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Abstract
Distributed Transactional Memory (DTM) is a recent but promis-
ing model for programming distributed systems. It aims to present
programmers with a simple to use distributed concurrency control
abstraction (transactions), while maintaining performance and scal-
ability similar to distributed fine-grained locks. Any complications
usually associated with such locks (e.g., distributed deadlocks) are
avoided. We propose a new DTM framework for the Java Virtual
Machine named Hyflow2. We implement Hyflow2 in Scala and
base it on the existing ScalaSTM API soon to be included in the
Scala standard library. We thus aim to create a smooth transition
from multiprocessor STM programs to DTM.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming–distributed programming; D.1.3
[Programming Techniques]: Concurrent Programming–parallel
programming; D.3.3 [Programming Languages]: Language Con-
structs and Features–concurrent programming structures

General Terms Languages, Performance.

Keywords transactional memory, distributed systems, nested trans-
actions, open nesting

1. Introduction
Programming distributed concurrency has always been a difficult
task. Today, there are three popular models that can be used to
address such a task: shared memory, actors and transactions.

In the shared memory model, processes access the memory
representing the shared state while ensuring safety using synchro-
nization primitives such as distributed locks. This model is sup-
ported by technologies such as RPC and RMI that allow remotely
invoking methods on objects (this is know as the control-flow
model, because the computation moves where the data is). Syn-
chronization primitives are available using dedicated platforms like
Apache Zookeeper [31] and Hazelcast [27] or can be implemented
ad-hoc. Alternatively, in the data-flow model, distributed caches
such as Ehcache [26] and Infinispan [28] can be used to bring the
data where the computation is. The shared memory model however
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is prone to hard-to-trace concurrency bugs such as race conditions,
dead-locks and live-locks.

The actor model prohibits sharing memory by encapsulating
mutable state inside light-weight sequential constructs called ac-
tors. Actors communicate via message passing and their operations
always execute sequentially, thus avoiding concurrency problems.
The actor model is based on Communicating Sequential Processes
(CSP) introduced by Hoare in [9], and became popular with the
advent of the Erlang programming language. Since then, many lan-
guages (e.g. Scala and Google Go) and frameworks (e.g. Akka, Ac-
torKit) have embraced this model. The actor model is very effec-
tive when applicable, but some problems are difficult to formulate
within its restrictions. Furthermore, it requires changing the way
most programmers think about concurrency.

Transactions are the preferred concurrency mechanism in
database environments. They provide ACID properties (Atomic-
ity, Consistency, Isolation and Durability), making them easier to
reason about compared to low-level primitives (locks) or even ac-
tors. Transactions are sequences of operations that either all execute
successfully or all fail. A failed (aborted) transaction has no effects
visible to other transactions (its operations are rolled-back). A suc-
cessful (committed) transaction appears to take effect atomically,
and any changes performed while the transaction is running are not
visible to other committed transactions.

On the downside, distributed transactions do not seamlessly in-
tegrate with popular programming languages. The most common
approach is to delegate all transactional processing to a separate
database server. A client library would then be used to communi-
cate with the database server, sending it commands expressed in the
Structured Query Language (SQL) and receiving the result of their
execution. Writing SQL can be avoided by employing an additional
software layer called an Object Relational Mapper (ORM), further
increasing complexity.

Programmers wanting to use transactions for their distributed
applications can also employ the X/Open XA standard or the equiv-
alent Java Transaction API (JTA). While designed to coordinate
multiple transactional resources (such as database servers or mes-
sage queues) in distributed transactions, XA/JTA can be used to
provide distributed transactional access to regular, in-memory ob-
jects. Alternatively, recent distributed cache frameworks provide
transactional access to their stored data.

Significant effort has been spent in the multiprocessor research
community towards Transactional Memory (TM). TM is an ab-
straction that aims to replace locks as a synchronization primitive
with transactions. Many TM systems use atomic blocks to enclose
code that must execute atomically. In-memory transactions are uti-
lized behind the scenes, but in many cases, the user does not need
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to be aware of it. Aborted transactions are implicitly retried until
they succeed.

We believe distributed concurrency should be seamlessly ex-
pressed in a programming language just like atomic blocks succeed
to do for multiprocessor concurrency. Furthermore, many applica-
tions do not need durability (or have relaxed requirements for dura-
bility) so employing a classic disk-backed relational database is an
overkill. Distributed Transactional Memory (DTM) addresses these
issues. The DTM model was proposed [8] to replace shared mem-
ory systems using distributed locks with light-weight, in-memory
transactions.

This paper describes our new DTM implementation for the Java
Virtual Machine (JVM) named Hyflow2. Hyflow2 is available as
an open-source project at our website, http://hyflow.org/.

In designing Hyflow2 we focused on several issues that could be
improved compared to the original Hyflow [18]: modularity, clean
API that does not require byte-code rewriting, and performance.

Hyflow2 is written in the Scala programming language for the
JVM and internally uses the actor concurrency model by employ-
ing the Akka [25] toolkit. We provide two APIs: a Scala API
that uses Scala’s powerful control abstractions and a Java API for
compatibility. The Scala API is based on the excellent ScalaSTM
API [2, 30], which is due to be included in Scala’s standard library.
Hyflow2 is a library DTM: it requires no compiler or run-time sup-
port. This enables easy deployment on standard JVMs.

