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Concurrency control on chip multiprocessors 
significantly affects performance (and programmability) 

q  Improve performance by exposing greater concurrency 
q  Amdahl’s law: relationship between                 

sequential execution time and                          
speedup reduction is not linear 
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Lock-based concurrency control  
has serious drawbacks 

q  Coarse grained locking 
q  Simple 
q  But no concurrency 



 

 

 

 

 

 

 

 

 

Fine-grained locking is better,  
but… 

q  Excellent performance 
q  Poor programmability 

q  Lock problems don’t go 
away! 
q  Deadlocks, livelocks,      

lock-convoying, priority 
inversion,…. 

q  Most significant difficulty –  
composition 



 

 

 

 

 

 

 

 

 

Lock-free synchronization overcomes some of 
these difficulties, but… 
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Transactional memory 

q  Like database transactions 
q  ACI properties (no D) 
q  Easier to program 
q  Composable 

q  First HTM, then STM, later HyTM 

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for    
lock-free data structures. ISCA. pp. 289–300. 
N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213. 



 

 

 

 

 

 

 

 

 

Optimistic execution yields performance gains at 
the simplicity of coarse-grain, but no silver bullet 

STM 
Fine-grained 

locking 

Coarse-grained 
locking 

Threads 

Time 

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP) 

q  High data dependencies 
q  Irrevocable operations 
q  Interaction between 

transactions and              
non-transactions 

q  Conditional waiting 
q  ……  



 

 

 

 

 

 

 

 

 

Three key mechanisms needed to create    
atomicity illusion 

atomic{!
    x = x + y;!
} !

Versioning 

Where to store new x until 
commit? 
q  Eager: store new x in 

memory; old in undo log 
q  Lazy: store new x in write 

buffer 

atomic{!
    x = x + y;!
} !

atomic{!
    x = x / 25;!
} !

T0 ! T1 !

Conflict detection 

How to detect conflicts between          
T0 and T1? 
q  Record memory locations read in 

read set 
q  Record memory locations wrote in 

write set 
q  Conflict if one’s read or write set 

intersects the other’s write set 



 

 

 

 

 

 

 

 

 

Third mechanism is contention management 

 !
    x = x + y;!
 !

 !
    x = x / 25;!
 !

T0 ! T1 !

 !
    x = x / 25;!
 !

Which transaction to abort? 
q  Greedy: favor those with an earlier start time 
q  Karma: …. 



 

 

 

 

 

 

 

 

 

Transactional scheduler is not necessary,  
but can boost performance 

q  Contention manager 
q  Can cause too many aborts, e.g., when a long running 

transaction conflicts with shorter transactions 
q  An aborted transaction may wait too long 

q  Transactional scheduler’s goal: minimize conflicts (e.g., avoid  
repeated aborts) 

Walther M. et al. (2010). Scheduling support for transactional memory 
contention management, PPoPP, pp 79 - 90 



 

 

 

 

 

 

 

 

 

Distributed TM (or DTM) 

q  Extends TM to distributed systems 
q  Nodes interconnected using message passing links 

q  Execution and network models 
q  Execution models 

Ø Data flow DTM (DISC 05) 
p  Transactions are immobile 
p  Objects migrate to invoking transactions 

Ø Control flow DTM (USENIX 12) 
p  Objects are immobile 
p  Transactions move from node to node 

q  Herlihy’s metric-space network model (DISC 05) 
Ø Communication delay between every pair of nodes 
Ø Delay depends upon node-to-node distance 

1st hop 2nd hop 3rd hop 4th hop 5th hop 
Distance 

1.499 ms 9.095 ms 16.613 ms 13.709 ms 15.016 ms 



 

 

 

 

 

 

 

 

 

