflict

Conflict

Commit

Abort

Abort

T1 T2 T3

o1

o2

o3

o2

o3

o4

Abort

Commit

Commit

Time

TFA CTS

Logical partitioning for partial replication

1

2
3

4

5

6

1

2
3

4

5

6

Cluster 1
Cluster 2

Cluster 3
2

3

4

5

1

6

q  Purpose of partitioning is to enhance locality
q  Partitioning using METIS (SIAM 98)

q  Each cluster has an object replica
q  Each cluster has one object owner who “owns” all replicas

q  A transaction on node 2 requests objects from object owner in node 2’s cluster

Metric-space graph:
 each edge is a link
 edge length is distance

G. Karypis and V. Kumar (1998). A fast and high quality multilevel
scheme for partitioning irregular graph, SIAM-JSC, pp. 359-392

Scheduler design (1/2)

Ti Ox,Oy

Tj

Tk O1

Tk Ti ox oy Tj o1

Conflict 1

Ox Ti

Oy Ti

O1 Tk

TxTable ObjectTable

Conflict 1

Tj requests Oy

Oy ,Tj

If T has conflicts 1 and 2, then abort T

else allow T to use O

Conflict 2

Conflict 2

Tj requests O1

No Conflict

time

No Conflict T: requesting transaction
O: requested object

Scheduler design (2/2)

Ti Ox,Oy

Tj Oy

Tk

Ti ox oy Tj o1

Conflict 1

Ox Ti

Oy Ti, Tj

O1

TxTable ObjectTable

Tk

Conflict 2

Conflict 2
Conflict 1

Tj requests O1

If T has conflicts 1 and 2, then abort T

else allow T to use O

time

For each T’ using O
 if T’ has a conflict, abort T’
 else allow T’ to use O

No Conflict

No Conflict

Tk requests O1

No Conflict Tj

O1

Competitive ratio analysis

q  makespanA : time that A needs to complete N transactions
q  Definition: Replication Model

q  FR: Full Replication, PR: Partial Replication, NR: No Replication
q  Theorem 1: makespan(FR) < makespan(PR) < makespan(NR)
q  Theorem 2: makespanCTS(PR) < makespan(FR), where N > 3

PR incurs requesting and object retrieving times for transactions, but
aborted transactions are resent updated objects.
CTS’s backoff generally allows the update to be received before transaction
re-start, resulting in less overall time than FR’s broadcasting time.

T requests O

O is updated and
O is sent to aborted transactions

Random Back-off Time

T aborts due to a conflict

T restarts without requesting O

Implementation and experimental setup

q  Implemented CTS in HyFlow DTM framework
q  Second generation DTM framework for the JVM (Java, Scala)
q  Open-source: hyflow.org

q  24 nodes, each is 2GHz AMD Opteron
q  Benchmarks

q  Distributed version of STAMP Vacation
q  Two monetary applications
q  Distributed data structures

q  Counter, Red/Black Tree, DHT
q  CTS(30) and CTS(60)

q  CTS over 30% and 60% of the nodes are object owners

M. Saad and B. Ravindran (2011) . Hyflow: A high performance distributed
software transactional memory framework, HPDC, pp. 265-266
C. Minh, et al. (2008). STAMP: Stanford Transactional Applications for
Multi-Processing, IISWC , pp. 200-208

Evaluation:
Throughput with no node failures

Low Contention: 90% Read Transactions
High Contention: 10% Read Transactions
CTS(0): TFA + CTS, but no replication and no fault tolerance
CTS(90): high communication overhead
TFA: no CTS

CTS(60) CTS(30)

CTS(90)
TFA

CTS(0)
CTS(0)

Evaluation:
Throughput under node failures

q  Nodes randomly failed during each experiment
q  GenRSTM and DecentSTM use full replication model
q  Throughput speedup of CTS(60) over GenRSTM and DecentSTM
 Speedup range from 1.51x to 2.3x in low contention
 Speedup range from 1.3x to 1.7x in high contention
q  CTS has reasonable performance at 50% failure (GenRSTM and

DecentSTM have high communication delay overheads)

Throughput speedup
under 20% node failure

Throughput speedup
under 50% node failure

Conclusions

q  DTM transactional scheduler in partial replication model
q  Uses multiple clusters to support partial replication for fault-tolerance
q  Clusters with small inter-node communication
q  Identifies transactions for aborting to enhancing concurrency
q  Enhances transactional throughput

Ø 1.5x over baseline TFA; 1.55x and 1.73x over others

q  Tradeoff between locality, communication cost, and fault-tolerance
q  Can be effectively exploited in DTM

q  Adaptive partial replication?
q  Adaptive backoff scheme?
q  …