Hyflow2 currently provides an implementation of the Transac-
tional Forwarding Algorithm (TFA) [19, 20], a DTM technique that
uses the data-flow model (immobile transactions, mobile objects).
We support the flat, closed and open nesting models [22, 23], as
well as distributed conditional synchronization.

To the best of our knowledge, Hyow2 is the first Distributed
Transactional Memory implementation with support for Scala, in-
teroperability with Java, and key DTM features including nested
transactions and distributed conditional synchronization. Our focus
on performance lead to significant speed improvement compared
to Hyflow. In our tests, Hyflow2 proved up to 7 times faster at low
node counts and up to 100% faster at high node counts.

The remainder of the paper is organized as follows. Section 2
overviews TFA, the protocol implemented in Hyflow and Hyflow2.
Section 3 briefly describes the original Hyflow library and the areas
where it was lacking. Section 4 introduces Hyflow2’s new API.
Section 5 describes transactional nesting and the API for supporting
it in Hyflow2. Implementation is discussed in Section 7. Hyflow2
is experimentally evaluated in Section 8. Related work is briefly
mentioned in Section 9 and Section 10 concludes the paper.

2. Overview of TFA
For completeness, we overview TFA. TFA [19, 20] is based on the
TL2 algorithm, already proposed for multiprocessor TM [6]. It is
a data flow based, distributed transaction management algorithm,
which provides atomicity, consistency, and isolation properties.
Under TFA, operations on distributed objects are buffered and locks
on objects are acquired at commit time. On successful acquisition
of locks, objects are updated. Otherwise, the transaction is aborted
by releasing all previously acquired locks and retried.

In contrast to TL2’s central clock, TFA uses independent, per-
node transactional clocks and provides a mechanism to establish
the “happens before” relationship between significant events (e.g.,
write-after-write, read-after-write). Upon a transaction’s successful
commit, a node increments its local clock. An object’s version is
defined by the local clock at the time of the object’s last modifica-
tion. When a local object is accessed by a transaction, as part of val-
idation, the object version is compared with the transaction’s start-
ing time. If the object’s version is newer, the transaction is aborted
and retried.

For validating remote objects, TFA employs a technique called
“transaction forwarding:” when a transaction requests access to a
remote object, the local clock is piggybacked with the request to the
remote node. The remote node advances its clock to the sender’s
clock if its clock is older; otherwise, no update is made to the
remote clock.

The remote node then sends the object copy with its clock value.
Upon receipt, the local node (i.e., the sender) compares the remote
clock value with the transaction starting time. If the remote clock is
newer, the transaction’s read-set is validated by checking whether
any other object in the read-set has been updated to a version
newer than the transaction starting time. If the read-set validation
succeeds, then the transaction starting time is advanced to the
remote clock value (i.e., “forwarded”). Otherwise, the transaction
is aborted and re-issued.

When a transaction reaches the commit stage, it first acquires
locks on all the objects in its write-set. On successful lock acquisi-
tion, the objects are updated and the transaction committing node
is published as the new host of the updated objects. If lock acqui-
sition fails for any object, all acquired locks are released, and the
transaction is aborted and re-issued.

2.1 Illustrative Example
Consider three nodes, N1, N2, and N3, each running transactions
T1, T2, and T3, respectively (see Figure 1). N2 hosts object θ and
is considered θ’s “owner.”

Nodes maintain a local transactional clock, which is incre-
mented when transactions running on them commit. T3 starts at
local clock lc3 = 12 and requests θ fromN2 at lc3 = 16.N2 com-
pares the received clock value with its local clock lc2 = 12 and
advances its clock to lc2 = 16. After some time, T1 starts at local
clock lc1 = 14 and requests θ from N2 at lc1 = 19. At N2, no
change is made to its local clock lc2, since rc = 19 < lc2 = 21.

When N1 receives the response from N2, it observes that lc1 =
19 < rc = 21. Therefore, it forwards T1 to start at lc1 = 21 and
validates all other objects accessed earlier by T1. Later, T3 acquires
the lock on θ atN2 and updates θ at local clock lc3 = 25. Now,N3

holds the ownership of θ, but leaves θ locked at N2. When T1 tries
to acquire the lock on θ, it may find N2 or N3 as the object owner
depending on when N3 successfully publishes its ownership of θ.
If T1 requests the lock on θ fromN2, it fails due to the existing lock
on θ and aborts. Otherwise, if T1 finds N3 as the owner, it acquires
the lock, but fails during read-set validation. Therefore, T1 releases
the lock acquired on θ at N3 and aborts. T1 retries and requests θ
again from the new owner N3.

Concurrently, another transaction T2 also receives θ, but T1

acquires the lock on θ earlier than T2 and commits. As a result,
T2 aborts and retries. T2 finally commits at lc2 = 44 and becomes
the new object owner.