Past research have developed several  
transactional schedulers 

q  Multi-core systems 
q  BiModal transactional scheduler (OPODIS 09) 
q  Proactive transactional scheduler (MICRO 09) 
q  Adaptive transactional scheduler (SPAA 08) 
q  Steal-On-Abort (HiPEAC 09) 
q  CAR-STM (PODC 08) 

q  Distributed systems 
q  Bi-interval transactional scheduler (SSS 10)  

Ø Single-copy 
q  Reactive transactional scheduler (IPDPS 12) 

Ø Single-copy (and closed-nested transactions) 



 

 

 

 

 

 

 

 

 

Replication models in (dataflow) DTM 

q  No replication: non-fault-tolerant 

 
q  Full replication: fault-tolerant, but non-scalable 

 

q  Partial replication: fault-tolerant and scalable 

Only one copy for each object 
Single points of failure 

All objects replicated on all nodes 
Atomic broadcasting of updates is non-scalable 

N. Schiper, P. Sutra, and F. Pedone (2010). P-store: Genuine 
partial replication in wide area networks. SRDS. pp. 214–224 

Each object replicated only at a subset of nodes 
Updates atomically broadcast to only node subset 



 

 

 

 

 

 

 

 

 

Paper’s contribution 

q  Scheduling in partially replicated DTM 
q  Extend TFA for partial replication 
q  Cluster-based transactional scheduler (CTS) 

q  Competitive ratio analysis 
q  Implementation and experimental studies 

q  Comparisons with state-of-the art DTMs 

M. Saad and B. Ravindran (2011). Hyflow: A high performance distributed 
software transactional memory framework, HPDC, pp. 265-266  



 

 

 

 

 

 

 

 

 

Atomicity, consistency, and isolation  
in data-flow DTM 

q  Transactional Forwarding Algorithm (TFA) 
q  Early validation of remote objects 
q  Atomicity for object operations in the presence of asynchronous 

clocks 

t1 
LC =14 

Object o1’s  
owner node N0 

time t2 

T2’s validate request 

T1,   T2, and T3 request o1  

T4 requests o1 and aborts 

o1 is updated at 30;  
T2 commits & becomes 
o1’s owner  

t3 

T1 and T3’s validate request, but they abort, 
because LC=30, was 14 

t4 t5 

(LC is local clock) 

M. Saad and B. Ravindran (2011). Hyflow: A high performance distributed 
software transactional memory framework, HPDC, pp. 265-266  

T1’s node: N1 
T2’s node: N2 

T3’s node: N3 

T4’s node: N4 



 

 

 

 

 

 

 

 

 

Motivating example for CTS 

T1 T2 T3 

o1 

o2 

o3 

o2 

o3 

o4 Conflict 

Conflict 

Commit 

Abort 

Abort 

T1 T2 T3 

o1 

o2 

o3 

o2 

o3 

o4 

Abort 

Commit 

Commit 

Time 

TFA CTS 



 

 

 

 

 

 

 

 

 

Logical partitioning for partial replication 
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q  Purpose of partitioning is to enhance locality 
q  Partitioning using METIS (SIAM 98) 

q  Each cluster has an object replica 
q  Each cluster has one object owner who “owns” all replicas 

q  A transaction on node 2 requests objects from object owner in node 2’s cluster 

Metric-space graph:  
        each edge is a link  
        edge length is distance 

G. Karypis and V. Kumar (1998). A fast and high quality multilevel 
scheme for partitioning irregular graph, SIAM-JSC, pp. 359-392  



 

 

 

 

 

 

 

 

 

Scheduler design (1/2) 

Ti Ox,Oy 

Tj 

Tk O1 

Tk Ti ox oy Tj o1 

Conflict 1 

Ox Ti 

Oy Ti 

O1 Tk 

TxTable ObjectTable 

Conflict 1 

Tj requests Oy 

Oy  ,Tj 

If T has conflicts 1 and 2, then abort T 

else allow T to use O 

Conflict 2 

Conflict 2 

Tj requests O1 

No Conflict 

time 

No Conflict T:  requesting transaction 
O: requested object 



 

