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Abstract
In this poster paper, we briefly introduce an effective solution to
address the problem of committing transactions enforcing a pre-
defined order. To do that, we overview the design of two algorithms
that deploy a cooperative transaction execution that circumvents the
transaction isolation constraint in favor of propagating written val-
ues among conflicting transactions. A preliminary implementation
shows that even in the presence of data conflicts, the proposed al-
gorithms outperform other competitors, significantly.

Categories and Subject Descriptors D.1.3 [Software]: Concur-
rent Programming; H.2.4 [Systems]: Transaction processing

Keywords Transactional Memory, Commitment Ordering

1. Introduction
Transactional Memory (TM) [5] is an easy abstraction to program
concurrent applications. Its integration into main-stream compilers
and programming languages such as GCC and C++ gives TM,
respectively, accessibility and concreteness.

In this poster paper we provide the design of two TM implemen-
tations that commit transactions enforcing an order defined prior to
their execution. Roughly, by transaction ordering we mean consid-
ering not just the set of transactions as input of the problem, but also
the specific commit order that must be enforced for them. Such a
reformulation inherently brings up a fundamental trade off between
the level of parallelism achievable given the need of committing in-
order, and the performance of the single threaded execution with-
out any software instrumentation (which is rather needed to prevent
conflicts when running in parallel).

Ordering transactions before the execution is a known prob-
lem, mostly relevant to deployments where an external service is
in charge of providing the commit order to satisfy certain proper-
ties (e.g., equivalent semantics or system dependability). Examples
of those deployments include (but are not limited to): loop par-
allelization [4], and fault-tolerance using the state machine repli-
cation (SMR) approach [9]. In the former, loops designed to run
sequentially are parallelized by executing their iterations concur-
rently, and guarded by TM transactions (as in [4] and [7]) to handle
conflicts (i.e., data dependency) correctly. In that case, providing
an order matching the sequential one is fundamental to enforce a
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Figure 1: ACO using Blocking/Stall (BS) and Freeze/Hold (FH)

semantics (of the parallel code) that is equivalent to the original
(sequential) code. Regarding the latter, SMR-based transactional
systems order transactions (totally or partially) before their execu-
tion to guarantee that a state always evolves on several computing
nodes, consistently. To do that, usually a consensus protocol is em-
ployed (e.g., Paxos [6]), which establishes a common order among
transactions. After that, this order must be enforced while process-
ing and committing those transactions.

In this poster paper we focus on Software Transactional Mem-
ory and we briefly introduce the design of two solutions to commit
transactions in order while exploiting their parallel execution: Or-
dered Write Back (OWB) and Ordered Undo Logging (OUL). They
represent two protocols that assume two different widely used tech-
niques to merge transactions’ modifications into the shared state,
namely write back (in OWB) and write through (in OUL). Both
of them share a common design using a dependency-aware coop-
erative model. Transactions employ a weaker isolation level, and
exchange both data and locks to increase concurrency while pre-
serving the commit order. More specifically, OWB uses data for-
warding for uncommitted transactions that complete their execu-
tion successfully, while OUL leverages encounter time locking with
the ability to pass the lock ownership to other transactions.

2. Transaction Ordering
A concurrency control that enforces an order of commits [8] en-
sures that when two operations oi and oj , issued by transactions
Ti and Tj respectively, are conflicting, then oi must be processed
before oj if and only if Ti � Tj (i.e., i precedes j). Age-based
Commit Order (ACO) deploys this idea, which mandates an adap-
tation of the classical TM model. As an example, the transaction
conflict detection should guarantee that when Ti � Tj , Ti must not
read a value written by Tj . We define a transaction Tj as reachable
if all lower age transactions Ti, with i < j, are committed. This
term depicts the fact that Tj has been reached by a serial execution
where all Ti transactions committed in the order {1, . . . , i, j}.
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Figure 2: Peak performance of all competitors (including unorderd) using all micro benchmarks (Y-axis is log scale).

Assume an ACO where transaction Ti precedes transaction Tj

(Ti � Tj). Although Tj may finish executing its operations before
Ti, it must wait for Ti to commit first; then Tj can start committing
(and validating if needed) its changes. This strategy forces the
thread executing transactions with higher age to either: block [4]
(see Figures 1a & 1b), or freeze [10] (see Figure 1c). Either way, an
additional delay for those transactions is introduced.

To construct our cooperative model, we start by decoupling two
events of a transaction execution: the time it ends, and the time it
becomes reachable. Whenever a transaction performs all its opera-
tions successfully (i.e., without encountering any conflict with any
lower-age concurrent transaction), it commits its modifications. We
name this time as end. However, exposing written objects and re-
leasing all transaction’s meta-data may violate the ACO if all lower-
age transactions are not entirely finalized or when the transaction
conflicts with a lower-age transaction that did not run at the time
of exposing the changes. For this reason, we define a new oper-
ation, called complete, invoked whenever a transaction becomes
reachable. The main difference between an ended transaction and a
reachable transaction is that the former, although it already exposed
its modifications, can still be aborted (and trigger the abort of other
transactions), whereas the latter cannot be aborted anymore. Fig-
ure 1d shows a possible execution using our transactional model.

3. Algorithms
OWB employs a write-buffer approach, therefore a transaction
writes its own modifications into a local buffer. At commit time, the
transaction acquires a versioned-lock over its write-set and writes
its changes to the shared memory. To avoid concurrent writers, the
locks are not released until the transaction becomes completed or
is aborted. However, to allow an early propagation of the modifica-
tions, greater-age transactions can still access those locked objects
and, in case an abort is triggered, the committed transaction, which
produced the invalidation, is responsible to abort any dependent
transaction that has read the exposed values.

OUL is an undo-log algorithm that preserves the ACO. Here,
transactional updates affect the shared memory at encounter time,
while the old value is kept in a local undo-log. Unlike OWB, such
a scheme implies that the transactions’ order is guaranteed while
operations are invoked. In order to deploy the above idea, each
object is associated with a read-write lock. Each lock stores the
reference to the (single) writer transaction, which can be either the
current transaction holding the lock or the one that committed that
version, and a list of concurrent readers, namely those active or
committed transactions that accessed the version for reading it.

4. Evaluation
We provided a preliminary implementation of OWB, OUL, the
ordered version of four existing well-known TM designs (i.e.,
TL2 [3], NOrec [2], and UndoLog with and without visible

readers, and compared their performance using RSTM micro-
benchmarks [1]. To evaluate the effect of different workload char-
acteristics, such as the amount of operations per transaction, the
transaction length, and the read/write ratio, on the performance.
Each experiment included running half million transactions. For
all micro benchmarks, we configured three types of transactions:
short, long, and heavy. Both short and heavy have the same number
of accesses, but the latter adds more local computation in between
them. Such a workload is representative of workloads produced
by parallelization frameworks. Long transactions simply produce
more transactional accesses.

Figure 2 summarizes the peak performance of all competitors.
Results show interesting trends: our OUL outperforms other or-
dered competitors consistently. In particular, the maximum speedup
achieved is 4⇥ over Ordered TL2, 4.3⇥ over Ordered NORec, 8⇥
over Ordered UndoLog visible, and 10⇥ over Ordered UndoLog
invisible.
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