3. The Hyflow DTM framework
Hyflow is the original DTM prototype implementing TFA [18]. It
was built on top of the Deuce STM library and the Aleph commu-
nication framework. Hyflow’s modular design attempts to allow for
pluggable network transports, transactional algorithms, directory
protocols and contention managers. However its interfaces were not
abstract enough to allow the implementation of more complex al-
gorithms and any possible work around resulted in a source code
difficult to maintain.

Hyflow (just like the underlying Deuce STM) relies on auto-
matic byte-code rewriting to provide an API based on annotations.
As seen in Figure 2, the user marks the methods to be executed
transactionally as @Atomic. A Java Agent rewrites such methods
into two polymorphic copies: the first copy has the same signature
as the original method, and it initiates a new transaction (or reuses
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Figure 1. Example transaction execution under TFA.

@Atomic
void transfer(Account a1, Account a2, int amount)
{ withdraw(a1, amount);

deposit(a2, amount);
}
@Atomic
void withdraw(Account a, int amount) {

a.value -= amount;
}
@Atomic
void deposit(Account a, int amount) {

a.value += amount;
}

Figure 2. Example of the original Hyflow API. Transactions are
marked using the @Atomic annotation.

an already running transaction, if available) and then calls the sec-
ond copy within the context of this transaction. The second copy is
a transacted version of the original method’s byte-code. It takes an
additional argument (a transaction context), and replaces all field
reads and writes with transactional read and write operations. Any
method calls within transacted code are modified to also pass the
transaction context argument.

The automatic instrumentation also touches on methods not
marked as @Atomic, by creating an additional transacted copy of
the method as described above. When such method is called outside
any transaction, the original byte-code is executed. When methods
are called within a transaction (by transacted code), the addition of
the transaction context argument leads to executing the transacted
versions of the methods.

This approach works particularly well for a simple multiproces-
sor transactional memory system because the instrumented byte-
code can be made very fast: no extra objects need to be instantiated
(the transactional context object can be reused), method calls can
be kept to a minimum (the transactional read and write operations
can be inlined), and only one thread-local variable lookup needs
to be performed at the beginning of the transaction. However the
instrumented byte-code cannot readily be debugged, moreover, the
potential speed benefits of this model become negligible when deal-
ing with distributed systems, where network accesses are the most
costly operations. Modern JVMs with state-of-the-art Just-in-Time
(JIT) compilation and garbage collection further minimize the ben-
efits of the byte-code rewriting approach.

Conversely, Hyflow2 is focused and optimized addressing the
real distributed systems bottlenecks, namely the network round-trip

val ctr = Ref(0)
atomic { implicit txn =>
ctr() = ctr() + 1

}

Figure 3. An example transaction in ScalaSTM (common usage).

val ctr: Ref[Int] = Ref[Int](0)
atomic.apply(new Function1[InTxn,Unit] {
def apply(implicit txn: InTxn): Unit = {
ctr.update(ctr.apply(txn) + 1)(txn)

}
})

Figure 4. A more verbose version of the code in Figure 3, with
several Scala syntactic shortcuts written explicitly.

time and thread context switch overheads (details are presented in
Section 7.8).

4. Hyflow2 API
Hyflow2 API is based on the excellent ScalaSTM API[30]. In fact,
Hyflow2 tries to reuse ScalaSTM’s interfaces wherever possible,
and partially implements a back-end for the ScalaSTM API.

4.1 ScalaSTM
ScalaSTM is an STM API for Scala due to be included in the Scala
standard library in an upcoming release. The API allows for plug-
gable back-end implementations, and it ships with a reference im-
plementation, CCSTM[2]. Hyflow2 inherits all features described
in this section.

Transactions in ScalaSTM are defined using atomic blocks, as
shown in Figure 3. To achieve this syntax, atomic is a TxnExecutor
object whose apply method takes a function as its only argument
and executes this function as a transaction. The “implicit txn =>”
construct denotes that the function passed to apply takes one im-
plicit argument, the transaction context object.

ScalaSTM uses transactional references (Ref s) as a container
for the values that are to be accessed using transactional semantics.
The Ref containers mediate all access to the data within. To access a
value of a Ref ref1 within a transaction, one would use ref1() – i.e.,
call ref1.apply() – or ref1.get() as an alternative syntax. To change
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def takeFirst(): T = atomic {
implicit txn =>
val old_head = this.head()
if (old_head == null)
retry // do not proceed if empty

this.head() = old_head.next
return old_head.value

}

Figure 5. Conditional synchronization using retry. Transaction can
only proceed once there is at least one item in the list.

class Account(val _id: String) extends HObj {
val type = field("") // a string field
val value = field(0) // an integer field
Hyflow.dir.register(this) // Register with the

directory manager
}

Figure 6. Hyflow2 Object example for a bank account.

the value of the Ref inside a transaction, one should use ref1() = v
– i.e., call ref1.update(v) – or alternatively, ref1.set(v).

All of these methods (apply, get, update and set in class Ref)
take a transaction context object (i.e., an instance of the class InTxn)
as an additional, implicit argument. Implicit arguments in Scala
code may be omitted, as long as the compiler can find in scope a
variable of the appropriate type marked with the implicit keyword.
In Figure 3, the txn object is automatically passed to the apply() and
update() methods. Figure 4 shows how Scala interprets the code in
Figure 3.