 

 

 

 

 

 

 

 

Scheduler design (2/2) 

Ti Ox,Oy 

Tj     Oy 

Tk 

Ti ox oy Tj o1 

Conflict 1 

Ox Ti 

Oy Ti, Tj 

O1 

TxTable ObjectTable 

Tk 

Conflict 2 

Conflict 2 
Conflict 1 

Tj requests O1 

If T has conflicts 1 and 2, then abort T 

else allow T to use O 

time 

For each T’ using O 
   if T’ has a conflict, abort T’ 
   else allow T’ to use O 

No Conflict 

No Conflict 

Tk requests O1 

No Conflict Tj 

O1 



 

 

 

 

 

 

 

 

 

Competitive ratio analysis 

q  makespanA : time that A needs to complete N transactions 
q  Definition: Replication Model 

q  FR: Full Replication, PR: Partial Replication, NR: No Replication 
q  Theorem 1: makespan(FR) < makespan(PR) < makespan(NR)  
q  Theorem 2: makespanCTS(PR) < makespan(FR), where N > 3 

PR incurs requesting and object retrieving times for transactions, but 
aborted transactions are resent updated objects.  
CTS’s backoff generally allows the update to be received before transaction 
re-start, resulting in less overall time than FR’s broadcasting time. 

T requests O 

O is updated and 
O is sent to aborted transactions  

Random Back-off Time 

T aborts due to a conflict 

T restarts without requesting O 



 

 

 

 

 

 

 

 

 

Implementation and experimental setup 

q  Implemented CTS in HyFlow DTM framework 
q  Second generation DTM framework for the JVM (Java, Scala) 
q  Open-source: hyflow.org 

q  24 nodes, each is 2GHz AMD Opteron 
q  Benchmarks 

q  Distributed version of STAMP Vacation 
q  Two monetary applications  
q  Distributed data structures  

q  Counter, Red/Black Tree, DHT 
q  CTS(30) and CTS(60) 

q  CTS over 30% and 60% of the nodes are object owners 

M. Saad and B. Ravindran (2011) . Hyflow: A high performance distributed 
software transactional memory framework, HPDC, pp. 265-266  
C. Minh, et al. (2008). STAMP: Stanford Transactional Applications for   
Multi-Processing, IISWC , pp. 200-208 



 

 

 

 

 

 

 

 

 

Evaluation:  
Throughput with no node failures 

Low Contention: 90% Read Transactions 
High Contention: 10% Read Transactions 
CTS(0): TFA + CTS, but no replication and no fault tolerance 
CTS(90): high communication overhead 
TFA: no CTS 

CTS(60) CTS(30) 

CTS(90) 
TFA 

CTS(0) 
CTS(0) 



 

 

 

 

 

 

 

 

 

Evaluation:  
Throughput under node failures 

q  Nodes randomly failed during each experiment 
q  GenRSTM and DecentSTM use full replication model 
q  Throughput speedup of CTS(60) over GenRSTM and DecentSTM 
       Speedup range from 1.51x to 2.3x in low contention  
       Speedup range from 1.3x to 1.7x in high contention  
q  CTS has reasonable performance at 50% failure (GenRSTM and 

DecentSTM have high communication delay overheads) 

Throughput speedup  
under 20% node failure 

Throughput speedup  
under 50% node failure 



 

 

 

 

 

 

 

 

 

Conclusions   

q  DTM transactional scheduler in partial replication model 
q  Uses multiple clusters to support partial replication for fault-tolerance 
q  Clusters with small inter-node communication 
q  Identifies transactions for aborting to enhancing concurrency 
q  Enhances transactional throughput  

Ø 1.5x over baseline TFA; 1.55x and 1.73x over others 

q  Tradeoff between locality, communication cost, and fault-tolerance 
q  Can be effectively exploited in DTM 

q  Adaptive partial replication? 
q  Adaptive backoff scheme? 
q  … 

 