This mechanism using implicit arguments and Refs leads to a
clean syntax with relatively little redundant code (only the “implicit
txn =>” construct and the function call “()” characters are super-
fluous). Another benefit of this mechanism is protecting against
concurrent access of a memory location from both transactional
code and non-transactional code. This property is highly desir-
able in TM systems because in such scenarios, the behavior of in-
terleaving transactional with non-transactional operations is unde-
fined. Accesses to a Ref’s contents via the apply or update meth-
ods require an implicit transaction context object to be in scope,
otherwise compilation fails. This requirement is satisfied inside
an atomic block as explained in the previous paragraph. Outside
atomic blocks however, no transaction context value is implicitly
available, so calls to apply or update would lead to compilation er-
rors. Single-operation transactions are used to allow accessing Refs
outside atomic blocks. ref1.single.get() would, for example, spawn
a transaction for the sole purpose of retrieving ref1’s value.

ScalaSTM allows temporarily aborting a transaction using the
retry() method. This is usually used for enforcing preconditions.
Suppose for example the takeFirst operation on a queue (Figure 5).
When the queue is empty, this operation may invoke retry, effec-
tively blocking until at least one element is available. This behavior
is called conditional synchronization. After calling retry, the trans-
action should only execute again once any of the values it has read
is updated, otherwise it will follow the same execution path and
call retry again. A simplistic implementation may, however, blindly
restart the transaction after an exponential back-off.

4.2 Hyflow2 Objects
While in ScalaSTM transactions operate on Refs directly, Hyflow2
introduces an additional layer – the Hyflow2 Object – as a container
for Refs (see Figure 6). An Hyflow2 Object (henceforth referred

def deposit(accId: String, amount: Int) = atomic {
implicit txn =>
val acc = Hyflow.dir.open[Account](accId)
val newVal = acc.value() + amount
acc.value() = newVal
returm newVal

}

Figure 7. Hyflow2 transaction example. Transaction must open an
object before operating on it.

to as HObj) mixes in the HObj Scala trait 1 and it represents the
Hyflow2’s basic unit of data. Each Hyflow2 Object has a unique
identifier, which Hyflow2 uses to locate the object. The key is
usually specified by the user at the object’s creation, by passing
it as an argument to the constructor.

Each HObj is composed from one or more fields. Fields are
specialized Refs that maintain their association with the enclosing
HObj and their order number within that object. Fields are created
by calling the HObj.field method inside the object’s constructor,
and passing it an initial value.

4.3 Hyflow2 Directory Manager
The Directory Manager (DM) is Hyflow2’s module that keeps track
of the objects’ location. When an HObj instance is created, it
registers itself with the DM (Figure 6). If the object later migrates
to a different node, it updates its registration with the DM.

The Directory Manager also handles retrieving objects from
their owner nodes over the network. This operation is called open-
ing (see Figure 7). It requires the identifier of the requested object
and it generally caches a copy of the requested object on the local
node.

5. Transaction Nesting
Hyflow2 includes support for nested atomic blocks. In this section
we first briefly describe the three nesting models previously studied
in TM [7, 12]: flat, closed and open. Subsequently we introduce the
API support for nesting in Hyflow2, and explain its use. Lastly, we
make the case for a third atomic construct.

5.1 Nesting Models
The three transaction nesting models differ based on whether the
parent and children transactions can independently abort:

Flat nesting
is the simplest type of nesting, and simply ignores the existence
of transactions in inner code. All operations are executed in the
context of the outermost enclosing transaction, leading to large
monolithic transactions. Aborting the inner transaction causes
the parent to abort as well (i.e., partial rollback is not possible),
and in case of an abort, potentially a lot of work needs to be
rerun.

Closed nesting
In closed nesting, inner transactions can abort independently of
their parent (i.e., partial rollback), thus reducing the work that
needs to be retried. Changes are only made visible to outside
transactions when the outermost transaction commits.

Open nesting
In open nesting, operations are considered at a higher level

1 A Scala trait is similar to a Java interface. A class can therefore mix in
(i.e., implement) multiple traits. However unlike interfaces, Scala traits may
contain implementation.
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// Simple open-nested transaction without abstract
locks or commit or abort handlers

atomic.open { implicit txn =>
val ctr = Hyflow.dir.open[Counter]("id")
ctr.value() += 1

}
// Open-nested transaction that acquires a single

abstract lock
atomic.open("abslock0") { implicit txn =>
val ctr = Hyflow.dir.open[Counter]("id")
ctr.value() += 1

}
// More complex usage case, with abort and commit

handlers. Lock is held after commit.
atomic.open { implicit txn =>
acquireAbsLock("absLock0")
val ctr = Hyflow.dir.open[Counter]("id")
ctr.value() += 1

} onAbort { implicit txn =>
val ctr = Hyflow.dir.open[Counter]("id")
ctr.value() -= 1

} onCommit { implicit txn =>
holdAbsLock("absLock0")

}

Figure 8. Open nesting in Hyflow2

of abstraction. Open-nested transactions are allowed to make
their changes visible and commit to the shared memory inde-
pendently of their parent transactions, optimistically assuming
that the parent will commit. If however the parent aborts, the
open-nested transaction needs to run compensating actions to
undo its effect. The compensating action does not simply re-
vert the memory to its original state, but runs at the higher level
of abstraction. For example, to compensate for adding a value
to a set, the system would remove that value from the set. Al-
though open-nested transactions breach the isolation property,
this potentially enables significant increases in concurrency and
performance. Open-nested transactions typically use constructs
called abstract locks to guarantee consistency.

5.2 Nesting API
Flat and closed nesting are semantically equivalent and can be used
interchangeably. Unlike in the original Hyflow, we decided not
to expose the decision of which of the two models to use in the
standard user-facing API. Hyflow2 may use any of these models
to handle nested atomic blocks. Currently, the decision is fixed
based on a configuration value, but in the future it could be made
adaptively at runtime.

Open nesting on the other hand requires API support. Following
the style of ScalaSTM, in Hyflow2 we propose the following syntax
(see Figure 8):

- An open nested transaction should be started with atomic.open.
The body of the transaction follows the syntax of regular trans-
actions.

- Following the transaction’s body two optional blocks may be
specified. These blocks are introduced by onCommit and on-
Abort, and represent the transaction’s commit and abort han-
dlers, respectively. The handlers themselves are executed as
open-nested transactions, so they must accept the implicit trans-
action context argument. If both handlers are present, their or-
der is not important.

- If an open-nested transaction requires the acquisition of an
single abstract lock which is known in advance, the lock’s

new OpenNestingBlock(
atomic.open { implicit txn =>
// Atomic bloc is wrapped in an OpenNestingBlock

}
).onCommit( { implicit txn =>

// handler is passed to onCommit method. After
registering the callback, onCommit executes the
block wrapped above.

}
)

Figure 9. Expanded code showing mechanism for defining com-
mit/abort handlers.

identifier can be passed as a string argument to atomic.open.
The lock will be acquired before the open-nested transaction
can commit, and will be released automatically as part of the
transaction’s abort and commit handlers. These handlers do not
need to be present in the code, the lock will be released anyway
(see Figure 8).

- For any other abstract lock scenarios, the locks must be ac-
quired within the sub-transaction’s body using acquireAbsLock.
These locks too will be automatically released as part of the
sub-transaction’s abort and commit handlers.

- If for any reasons an abstract lock should be kept beyond the
sub-transaction’s commit or abort, holdAbsLock must be called
in the commit and/or abort handler. Any such lock will be
propagated to the innermost open-nested ancestor transaction
and will be released upon its commit or abort.

5.3 Discussion and Language Mechanisms
We consider atomic.open a semantically cleaner way of denot-
ing open-nesting transactions than the previously suggested ope-
natomic keyword [13]. Our syntax logically breaks down into two
terms. The first term, atomic is the same as the marker for regular
atomic blocks. The second term, open, appears as a property of the
resulting transaction. By contrast, openatomic as a separate key-
word, gives the impression the effect is totally unrelated with that
of the atomic keyword.

When evaluating an atomic.open block, the open method is
called on the atomic object of type TxnExecutor, and it receives
the function to be executed transactionally as a parameter. Declar-
ing the onCommit and onAbort handlers is more complex: blocks
are evaluated last to first, wrapping what is above in a special
OpenNestingBlock container object, and calling onCommit/onAbort
on this object. The object is saved in a thread-local variable. When
finally, atomic.open is invoked, it checks if there is any Open-
NesingBlock object registered for the current thread and uses it, if
any. See Figure 9 for an expanded example. This mechanism is also
used in ScalaSTM to implement the orElse keyword (orElse pro-
vides the means to execute alternative atomic blocks if the original
ones fail).

5.4 Configurable nesting
For testing reasons users may need to execute certain atomic blocks
under both flat/closed and open nesting models. Using the pre-
viously described API, switching between models would require
modifying the source code and recompiling. To avoid this situa-
tion, we support an additional method for launching a transaction,
”atomic.config”. An atomic block marked with atomic.config will
determine its nesting model at run-time, by reading it from a config-
uration value. For completeness, the choice between flat and closed
nesting is explicit. Atomic.config allows defining abort and commit
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STM.atomic(new Runnable {
public void run() {
Counter ctr = Hyflow.dir().<Counter>open("ctr")
ctr.set(ctr.get() + 1);

} } );

Figure 10. ScalaSTM Java compatibility API.

new Atomic<Boolean> {
public Boolean atomically(InTxn txn) {
Counter ctr = Hyflow.dir().<Counter>open("ctr");
ctr.value.set(ctr.value.get() + 1);
return true;

}
public void onCommit(InTxn txn) {
// Commit handler, omit if not needed

}
public void onAbort(InTxn txn) {
// Abort handler, omit if not needed

}
}.execute();

Figure 11. Hyflwo2 Java compatibility API using the Atomic
class.

handlers just like atomic.open. If the block executes with closed or
flat nesting, these handlers will simply be ignored.

6. Java Compatibility API
Scala provides excellent interoperability with Java. As a result,
many of the operations described above will just work when in-
voked from Java code either directly, or in a slightly different form
(for example, methods ref1.get, ref1.set, Hyflow.dir.open, retry be-
comes Txn.retry, etc.). Several of the more advanced Scala features
that we use in the Hyflow2 API are however not supported from
Java code, so we need to provide additional mechanisms to obtain
the same results.

6.1 Defining Transactions
ScalaSTM already provides a way for starting transactions from
Java which uses the Callable and Runnable interfaces for defin-
ing the transaction’s body (Figure 10). The transaction context ar-
gument isn’t used anymore – instead, all transactional operations
need to dynamically determine the context object at run-time. If no
transaction exists for the current thread, a single-operation transac-
tion is created automatically. This mechanism, however, does not
define the abort and commit handlers required for open-nesting.

To support open-nesting, Hyflow2 provides an Atomic abstract
class with three methods: atomically, onCommit and onAbort. User
code must subclass it and provide at least the implementation for
atomically (see Figure 11). If implementations are provided for the
other two methods, they will be used as commit and abort handlers.
Unlike ScalaSTM’s Java API, a transactional context object is
passed to the transaction as an argument. Our reasons for doing
so will become clear in Section 6.2.

6.2 Defining Hyflow2 Objects
Inheriting from a Scala trait in Java code is non-trivial. To allow
a simpler way of defining Hyflow2 Objects in the Java API, we
provide an abstract class called jHObj, which users must subclass.

Fields may be declared in two ways, which we named the Scala
and the Java styles. This decision influences how the fields are
later accessed from both Scala and Java code. The Scala way of

public class Counter extends jHObj {
Ref<Integer> value = field(0);
public Counter() {
Hyflow.dir().register(this);

}

// This method is an example transaction. It is not
part of the Hyflow2 Object definition.

public static void increment(final String id) {
new Atomic {
public void atomically(InTxn txn) {
Counter ctr = Hyflow.dir().<Counter>open(id);
// The first way of accessing Refs works only

from an Atomic class due to the txn
parameter

ctr.set(ctr.get(txn) + 1, txn);
// The second way of accessing Refs also works

using a Runnable
ctr.single.set(ctr.single.get() + 1);

}
}.execute();

} }

Figure 12. Scala-style Hyflow2 Object definition in Java. Notice
how accessing Refs in this style is more verbose.

public class Counter extends jHObj {
Ref.View<Integer> value = jfield(0);
public Counter() {
Hyflow.dir().register(this);

}
// Example transaction
public static void increment(final String id) {
STM.atomic(new Runnable {
public void run() {
Counter ctr = Hyflow.dir().<Counter>open(id);
ctr.set(ctr.get() + 1);

} } );
} }

Figure 13. Java-style Hyflow2 Object definition in Java. Compact
Ref access.

declaring fields was already described in Section 4.2, and only
differs cosmetically (see Figure 12). However, choosing to declare
fields the Scala way makes Java code accessing that field more
verbose: either the transaction context object needs to be passed
explicitly to each Ref.get / Ref.set call (this object is available by
sub-classing the Atomic abstract class as mentioned in Section 6.1),
or Ref Views must be used to determine the context at run-time
by calling Ref.single.get or Ref.single.set instead of simply Ref.get
or Ref.set. The Scala style of declaring Refs is thus recommended
when the application is predominantly written in Scala.

For applications written mostly in Java (or even Java-only), the
Java style of declaring fields makes Java code more compact. Fields
are declared using jfield instead of field and their type becomes
Ref.View instead of Ref (see Figure 13). Java code can now ac-
cess the fields using the shorter ref1.get(), etc. Note that the actual
method invoked is now Ref.View.get() and determines the transac-
tion context object dynamically at run-time. When using the Java
style, the Scala compiler will not complain if a Ref.View is ac-
cessed outside an atomic block. Instead, it would fire a single-
operation transaction. Also, performance may be affected slightly
due to the overheads of repeated thread-local variable lookups.
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7. Mechanisms and Implementation
Our implementation uses the actor model via the Akka library.

7.1 Actors and Futures
Akka is a very efficient actor model implementation for the JVM.
The actor model can lead to very fast implementations because
it reduces the need for thread context switching. Actor libraries
generally do their own user-space scheduling, as opposed to relying
on the OS scheduler, and prohibit blocking function calls (such
as disk access. etc). Instead, actors send messages to each other
and respond to the messages they receive – it is an event-based
programming model.

An important part of Akka’s interface are Futures. Futures rep-
resent the result of a computation that is expected to complete at
some later time. Futures can be used when a thread sends a re-
quest to an actor and expects a response. Instead of waiting for
the response to arrive, the method sending the request immediately
returns a Future object. The thread can register a callback to be exe-
cuted when the response is received, query the Future periodically,
or even block for the result. Computations can also be composed
by chaining or aggregating Futures, thus reducing the number of
times a thread needs to block and improving performance. Futures,
as well as actors, receive and process messages and events using a
configurable thread-pool.

7.2 Network Layer
Akka actors provide network transparency. They can seamlessly
communicate across JVM and machine boundaries. Actor instances
are identified using ActorRef objects. ActorRef s can be sent across
the network while still maintaining their association with the cor-
rect actor. ActorRef s can then be used on the remote machine to
communicate to the original actor.

Internally, Akka uses Netty for communicating over the net-
work. Netty is a fast, asynchronous event-driven network applica-
tion framework. It uses the non-blocking, high performance Java
New I/O API. Netty also uses a configurable thread-pool for ser-
vicing received messages.

7.3 Serialization
Serialization is the process of converting an object to a format that
can be sent through the network, and back. Traditionally, Java ob-
jects must implement a Serializable interface in order to enable
this functionality. The standard Java serializer however is notori-
ous for its weak performance. Fortunately, Akka provides an API
for custom serializers, so we implemented an adapter for the Kryo
library[29]. Kryo is one of the fastest JVM serialization frame-
works, and is compatible with Scala.

7.4 Hyflow2 Architecture
Hyflow2 has a modular architecture. Depending on their func-
tion, module implementations need to comply to certain interfaces.
Hyflow2 currently provides the following interfaces: lock service,
object store, object directory, barrier service and cluster manager.
A module implementation consists of a singleton object that com-
plies to one of these interfaces and is used for sending requests
to the module and an actor which services such requests. Modules
communicate between each other and with the transactions’ threads
using message passing and Futures.

The lock service module handles acquiring, releasing and veri-
fying the status of object and/or field locks. The object store mod-
ule holds the objects themselves and handles queries, updates and
validations (version checks). Due to their tight coupling, the lock
service and object store can be combined in a single module. The
object directory tracks object locations: it handles queries, updates,

Object Store

Barrier Service

Object Directory

Cluster Manager

Router Actor

Lock Service

Transaction
Backend Code

Transaction
User Code

Transaction Thread

Coordinator Thread

Akka actor library

Netty network library

Figure 14. Hyflow2 system diagram

and it can also send notifications to interested transactions when an
object is updated. The cluster manager tracks which nodes partici-
pate in Hyflow2 transactions, and is currently implemented by del-
egating a coordinator node (a gossip protocol could be easily inte-
grated for decentralizing the control). The barrier service lets multi-
ple nodes coordinate their execution and is used mostly for bench-
marking. An additional module is tasked with gathering statistics
from all participating nodes. Figure 14 shows a system diagram
which includes Hyflow2 modules and their interactions with the
transaction threads and underlying libraries.

Each node has a router actor which serves as a gateway for
all request messages (response messages do not pass through the
gateway). The router actor dispatches messages to the appropriate
module based on the message’s type (Java class). This design al-
lows every message to contain additional payload data, which can
be processed in a consistent way. For example, the Transactional
Forwarding Algorithm (TFA) which Hyflow2 implements needs to
attach an integer (the node-local clock value) to each message sent
over the network (see Section 2). Instead of requiring every module
to attach payloads to all the messages they send and receive, pay-
loads are handled automatically in the message’s base class con-
structor on the sender node, and is processed on the receiver node
by the router actor.

7.5 Conditional Synchronization
Hyflow2 is the first DTM implementation to support distributed
conditional synchronization. This feature was implemented by
maintaining a waiting list of transactions which are blocked on
each object. When they execute, transactions record all objects
they access in the transaction’s read-set. When a transaction calls
retry, it adds itself the waiting lists of all objects which it has previ-
ously read, then blocks. Waiting lists are maintained by the Object
Directory. When an object is updated, the Directory is notified, and
in turn notifies all transactions on that object’s waiting list. Because
the message adding a transaction to an object’s waiting list may ar-
rive after the object is updated, the object version is checked as
well: if the transaction is waiting on an old version of the object,
the notification is sent right away. Otherwise, a transaction could
be waiting unnecessarily for a condition that is already satisfied.

7.6 Parallel Object Open
This is another feature provided by Hyflow2 that can speed up cer-
tain transactions. Since objects are usually retrieved from remote
nodes, the open operation is time-consuming. When a transaction
needs multiple objects and knows their identity in advance, it can
use the parallel object open operation to reduce the number of net-
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work round-trips required for acquiring a copy for each required
object.

7.7 Transaction Checkpoints
Checkpoints were proposed by Koskinen and Herlihy [11] as an
alternate mechanism for partial rollback. As opposed to nesting,
where execution can return only to sub-transaction boundaries,
checkpoints allow resuming execution from any desired location
where a checkpoint was saved. Checkpoints rely on Continuations,
a programming language mechanism that allow saving and resum-
ing the control state of a program. At their core, continuations work
by saving and restoring the CPU registers and the activation stack.

While some languages have varying degrees of support for
continuations (e.g. in C one could use getcontext/setcontext or
setjmp/longjmp), the official Java Virtual Machine does not support
this feature. In order to add support for continuations in Java, a
number of paths are available:

- Use a library that employs byte-code rewriting, such as JavaFlow,
NightWolf or, with modifications, Kilim. Such libraries employ
a user-code level activation stack (as opposed to a JVM-level
stack) and modify all local variable accesses to explicitly use
this stack.

- Use an alternative JVM with support for continuations, such as
the Avian JVM.

- Modify the the open-source JVM to support continuations. A
patch is available for this purpose in the Da Vinci Machine
Project.

For Hyflow2 we chose the third approach, as it gives the best
performance. While this requires a non-standard JVM, Hyflow2
can run on stock JVM with checkpoints disabled.

7.8 Performance
As previously mentioned, thread context switches and network
round-trip time are important bottlenecks. The choice of libraries
we used in Hyflow2 was made with the purpose of addressing
these issues. Akka and Netty are event-driven libraries and attempt
to minimize thread context switches. We configured their internal
thread pools to a minimum size that produces the greatest perfor-
mance. Also, we specifically targeted serialization in our quest for
performance because it is on the critical path of sending a message
over the network.

8. Experimental evaluation
Hyflow2 was evaluated experimentally using a suite of:

- Bank benchmark, a benchmark that mimics a monetary bank
application, widely used for evaluating STM and DTM sys-
tems [4, 5, 24];

- Enhanced Counter, Skip-List and Hash-Table, three micro-
benchmarks typically used for stressing TM systems [15, 22,
23]. In the first, transactions access counter objects which they
read or increment; the other two are configurable applications
acting on distributed data structures, respectively skip-list and
hash-table.

Since in this paper we do not seek to evaluate the TFA algorithm but
rather the framework’s performance, we compare against the orig-
inal Hyflow which also implements TFA. Comparisons between
Hyflow and other distributed transactional memory libraries imple-
menting different algorithms are available elsewhere [19, 20], and
have shown that Hyflow outperforms competitors under most cir-
cumstances.

Experiments were run on a testbed featuring 48 identical nodes.
Each node is an AMD Opteron processor running at 1700MHz. The
operating system used is Ubuntu Linux 10.04 Server. Every node
communicates with every other node via TCP links and the average
end-to-end latency is 1ms. The network is not saturated.

The JVM used is the 64-bit HotSpot(TM) Server VM. Bench-
marks were run first with Just-in-Time (JIT) compilation disabled
(interpreted mode) and next with JIT enabled. Each test was al-
lowed a warm-up period to compensate for compilation and class
loading overheads before measurement was started.
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Figure 15. Summary of relative performance across benchmarks.

Figure 15 shows normalized transactional throughput for each
of our benchmarks. Each bar in the plot is the average of a number
of measurements:

- up to eight node count samples between two and 48 nodes;

- up to three contention levels determined by the amount of read-
only transactions (between 0 and 80%);

- up to three repetitions of each experiment.

We can notice that under interpreted mode, the throughput dif-
ference between Hyflow and Hyflow2 are not very significant,
and vary between -20% and +25%. In compiled mode however,
Hyflow2 is strikingly faster: the average speed-up is between 50%
and 300%.

Figures 16 and 17 provide details on one of the benchmarks,
bank. The figures follow the throughput as the number of nodes
is increased from two to 48 nodes. Hyflow2 is very fast at a low
number of nodes – up to 7 times faster than Hyflow with JIT
enabled. When the number of nodes is in middle of the range,
the improvement is only around 30-60%. Then, as more nodes are
added, Hyflow2’s performance benefit keeps steadily increasing up
to just bellow 100%. When JIT is disabled the trends are similar,
but improvements are limited to 20%.

Figures 18 and 19 show the same trends for the Skip-List bench-
mark.

9. Related Work
DecentSTM [1] is a decentralized STM algorithm providing the
snapshot isolation consistency guarantee. The reference implemen-
tation provided by the authors does not function in a real distributed
setting, but rather emulates it using threads.

GenRSTM [3] uses group communication services to imple-
ment a distributed STM. Its API uses Box containers, not unlike
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Figure 16. Throughput on Bank for 20% read-only transactions.
16(a) shows absolute values for both Hyflow and Hyflow2. 16(b)
shows the relative improvement in Hyflow2.

Hyflow2’s Refs. GenRSTM is modular and can be used to imple-
ment multiple STM algorithms.

Both these competitor DTM frameworks were compared against
Hyflow in [19, 20].

In context of DTM, a number of papers recently appeared [14,
16, 17, 21]. They provide new protocols optimizing peculiarity
of different scenarios and all are based on control-flow, without
implementing a directory based protocol for looking-up shared
objects among nodes. These protocols cannot be compare with our
framework because it provides the implementation of a data-flow
based protocol.

Hyflow2 has been recently used as a reference DTM framework
in [10].

10. Conclusion
We introduced Hyflow2, a high performance distributed transac-
tional memory for the JVM. Hyow2 is the first Distributed Trans-
actional Memory implementation with support for Scala, interop-
erability with Java, and key DTM features including nested trans-
actions and distributed conditional synchronization. We focused on
performance, and managed to significantly improve transactional
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Figure 17. Throughput on Bank with 50% and respectively, 80%
read-only transactions.

throughput compared to the original Hyflow. Future work may in-
clude support for checkpointing as an alternative to closed nest-
ing, configurable field/object level locking and alternative atomic
blocks with distributed selective waiting.
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